
31

n Synplify, you can use Relative Location Constraints,
RLOCs, to specifically control how logic is implemented
within Xilinx structures such as FMAP, HMAP, and regis-

ters. Additionally, Synplify allows you to group these related
structures together.

You will ultimately have small sections of your designs
where logic placement is crucial to meeting system perfor-
mances. RLOCs provide a powerful method of controlling
placement in performance critical sections. These tailored
RLOCs can be made as efficient as Xilinx relatively placed
macros. This article summarizes how to use RLOCs with
Synplify.

Synplify allows you to specify relative location constraints,
which may be placed either in the HDL code or through Synplify’s
graphical constraint editor, SCOPE (Synthesis Constraints
Optimization Environment). These location constraints are

passed to the Xilinx place and route tool through the EDIF or
XNF netlist. The attributes that you use are:

xc_rloc, xc_map, and xc_uset.
The example below shows how to implement a 9-input XOR

gate into a single CLB. The first step is to define a 4-input XOR
function (fmap or 4-input LUT), and a 3-input XOR function
(hmap or 3-input LUT). The next step is to instantiate two
fmaps (or 4-input LUTs, for Virtex) to XOR eight inputs, and
one hmap (or 3-input LUT, for Virtex) to XOR the outputs of
the two fmaps (or 4-input LUTs) and the 9th input. The final
step is to instantiate the whole CLB in the top level design.

Create modules and specify them as fmap, hmap or lut
(for Virtex) as shown below. Make sure that the module
mapped to fmap/lut has a maximum of four inputs, and the
module mapped to hmap has a maximum of three inputs.

APPLICATIONS – SOFTWARE

Using Relative Location
Constraints in Synplify For Improved Control

of Timing and Placement
A short description of how and why to use
RLOCs to control your design.by Mala Sathyanarayan, Senior Corporate

Applications Engineer, Synplicity, Inc.,
mala@synplicity.com

I

Verilog
XC4000, Spartan family:
module fmap_xor4(z, a, b, c, d)/* synthesis
xc_map=fmap */; // —(1)

output z;
input a, b, c, d;
assign z = a ^ b ^ c ^ d;
endmodule

module hmap_xor3(z, a, b, c)/* synthesis
xc_map=hmap */; // —(2)

output z;
input a, b, c;
assign z = a ^ b ^ c;
endmodule

Virtex family: Replace line (1) and (2) with:
module fmap_xor4(z, a, b, c, d)/* synthesis
xc_map=lut */; // —(1)

module hmap_xor3(z, a, b, c)/* synthesis
xc_map=lut */; // —(2)

VHDL:
XC4000, Spartan family:
library IEEE;
use IEEE.std_logic_1164.all;
entity fmap_xor4 is
port (a : in std_logic;

b : in std_logic;
c : in std_logic;
d : in std_logic;
z : out std_logic

);
end fmap_xor4;

architecture rtl of fmap_xor4 is
attribute xc_map : STRING;
attribute xc_map of rtl : architecture is “fmap”; —(1)
begin
z <= a xor b xor c xor d;

end rtl;

library IEEE;
use IEEE.std_logic_1164.all;
entity hmap_xor3 is
port (a : in std_logic;

b : in std_logic;
c : in std_logic;
z : out std_logic

);
end hmap_xor3;

Continued on the
following page

32

APPLICATIONS – SOFTWARE

architecture rtl of hmap_xor3 is
attribute xc_map : STRING;
attribute xc_map of rtl : architecture is “hmap”; —(2)
begin
z <= a xor b xor c;

end rtl;

Virtex family:
Replace lines (1) and (2) above with:
attribute xc_map of rtl : architecture is “lut”;

Instantiate these modules at a higher level and specify the
xc_rloc and xc_uset attributes on these instances. The
xc_uset attribute is used to group the instances together, and
the xc_rloc attribute specifies the relative locations of all the
instances with the same value for xc_uset.

