
36
XCell 31 - 1Q99

end process EQUALITY;
end architecture RTL;

module COMPARATOR_A
(AIN1, AIN2, AEQ);
input [7:0] AIN1, AIN2;
output AEQ;

integer I;
reg AEQ;

//Compare each bit in turn in a “for” loop
always@(AIN1 or AIN2)
begin: EQUALITY
AEQ = 1;
for (I=0; I<7; I=I+1)
if (AIN1[I] != AIN2[I])
AEQ=0;
else
;
end
endmodule

Comparator A - Bit by Bit Compare

library IEEE;
use IEEE.STD_LOGIC_1164.all,

IEEE.NUMERIC_STD.all;
entity COMPARATOR_A is

port (AIN1, AIN2: in unsigned(7 downto 0);
 AEQ: out std_logic);

end entity COMPARATOR_A;
architecture RTL of COMPARATOR_A is
begin
EQUALITY:process (AIN1, AIN2)
begin
— Compare each bit in turn in a “for” loopp
AEQ <= ‘1’;
for I in 0 to 7 loop

if(AIN1(I) /= AIN2(I)) then
 AEQ <= ‘0’;
 exit;
else
 null;
end if;

end loop;

omparators are best modeled with word-wise com-
pares within a PROCESS or an ALWAYS block that
contains the IF statement and an ELSE clause, and no

ELSE-IF clauses. Conditional signal assignments in VHDL or
conditional continuous assignments in Verilog could be used,
but at a high cost in simulation time. Without the sensitivity list
in VHDL or the event list in Verilog the simulators would
constantly be checking the statements even when the inputs

COLUMN

by Roberta Fulton, Technical
Marketing Engineer, Xilinx,
roberta.fulton@xilinx.com

Creating the Most
Efficient Comparators

C are unchanging, thus slowing simulation time considerably. If
compared bit-wise some synthesizers may not see optimizations
available to them such as the use of H-MAPs.

Three alternative representations to infer an 8-bit equality
comparator are shown below. The first, COMPARATOR_A does a
bit by bit compare (Figure 1), the second COMPARATOR_B sets
the default first, then compares (Figure 2), so does not have an
ELSE clause, the third has a complete IF-THEN-ELSE statement
(Figure 3).

end architecture RTL;

module COMPARATOR_B
(BIN1, BIN2, BEQ);
input [7:0] BIN1, BIN2;
output BEQ;

integer I;
reg BEQ;

//No “else” is required since default is
defined before the “if”

always@(BIN1 or BIN2)
begin: EQUALITY
BEQ = 0;
if (BIN1 == BIN2)
BEQ=1;
end
endmodule

Comparator B � No Else Clause

library IEEE;
use IEEE.STD_LOGIC_1164.all,

IEEE.NUMERIC_STD.all;
entity COMPARATOR_B is

port (BIN1, BIN2: in unsigned(7 downto 0);
 BEQ: out std_logic);

end entity COMPARATOR_B;
architecture RTL of COMPARATOR_B is
begin
EQUALITY:process (BIN1, BIN2)
begin
— No “else” is required since default is

defined before the “if””
BEQ <=’0’;
if (BIN1 = BIN2) then
BEQ <= ‘1’;
end if;
end process EQUALITY;

Figure 1

Figure 2

THE XILINX

HDL
ADVISOR



37
XCell 31 - 1Q99

Reviewing RTL-level schematics or design browsers in the
synthesizers we can see how the synthesizer sees the code
immediately upon parsing it before any optimization or
technology mapping.

Comparing the RTL level schematics of COMPARATOR_A
(Figure 4) and COMPARATOR_B (Figure 5) we see that in
both cases the EQUALITY operator is assigned to a generated
module, a SELECT type in COMPARATOR_A and EQUALITY type
in COMPARATOR_B. But we see that extra logic is inferred for
comparator A to do the bit-by-bit comparison looping.
COMPARATOR_C�s RTL schematic is similar to
COMPARATOR_B�s so is not shown.

