
24

here are an increasing number of applications that
can no longer be verified using software simulators
alone. The time required to simulate a large data

processing application such as video with a traditional HDL
simulator is no longer practical. Furthermore, many applica-
tions need to achieve specific speed targets for the prototype
to be useful. For this type of application there is a strong
movement in the market toward prototyping ASICs using
FPGAs. As Xilinx celebrates 15 years of success in the pro-
grammable logic market, the latest, high-density Virtex family
offers an ideal solution.

ASIC designs are often prototyped on a single FPGA device,
and Synplify is the ideal implementation tool for these designs.
However, for very large ASIC designs, there is a need to partition
the design across multiple FPGA devices. One big problem with
this emerging prototype methodology is that the time and
expertise required to partition a design across multiple FPGAs is
very high. Designers need to make multiple time-consuming
iterations between synthesis and partitioning to find a “legal”
partition for the design. In addition, synthesis is typically done
without understanding the partitioning, resulting in a prototype
which does not run at the target speed.

Synplicity has enabled a powerful prototyping methodology
through a new tool called Certify. Certify takes a fresh ap-
proach to the prototyping problem by integrating partitioning
and logic synthesis. By performing synthesis during the
partitioning phase, you are presented with accurate area and
pin utilization information so that partitioning decisions can
be made in a fast, interactive environment. A second benefit is
that Certify performs partition-driven synthesis. In other
words, the physical partitioning data is used to affect synthesis
along with your timing constraints.

Certify is the only tool that combines multi-chip partitioning
with RTL synthesis. The features and benefits of Certify are
summarized in Table 1 below.

Certify’s Approach is Better
The level of abstraction and automation in FPGA design tools is
moving continually upward to keep pace with the new high-
complexity, high-performance FPGAs being introduced. One
common element that is critical in linking these new tools
together, in the deep subµ world of FPGA design, is logic
optimization and technology mapping-the two main steps
involved in logic synthesis.

NEW PRODUCTS – SOFTWARE

Prototyping ASICs Using
Xilinx FPGAs and Certify™

The high capacity and high performance of Virtex FPGAs
combined with the unique partition-driven synthesis algorithms
in Certify means that even the largest multi-million gate ASIC
can be prototyped with a manageable number of Virtex devices.

by Jeff Garrison, Senior Product
Marketing Manager, Synplicity,
jeff@synplicity.com

T

FEATURE BENEFIT
Best-in-class FPGA synthesis Optimal speed and efficiency of prototype
Partition-driven synthesis Manages time budgets across FPGAs
RTL Partitioning Partition user’s HDL code, not ASIC netlist; Easier to use, higher productivity
Partitioning aids and impact analysis to guide user Shortens time to prototype
Fast, accurate feedback on I/O and area utilization Reduces iterations between partitioning & layout
Million+ gate capacity No need to break up design into many small blocks
Manages Logic Replication Optimal partitioning without changing source code
Manages Probe Point Creation High observability for debugging without changing source
Optimized For Iterative Design Reduces time to fix errors
Understands characteristics of prototype board Optimal speed and efficiency of prototype
Supports popular FPGA vendors Flexibility in implementation choice

Table 1. Certify Features & Benefits



25

In today’s HDL-based design methodologies:

• The HDL source describes the function of the device.

• The first synthesis step (compilation) interprets the HDL in
terms of registers, logic and arithmetic operations, and
control circuits.

• Logic optimization attempts to reduce the complexity of the
implementation using sophisticated algorithms. To this
point, the design has remained independent of the imple-
mentation device architecture (FPGA device family).

• Technology mapping represents the design in terms of a
specific device architecture.

• Timing optimization attempts to improve the design to meet
the designer’s timing constraints.

• Placement locates each technology cell within the chip.

• Routing allocates the wiring resources to provide the
necessary interconnections.

The naïve assumption that each of these steps is indepen-
dent leads to non-convergent iteration loops in reaching a
timing goal. At each stage, the tools (or the designer, in the
case of HDL source) make implementation decisions based on
estimates of what will happen in the remainder of the flow.
Each following stage is stuck with the decisions made at
earlier stages. In the independent model, the placement stage
cannot change logic to make its job easier.