VHDL:
XC4000, Spartan family:
library IEEE;
use IEEE.std_logic_1164.all;
entity clb_xor9 is
port (a : in std_logic_vector(8 downto 0);

z : out std_logic
);

end clb_xor9;

architecture rtl of clb_xor9 is
signal z03, z47 : std_logic;
component hmap_xor3
port (a : in std_logic;

b : in std_logic;
c : in std_logic;
z : out std_logic

);
end component;

component fmap_xor4
port (a : in std_logic;

b : in std_logic;
c : in std_logic;
d : in std_logic;
z : out std_logic

);
end component;
attribute xc_uset : string;
attribute xc_rloc : string;
attribute xc_uset of x03 : label is “SET1”;
attribute xc_rloc of x03 : label is “R0C0.f”; —(1)
attribute xc_uset of x47 : label is “SET1”;
attribute xc_rloc of x47 : label is “R0C0.g”; —(2)
attribute xc_uset of zz : label is “SET1”;
attribute xc_rloc of zz : label is “R0C0.h”; —(3)
begin
x03 : fmap_xor4 port map(a(0), a(1), a(2), a(3), z03);
x47 : fmap_xor4 port map(a(4), a(5), a(6), a(7), z47);
zz : hmap_xor3 port map(z03, z47, a(8), z);

end rtl;

This means all instances that have USET=SET1 should have
relative locations R0C0 (meaning they should be in the same
CLB).

VHDL example for XC4000, Spartan family (continued)

Verilog
XC4000, Spartan family:
module clb_xor9(z, a);
output z;
input [8:0] a;
wire z03, z47;
fmap_xor4 x03 /* synthesis xc_uset=”SET1"
xc_rloc=”R0C0.f”*/
(z03, a[0], a[1], a[2], a[3]);

fmap_xor4 x47 /* synthesis xc_uset=”SET1"
xc_rloc=”R0C0.g” */
(z47, a[4], a[5], a[6], a[7]);

hmap_xor3 zz /* synthesis xc_uset=”SET1"
xc_rloc=”R0C0.h” */
(z, z03, z47, a[8]);

endmodule

Virtex family:
module clb_xor9(z, a);
output z;
input [8:0] a;
wire z03, z47;
fmap_xor4 x03 /* synthesis xc_uset=”SET1"
xc_rloc=”R0C0.S0"*/
(z03, a[0], a[1], a[2], a[3]);

fmap_xor4 x47 /* synthesis xc_uset=”SET1"
xc_rloc=”R0C0.S0" */
(z47, a[4], a[5], a[6], a[7]);

hmap_xor3 zz /* synthesis xc_uset=”SET1"
xc_rloc=”R0C0.S1" */
(z, z03, z47, a[8]);

endmodule

33

Virtex family: Replace the xc_rlocxc_rlocxc_rlocxc_rlocxc_rloc value to
include the slice also:
attribute xc_rloc of x03 : label is “R0C0.S0”; —(1)
attribute xc_rloc of x47 : label is “R0C0.S0”; —(2)
attribute xc_rloc of zz : label is “R0C0.S1”; —(3)

Make a top level design, instantiating the CLB:

Verilog:
module xor9top(z, a);
output z;
input [8:0] a;

clb_xor9 x(z, a);
endmodule

VHDL:
library IEEE;
use IEEE.std_logic_1164.all;

entity xor9top is
port (z : out std_logic;

a : in std_logic_vector(8 downto 0)
);

end xor9top;

architecture rtl of xor9top is
component clb_xor9
port (z : out std_logic;

a : in std_logic_vector(8 downto 0)
);

end component;
begin

x: clb_xor9 port map (z, a);
end rtl;

The RLOC attributes can also be applied through SCOPE:
The constraints are then passed to the Xilinx place and
route tool through the EDIF or XNF netlist.

Conclusion
This article shows how RLOCs can be embedded in RTL code
to control the implementation and placement of logic elements
in CLBs. RLOCs are a powerful tool for Synplify designers who
need additional control to achieve timing requirements.

For more information, please refer to the
Synplicity website at http://www.synplicity.com for
the full application note.

This article shows how RLOCs can
be embedded in RTL code to con-
trol the implementation and
placement of logic elements in
CLBs. RLOCs are a powerful tool
for Synplify designers who need
additional control to achieve
timing requirements.

http://www.synplicity.com

