
14

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

R

PRODUCT INFORMATION-DEVELOPMENT SYSTEMS

The advantages of using high-level de-
sign languages (HDLs) for FPGA design have
become readily apparent as device densities
skyrocket to more than 500K gates. The ben-
efits of using VHDL or Verilog HDL for design
entry and logic synthesis are especially great
if you are using the XC4000E/X, XC5200,
Spartan, or Virtex FPGA families. When you
design with HDLs, the key to obtaining the
best performance using Synopsys FPGA Ex-
press technology is to adopt applicable high-
level design practices and techniques, some
of which are described in this article.

Specifying Design
Constraints and Requirements

The most effective way to increase the
performance of your design is to thoroughly

specify your detailed design
constraints and requirements
in FPGA Express. Performance
requirements include system
clock speed, multi-cycle and
other sequential path timing
delays, and input/output tim-
ing. You can also synthesize
for best area or speed perfor-
mance, preserve or flatten
design hierarchy, and control
operator (resource) sharing. In
addition, entering your design
constraints improves more

than the synthesis results; place and route
results also improve because constraints are
passed as TIMESPECs in the XNF (or NCF)
files.

You can also enter other design specifica-
tions. In the FPGA Express interface, you can

High-Level Design Tips for

Synopsys FPGA Express
by KIRK A. OWYANG ◆ ◆ ◆ ◆ ◆ Manager, Corporate Applications Engineering ◆ ◆ ◆ ◆ ◆ Synopsys, Inc.

specify and control port/pad locations, global
buffer (BUFG) allocation, slew rate, and I/O
register insertion.

All of these constraints and requirements
enable FPGA Express and the Xilinx software
to extract the best performance from the
devices.

Describing Finite State Machines
There are specific ways to describe finite

state machines (FSMs) in VHDL and Verilog
that result in one-hot or binary encoding. You
can create any finite state machine using the
following FSM templates, which give optimal
synthesis results with FPGA Express synthesis
technology.

VHDL Template
In VHDL, you can enumerate states sym-

bolically or you can assign values to states
with the ENUM_ENCODING attribute.

FPGA Express supports automatic FSM
encoding for enumerated types in VHDL. To
take advantage of automatic encoding:

1. Use the VHDL template without the
ENUM_ENCODING attribute.

2. From Synthesis > Options > Project,
choose One Hot or Binary encoding. The
default is One Hot.

Use the ENUM_ENCODING attribute when
you want to control the state encoding.

The following example of a simple
counter shows the VHDL template using an
enumerated type for states (shown in bold
text). Note that the WHEN OTHERS statement
is not needed for this template, though it can
be used if required.



15

ment for state values.
module shift (clk, rst, in, out);
input clk, rst;
input [2:0] in;
output [2:0] out;
parameter [2:0]

S0 = 3’d1,
S1 = 3’d2,
S2 = 3’d4;

reg [2:0]
state, next_state ;

always @ (in or state)
begin

case (state) // synopsys
parallel_case full_case
S0: next_state = S1;
S1: next_state = S2;
S2: next_state = S0;
endcase

end

always @ (posedge clk or posedge
rst)
begin

if (rst) state <= S0;
else state <= next_state;

end

assign out = state;
endmodule

Conclusion
There is no question that

the future of the FPGA indus-
try depends upon very large
and complex FPGAs such as
those in the new Xilinx Virtex
family. To reap the maximum
benefit from these new de-
vices, FPGA design engineers
must adopt design methodolo-
gies (such as the use of HDLs)
that closely mimic the tradi-
tional ASIC design flow. A
couple of the key components
of a successful HDL-based
design flow for Xilinx custom-
ers, described above, are
detailed design constraint
capture and adherence to specific templates for
FSM descriptions. Following simple design
practices like these ensure the best perfor-
mance for your Xilinx design.

For more information, see the online help in
the FPGA Express software. ◆

library IEEE;
use IEEE.std_logic_1164.all;

entity shift_enum is
port (CLK,RST : bit;

I : std_logic_vector
(2 downto 0);
O : out std_logic_vector
(2 downto 0));

end shift_enum;

architecture beh of shift_enum is

type state_type is (S0, S1, S2);
— Do not use the following 2 lines
for automatic FSM extraction:
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of
state_type: type is “001 010 100”;

signal machine : state_type;

begin
process (CLK,RST)
begin

if RST= ‘1’ then
machine <= S0;

elsif CLK= ‘1’ and CLK’event
then

case machine is
when S0 => machine <= S1;
when S1 => machine <= S2;
when S2 => machine <= S0;
end case;

end if;
end process;

with machine select
o <= “001” when S0,
“010” when S1,
“100” when S2;

end;

Verilog Template
Verilog does not support the enumerated

type. However, you can use the Verilog tem-
plate to design a finite state machine and fully
control the state encoding.

In Verilog, state values are defined with the
parameter statement. The conventions for this
Verilog template are:
➤ Use the parameter statement to define state

values.
➤ Use a CASE statement and the Synopsys

directive //synopsys parallel_case full_case
to describe the state machine.
The following example of the same simple

counter described in the VHDL template shows
the Verilog template using the parameter state-

❝There is no

question that the

future of the FPGA

industry depends upon

very large and

complex FPGAs such

as those in the new

Xilinx Virtex family.❞