The fundamental limitation to this flow is that changes
made in early stages have the most impact, but the ability to
estimate is weakest there, while the later stages have the best
information, but the ability to make significant changes is
gone. To overcome the limitations of the flow, we must
improve estimation for the early stages, and preserve high-
level information for the later stages. This approach is called
partition-driven synthesis. It is at the heart of the powerful new
algorithms in Certify, and allows you to achieve the fastest
possible prototype speed.

The Timing Estimation Problem
If improved timing estimation is necessary to break the
endless iteration cycle, then we must first understand the
components of timing, and what optimization tools can do to
change the timing. With FPGAs of 100K gates or more, good
estimation requires an understanding of the underlying
architecture of the device. The speed of an FPGA design
depends on many factors:

• The delay in the simplest programmable logic cell.

• The delay introduced by the programmable routing.

• The interconnection of logic to form a critical path through
the circuit.

• The timing requirements of the external circuitry.

The delay in the simplest programmable cell is easy to
estimate once the design has been mapped to a particular

device architecture, but very
difficult to estimate before mapping.
The cell is intentionally very rich in
its ability to represent logic
functions, but the cells’ capabilities
vary greatly among FPGA device
families. Hence, good estimation
requires mapping to the chosen
device architecture.

The speed of an FPGA
design depends on
many factors ...

Continued on the
following page



26

In a typical FPGA, the sum of the routing delays along the
critical path comprises well over half of the total delay. In a
mapped design, routing delay is by far the most important
estimation. The delay due to a particular interconnection
depends on the capacitance and resistance of the interconnec-
tion, which are in turn dependent on the physical location of
the connections. It also depends on the routing architecture
for the programmable device, and on the size of the particular
device. Good estimation of routing delays depends on good
estimates of physical placement, and on a detailed knowledge
of the device architecture.

Estimating timing accurately becomes even more important
when dealing with designs partitioned across multiple FPGAs.
The board delays must be accurately taken into account in
estimating any critical paths, and the synthesis tool must
account for these delays in its optimization algorithms. The
static timing analysis algorithms for finding the most critical
paths, and the techniques for considering the external timing
requirements are complex but well understood. Given a
mapped design with good interconnect estimates, static timing
analysis will reliably identify the most critical path.

Timing optimization tools have only a few options to
improve the timing:

• Change the circuit topology of the critical path so that the
new critical path has fewer delays.

• Change the placement so that it is easier to route with less
resistance and capacitance.

• Change the routing to reduce resistance and capacitance.

Of course, the most effective changes are major changes to
the circuit topology that derive from a deep understanding of
the design. This is the technique used by Certify’s unique
partition-driven synthesis algorithms to produce optimal
results.

Certify follows in its predecessor’s (Synplify) footsteps for
providing an intuitive and easy to use user interface.You input
Verilog or VHDL code for the design along with a PCB
description (also in HDL). Certify then performs a fast
estimation of area and pin utilization for the HDL modules in
your design. This utilization information is instantly provided
to you as you drag and drop modules of HDL in the various
FPGAs in the system.

After a partion has been created, Certify uses the physical
partition to drive the synthesis process. Certify has the ability
to optimize logic across FPGA boundaries resulting in higher
performance and better overall device utilization. The output
of Certify is a top-level EDIF description of the system, and
highly optimized netlists for each of the FPGAs, ready for Xilinx
place and route tools.

Conclusion
By utilizing Synplify’s lightning-fast synthesis algorithms with
Behavior Extracting Synthesis Technology™, Certify has the
ability to handle huge designs. Even a prototype that requires
six XCV1000s (6 Million FPGA gates) may be partitioned and
fully synthesized in a few days as opposed to several weeks,
not to mention the better results achieved with Certify by
synthesizing across FPGA boundaries.

For more information on Certify, please contact
your local Synplicity sales representative or call
(408) 548-6000.

Partition by dragging and dropping HDL modules to
different FPGAs

Of course, the most effective changes are major changes to the
circuit topology that derive from a deep understanding of the
design. This is the technique used by Certify’s unique partition-
driven synthesis algorithms to produce optimal results.

NEW PRODUCTS – SOFTWARE


