by Paul Gigliotti, Field
Applications Engineer, Xilinx,
paul.gigliotti@xilinx.com

his article describes a method

for transmitting serial data

between FPGAs, as shown in
Figure 1. The data is transmitted in
packets to allow for error detection and
re-synchronization of the serial data
link. This example design assumes a
transfer of 32 bits, but the size can vary
as needed.

FPGA FPGA

clk

data

o -z X
N =

The basic trick is to begin the transac-
tion with a start sequence, and ensure
that the sequence does not occur within
the remainder of the packet. This is
easier than it sounds; it’s just a matter of
selecting the right start sequence. In this
example, | transmit a start sequence of
111110 and then insert a zero into the

inserted
start sequence data zero data
——
N [

JUuyuryyy LU A

A synchronous point-to-point serial
communication link between two FPGAs.

data whenever four ones have occurred,
to ensure that the start sequence is not
repeated within the data, as shown in
Figure 2. The receiver circuit, on the
other hand, waits until it sees the start
sequence before receiving data, and

Sregl

RESET=11
CNT_BITS==0;

while receiving data, it throws away the
zero that follows four ones. Further-
more, while receiving data after the start
sequence has been detected, if five ones
in a row are received then an error has
occurred.

Sir=10

CHT_OMES==0,;
DROY="0"

CHT_BITS==0;
CHT_ONES==0;
DRDY<="0";

(G ONKE S=4) ard OMI="17)

ERROR <="1";

CMY_BITS=15

(AT ONE 5=5) and (Dii="11

ERROR=="1";

o=
CNT_ONES<=CHT_ONES+1;
DROY:='0';

D=0

CHT_ONES==0;

EH="1)

CNT_BITS2=0;
CNT_ONES<=0;

DROY<="1";

1DATA=DINZIDATAMS downta 1)

[cHT_OMES==CNT_ONES+1;

(G T ONE S=4) and (D=0

CNT_ONES==0;

D=1t

({ON T ONE 5=5) and (D=0

CNT_ONES<=0;

D=0

CHT_BITS<=CNT_BITS+1;
CHT_ONES==0;

CHT_BITS<=CNT_BITS+1;
CHT_ONES<=CHNT_ONES+1;
IDATA=DINZIDATAMS downto 17

|DATA=DINEIDATACS domnto 1);

50

Data is transmitted whenever the state

H 1] ” CMT_BITS==0,
machln_e de_ztects a “Send request, as CNT ONES<<0: Dot =T
shown in Figure 3. The state machine IDOUT=="0" CMT_OMES <= CNT_OMES +1;
begins by transmitting the header or Lo
start sequence and then follows with the SEND=T W’ o CNT_ONES=3
data. Notice, that while transmitting the Ny
data, it counts the number of “ONES-IN- i
))] SEND=1 CNT_ONES=35
A-ROW’ that it has transmitted, and if the DOUT ="
limit has been reached, a zero is SR
inserted and transmitted as part of the S BITER
data.
. . . IDOUT==DATA{CNT_BITS],
The receiver state machine is constantly CNT_BITS == éNT_g,,TS) 1
i IF DATA(CNT_BITS)="1"THEM
!oolgng for a start sequence, as shown : o ot
in Figure 4. Once a start sequence has R ENDIF;
been received, it then begins receiving KMIT_DATA P
data, looking for inserted zeros and DATA(CNT_BiTS)=0 (3 e 2 [lDouT =1
flagging errors as they occur. CNT_BITS<=CNT_BITS + 1; 3 M ONER
CNT_OMEE==0,

IDOUT<=DATACNT_BITS);

DATA(CNT_BITE)="1"
Figure 5 shows the results of the T e e
transmitter and receiver working in IDOUT== DATA(CNT_BITS),
tandem with an FFFF and then a 0000

being sent/received

& Logic Simulator - Xilink Foundation F1.5 [xcell] - [Waveform Viewer 0]
== Ele Signal Wavefom Device Options Tools Yiew Window Help

58 8| | 5 | [Frcirs =] &) o] [0 _=] D] 58] . - , .
R ol L i =N e I This application offers a simple yet effective method for

J 4.8ns/div ‘-‘-‘-‘-'\ [dfris. [gEne ([Ld4ne [I9Zpe [2d0ns [Z89ns |33Sns [F@dne [4B7ns [éBONs (SZEms ([B76
e O P P |
SEND. ... lc<[] e T -

DATA. (hex)#]C=|A

unlm- .miuu snnlual il i

R E——— achieving synchronization between the transmitter and
i i S ﬁm receiver circuits. You can easily extend the design to append
T Ty T e parity and CRC bits to the transmitted data. &

RDATA. Chex)#] [A
DRDY . i |
ik ... o FeRRRd

R)

51

