
18

Just as it’s easier to paint by numbers, it’s easier to
re-use blocks of logic. The use of intellectual
property or core-based design modules is an
essential component of a high-end “system on a
chip” solution. The LogiCORE and AllianceCORE
modules from Xilinx offer proven, pre-imple-
mented, and fully verified cores that provide the
fast time-to-market solutions you need.

This article demonstrates the use of technol-
ogy-independent intellectual property (IP) through
the design of a Universal Serial Bus application.

By the year 2000, Xilinx will be producing
devices containing more than 100,000 logic
cells (2 million gates). You will soon have a
canvas so broad that it will be difficult to paint
all the landscape. We estimate that it will take a
full 12 months and 20-30 engineers to fill a
device of this density, if designing from scratch.

Clearly the solution to maintaining a
trouble-free design cycle is to stop creating
every design from scratch, and to start using
technology-independent intellectual property.

Using Technology-Independent
Intellectual Property Are You Ready for 2

Universal
Serial Bus

Case Study

The Universal Serial Bus (USB) protocol
was created to provide a standardized serial
bus to be used in the personal and mobile
computer markets. Just as PCI is becoming a
standard parallel bus, USB is now becoming a
standard PC serial bus for lower-bandwidth
PC peripherals such as mice, keyboards,
modems, and so on.

USB Protocol Description
The USB protocol uses a differential-

twisted shielded pair for its physical medium.
The signal coding is NRZI with bit stuffing,
and has been designed to transmit data at
two rates: 1.5 Mbps (low speed) and 12 Mbps
(full speed). It can support up to 127 devices.

The USB architecture defines a host PC
and “devices” or “functions” (such as key-
board or mouse) with “hubs” in the middle as
necessary for fan-out.

Verilog HDL USB Design Goals
Mentor Graphics Inventra, a member of the

Xilinx AllianceCORE partnership, has developed a
family of USB functions and hub controller soft
cores. These cores can be combined with applica-
tion-specific back-end logic.

Inventra USB cores come in low speed and full
speed versions for applications such as micro-control-
lers, audio, and generic user definable USB interfaces.
These cores have been designed with the following
goals in mind:

➤ A technology independent design methodology.

➤ Design implementation and mapping directed by
synthesis timing constraints.

➤ Synthesis tools select state machines.

➤ Ability to re-use the bus interface with applica-
tion-specific logic.

For this USB case study, an Inventra USB func-
tion controller core was selected. The USB function
controller’s hierarchy and logic was originally de-
signed with its full-speed timing characteristics in
mind. The USB function controller’s hierarchy is
illustrated in Figure 1.

While the full-speed USB Function Controller runs
at 12 MHz, the design involves several blocks that run
at 4X the basic rate, or 48 MHz. This 48 MHz clock is



19

used to over-sample and drive both the data and
the 12 MHz data clock from the serial NRZI USB
data signal.

Controlling Timing
The design’s logic was divided into different

timing blocks as illustrated in Figure 2. This was
done to understand the timing relationships both
within and between blocks of logic.

By implementing the design using these timing
blocks as the hierarchical boundaries, the Inventra
engineers where able to clearly define timing
specifications and constraints for the blocks of
logic that needed to run at a rate of 48 MHz and
those that needed to run only at 12 MHz. They
were also able to control the timing interaction
between these blocks.

By using the Xilinx Alliance series timing con-
straint capability, the global timing of 12 MHz was
applied to the entire design. Then the more critical
constraint of 48 MHz was applied to the flip-flops
and I/O pads that needed to run at the 4X rate.

State Machines
The synthesis tools were also used to select the

most efficient and highest performance state ma-
chines. The USB function controller consists of,
among other things, five state machines. The
Inventra engineers found that two of the state
machines would not meet the system timing re-
quirements if standard encoding methods were
used for synthesis. By directing the synthesis tools
to use “one hot” encoding for these two machines,
performance requirements for these two blocks
were met. To maintain the core’s design re-use
capability, the Verilog RTL code was not modified;
only the synthesis options were changed.

Module Re-use
By developing the USB function controller as a

reusable IP, Inventra is able to maintain a single
version of RTL source code with a range of inter-
facing options for various back-end applications.
This back-end application logic can also be devel-
oped using this technology independent method-
ology, allowing the modules to interface easily.

Summary
This USB IP development case study shows

how generic Verilog RTL code was used to
define the register transfer level functions while
synthesis was used to produce the gate level
implementation. The constraint files and direc-
tives are used to drive both the synthesis and
the Alliance Series place and
route tools.

In this technology-inde-
pendent IP design flow, the
Xilinx design tools used the
new timing-driven
placement and
routing algorithms.
The robust timing
analysis tools were
also used to verify
that the timing requirements
were met. There was no
hand placement or routing,
and no floor-planing was
required.

The use of this technology independent
methodology will become more and more
important as device densities increase. Xilinx
is committed to delivering not only the high-
est performance and highest density devices,
but also to providing you with the tools you
need to develop them quickly and easily.

For information on the Xilinx
LogiCORE, AllianceCORE, or Mentor
Graphics Inventra USB products, check
out the Xilinx CORE Solutions web site at:
http://www.xilinx.com/products/
logicore/logicore.htm ◆

Figure 1:
USB Core Hierarchy

Figure 2:
Timing Blocks

Million Gates?

/products/logicore/logicore.htm

