
50

APPLICATIONS

A Serial Communication

Link
A synchronous point-to-point serial
communication link between two FPGAs.

his article describes a method
for transmitting serial data
between FPGAs, as shown in

Figure 1. The data is transmitted in
packets to allow for error detection and
re-synchronization of the serial data
link. This example design assumes a
transfer of 32 bits, but the size can vary
as needed.

T

A Serial Link Between FPGAs

Figure 1

The Start Sequence and
Zero-Insertion
The basic trick is to begin the transac-
tion with a start sequence, and ensure
that the sequence does not occur within
the remainder of the packet. This is
easier than it sounds; it’s just a matter of
selecting the right start sequence. In this
example, I transmit a start sequence of
111110 and then insert a zero into the

Transmitter State Machine

Figure 3

by Paul Gigliotti, Field
Applications Engineer, Xilinx,
paul.gigliotti@xilinx.com

Zero Insertion

Figure 2

data whenever four ones have occurred,
to ensure that the start sequence is not
repeated within the data, as shown in
Figure 2. The receiver circuit, on the
other hand, waits until it sees the start
sequence before receiving data, and

while receiving data, it throws away the
zero that follows four ones. Further-
more, while receiving data after the start
sequence has been detected, if five ones
in a row are received then an error has
occurred.

Between FPGAs



51

Transmitter State Machine
Data is transmitted whenever the state
machine detects a “Send” request, as
shown in Figure 3. The state machine
begins by transmitting the header or
start sequence and then follows with the
data. Notice, that while transmitting the
data, it counts the number of “ONES-IN-
A-ROW’ that it has transmitted, and if the
limit has been reached, a zero is
inserted and transmitted as part of the
data.

Receiver State Machine
The receiver state machine is constantly
looking for a start sequence, as shown
in Figure 4. Once a start sequence has
been received, it then begins receiving
data, looking for inserted zeros and
flagging errors as they occur.

Simulation Results
Figure 5 shows the results of the
transmitter and receiver working in
tandem with an FFFF and then a 0000
being sent/received

Receiver State Machine

Figure 4

Sample Transmission

Figure 5

This application offers a simple yet effective method
for achieving synchronization between the transmitter
and receiver circuits. You can easily extend the design
to append parity and CRC bits to the transmitted data.

Conclusion
This application offers a simple yet effective method for
achieving synchronization between the transmitter and
receiver circuits. You can easily extend the design to append
parity and CRC bits to the transmitted data.