As the RTL schematics show, the initial logic for
COMPARATOR_A and COMPARATOR_B is very different. Since
the overall functions are equivalent we would normally assume
that the optimization step would reduce them to the same logic.

module COMPARATOR_C
(CIN1, CIN2, CEQ);
input [7:0] CIN1, CIN2;
output CEQ;

integer I;
reg CEQ;

// Easiest to read version
always@(CIN1 or CIN2)
begin: EQUALITY
if (CIN1 == CIN2)
CEQ=1;
else
CEQ=0;
end
endmodule

Complete IF-Then-Else Clause

library IEEE;
use IEEE.STD_LOGIC_1164.all,

IEEE.NUMERIC_STD.all;
entity COMPARATOR_C is

port (CIN1, CIN2: in unsigned(7 downto 0);
 CEQ: out std_logic);

end entity COMPARATOR_C;
architecture RTL of COMPARATOR_C is
begin
EQUALITY:process (CIN1, CIN2)
begin
— Easiest to read versionn
if (CIN1 = CIN2) then
CEQ <= ‘1’;
else
CEQ <= ‘0’;
end if;
end process EQUALITY;
end architecture RTL;

But as seen in the gate-level schematics of Figures 6 and
7, COMPARATOR_B�s word-wise compare and its more
condensed optimization seed netlist allowed the synthesizer to
�see� the opportunity to use two HMAPs instead of a fifth
FMAP. This meant that 2 CLBs are required instead of 3 and
that one level of logic is required instead of two. (An FMAP-
HMAP combination is considered 1-level since no external
CLB routing is required). Performance will be slightly
enhanced because CLB internal routing is usually lower than
between CLBs. Once again COMPARATOR_C�s gate-level
schematic is similar to COMPARATOR_B and is not shown. It�s
best to use COMPARATOR_C�s code because of its readability.

When using inequality operators like �>� or �<� look for
the better synthesizers to use carry logic (CYx cells) when
mapping the generated modules to Xilinx technolgies. This is
synthesizer dependent, if you do not see carry logic in your

COMPARATOR_A.RTL schematic

Figure 3

Figure 4



38
XCell 31 - 1Q99

COLUMN - HDL ADVISOR

COMPARATOR_B
RTL Schematic

COMRATOR_A
Gate-level
Schematic

Figure 5

Figure 6



39
XCell 31 - 1Q99

Figure 8

mapped operators ask your synthesis company about possible
coding style dependencies or a future enhancement.

To prevent extra uneccessary logic watch for redundant
compares when coding complex code sections. Some synthe-
sizers will optimize out the redundancy, others will not.

Compares to a constant are usually smaller and faster than
comparing two signals. Figure 8 shows an example where the
equality compare is redundant.

Conclusion
For best results, code your compares word-wise rather than
bit-wise, check to see that your synthesizer uses carry logic for
inequality operators (asking for help if it doesn�t), remove all
redundant compare operations, and compare to a constant
rather than a signal when possible.

COMPARATOR_B Gate-level Schematic

Code your compares word-wise rather than bit-wise, check
to see that your synthesizer uses carry logic for inequality
operators, remove all redundant compare operations, and
compare to a constant rather than a signal when possible.

Figure 7

Instance: ix57

Library: xi4xv
Entity: IBUF
Arch: NETLIST

module COMPARATOR_D
(DIN1, DIN2, DGT, DLT, DEQ);
input [7:0] DIN1, DIN2;
output DGT, DLT, DEQ;

reg DGT, DLT, DEQ;

always@(DIN1 or DIN2)
begin: EQUALITY
DGT=0;
DLT=0;
DEQ=0;
if (DIN1 > DIN2)

 DGT=1;
else
 if (DIN1 < DIN2)
 DLT=1;
 Else

// The “if” and equality compare is unnecessary
// only DEQ=1; is required after the “else”

 if (DIN1 == DIN2)
 DEQ=1;

end
endmodule


