
20

When using synthesis, component
instantiation has been the preferred method
for inserting RAM into a design. Although
instantiation works, it is cumbersome and
adds an unnecessary level of complexity to
the HDL coding and simulation steps. Exem-
plar Logic’s Leonardo supports RAM inference

from your RTL code.
This article describes
the technical aspects

of inferring RAM from VHDL and Verilog.
Leonardo recognizes RAM elements from a

basic two-dimensional array memory model,
coded in VHDL or Verilog. When a RAM is
detected, Leonardo inserts a generic RAM cell
into the netlist along with EDIF properties
that tell the Xilinx Alliance Series software
how to implement the RAM. Currently, the
following two Xilinx RAM types are sup-
ported:

RAM Inference Using
Exemplar Logic’s Leonardo

by TOM HILL ◆ ◆ ◆ ◆ ◆ Manager of Vendor Relations ◆◆◆◆◆ Exemplar Logic

RAM_DQ: Synchronous or asynchronous
single-port RAM. Leonardo determines if the
RAM is synchronous or asynchronous based
on the existence of clock lines.

RAM_IO: Synchronous or asynchronous
single-port RAM with bi-directional data line.

VHDL
architecture rtl of ram is

type mem_type is array
(2**address_width downto 0)

UNSIGNED(data_width - 1 downto 0) ;
signal mem : mem_type ;
 begin
 I0 : process

(we,address,mem,data_in)
 begin
 if (we = ‘1’) then
 mem(conv_integer(address))

<= data_in ;
 end if ;
 data_out <=

mem(conv_integer(address)) ;
 end process ;
end RTL ;

Verilog
 module ram (data_in, address,

we, data_out);
 parameter data_width=8,

address_width=8, mem_elements=256;

 input [data_width-1:0] data_in;
 input [address_width-1:0] address;
 input we;
 output [data_width-1:0]

data_out;

 reg [data_width-1:0] mem
[mem_elements:0];

 always @(we or address or data_in)
begin

 if (we) mem[address] = data_in;
 end

 assign data_out = mem[address];
endmodule

Asynchronous, Single-port RAM Example

21

There is no limit to the size of the RAM
that can be inferred; Leonardo will build a
RAM array out of available elements for a
particular technology. In the Figure 1
example, two 32x4 RAMs are required.

Timing Analysis and
Optimization of RAM Control Logic

Because Xilinx uses a black-box ap-
proach to RAM instantiation, no timing
information is available for the inferred
RAM cell. This prevents Leonardo from
performing timing analysis and timing
optimization on logic directly connected to
the RAM, which often includes the ad-
dress-to-data-out path of the RAM. There-
fore, you should perform a timing analysis
in the Alliance Series environment to de-
tect any timing problems through paths
that contain RAM.
(See Figure2.)

If further optimi-
zation is required on
a path, use the
following proce-
dure:

1. Re-optimize the
circuit with the
“-delay” and the
“-effort standard”
options.

2. Place critical
logic into a sepa-
rate hierarchical
block. This could
be done with the
group command
or may require a
code re-write. Leonardo supports the
VHDL block statements for hierarchy
which may provide a simple method of
achieving this.

3. Set timing constraints and perform
optimizations.

Conclusion
If you’re using RAM, Exemplar Logic’s

Leonardo can decrease your development
time and make your life a little easier. For
more information on Leonardo, contact Ex-
emplar at 1-800-632-3742, or visit
www.exemplar.com. ◆

Figure 1. In this example, two 32x4 RAMs are required.

Figure 2. Leonardo's black-box approach.

http://www.exemplar.com

