
56

our feedback concerning the previous columns of
“HDL Advisor” has been most welcome. I am glad that
so many of you have found this column helpful. While

I can’t answer each question personally I will address the most
useful ones in this column.

Question 1: How can I assign an “integer”
value (128) to an 8 bit “STD_LOGIC_VECTOR”
defined signal?
Use the NUMERIC_STD package from the “IEEE Standard
VHDL Synthesis Packages.” The necessary functions,
TO_SIGNED and TO_UNSIGNED, can be found on page 35 of
the “IEEE Std 1076.3-1997 IEEE Standard VHDL Synthesis
Packages.”

If you don’t have the IEEE standard manual itself, you may
search in the NUMERIC_STD package that comes with your
synthesis or simulation package for the function names.

— Id: D.3
function TO_UNSIGNED (ARG: INTEGER; SIZE:
NATURAL) return SIGNED is

— Id: D.4
function TO_SIGNED (ARG: INTEGER; SIZE: NATURAL)
return SIGNED ;

Make sure your signal (CNT in the example below) is
declared either as a SIGNED or UNSIGNED type then use the
appropriate function below:

CNT <= TO_SIGNED(128,8); or
CNT <= TO_UNSIGNED(128,8);

The opposite translation from SIGNED or UNSIGNED to
INTEGER can be performed with the TO_INTEGER functions
shown on the same page. First, declare CNT as an integer. Be
sure to limit its range if you don’t need the whole synthesis
tool or simulation tool’s default integer range. For most tools
the range is 32 bits, with one bit for the sign.

Question 2: I assigned the range of an integer
signal (CNT) from 0 to 15 and added 1 to this
value, how can I make sure the compiler knows
the value (CNT) is an unsigned value? e.g. CNT
<= CNT + 1;
Declare the signal (CNT, in your example) as the UNSIGNED
type as found in the NUMERIC_STD package from the “IEEE
Std 1076.3-1997 IEEE Standard VHDL Synthesis Packages.”

===========================================================
— Numeric array type definitions
—
===========================================================

type UNSIGNED is array (NATURAL range <>) of
STD_LOGIC;
type SIGNED is array (NATURAL range <>) of
STD_LOGIC;

This package will also allow you to add the integer 1 to the
unsigned value of CNT. Normally two different types cannot be
added together in VHDL, but the NUMERIC_STD package
allows you to add SIGNED or UNSIGNED types to integers
because it has overloaded the operator. This means it does the
type conversion for you.

— Id: A.8
function “+” (L: SIGNED; R: INTEGER) return
SIGNED;

— Result subtype: SIGNED(L’LENGTH-1 downto 0).
Result: Adds a SIGNED vector, L, to an INTEGER, R.

— Id: A.5
function “+” (L: UNSIGNED; R: NATURAL) return
UNSIGNED is
begin
return L + TO_UNSIGNED(R, L’LENGTH);
end “+”;

Please note that for an UNSIGNED number the integer must
be natural.

COLUMN THE XILINX

HDL
ADVISOR

Questions and Comments
from Our Readersby Roberta Fulton, Technical

Marketing Engineer, Xilinx,
roberta.fulton@xilinx.com

Y



57

Question 3: How can I compare a
“STD_LOGIC_VECTOR” defined signal to a “inte-
ger” value? e.g. if (CNT = 38) then ...

If you used SIGNED or UNSIGNED types instead of
STD_LOGIC_VECTOR, you could use the NUMERIC_STD package
as referred to above for its overloaded relational operators for
SIGNED, UNSIGNED and integer types. For example:
-- Id: C.29
function “=” (L:UNSIGNED; R: NATURAL) return
BOOLEAN is ...

You could also us the type conversion in the NUMERIC_STD
pacakge. I don’t recommend using more than one numerica
package, even if you found another one with overloaded
operators for STD_LOGIC_VECTOR and integer types. Some
numeric packages in the public doman use the same types and
overloaded operators as the IEEE standard. The reader can
become confused which type and operator definitions are
actually being used.

For clarity, I prefer that type conversions be stated sepa-
rately rather than as part of the comparison statement itself as
given below:

NEW_B <= TO_INTEGER(B);

Then you can use the new signal in the comparison as in:
if (NEW_B > 5) then ……..

NOTE: Not all synthesis companies may be fully compliant with
the IEEE Std 1076.3-1997. You may need to use another
comparable numeric or arithmetic package instead.

The package STD_LOGIC_ARITH, created by Synopsys before
the IEEE standard was available, is an example of a package that
also contains the SIGNED and UNSIGNED types and the over-
loaded “+” operator. The STD_LOGIC_SIGNED, also from
Synopsys, has the boolean comparison operators such as >=.
If STD_LOGIC_SIGNED is used however, you must also use
STD_LOGIC_ARITH which it calls. In that case NUMERIC_STD
should not be used or you could get confused about which
package is providing the operator definitions.

Theoretically, the packages should be portable no matter
what their source. This is generally true of simulators. In
practice, synthesizers may take awhile to adapt to another new
package; when they do, they may have to adapt the source code
of the package to the synthesis attributes. These attributes have
no affect on the simulation.

As mentioned earlier, for synthesis tools especially, your
results may vary. The algorithms change between vendors and
even between versions from the same vendor.

I would advise you to try it yourself, with your tool set. And,
don’t forget that a different word-size causes different algorithms
to kick in, so what is true for 4-bits may not be true for 32-bits.

Reader COMMENT 2: “Maybe you could have
explained that this shouldn’t work if you’re
following the VHDL-standard , but in practice
it’s ok for some synthesis vendors.”
The reader notes that for the use of “-” as a “don’t care” in
VHDL from HDL Advisor Column, Xcell 30, I imply that the
tools are broken, if they don’t allow this.

As the reader states, the vendor that follows my example is a
bit outside of the VHDL standard. They’ve taken the same
approach as in Verilog. So, in practice, it works for some
synthesis tools but it is wrong according to the VHDL-standard.

My tendency too is to be a standard-follower, but you must
decide whether “standard” or “general practice” is best for you.

And as experienced HDL users have long noted, interpreta-
tions of the HDL standards may also be different between
different synthesis and simulation vendors, especially IEEE Std
1087-1987 on which some vendors still rely, though the
standard was updated in 1993. So, once again, try the
examples in your choice of tools.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Reader Comment 1: “… when it comes to VHDL
coding approaches and synthesis results, it’s
very important to us to record the optimal
approach(es) for both minimal area and mini-
mal delay.”
For the comparators I discuss in my HDL Advisor Column for
Xcell 31 (1Q99), the results of “best coding style” differ
depending on whether you compile for area or delay.

The “fastest” coding style under one optimization such as
“area” may not be the fastest when compiling for “delay.” Note
that some other variables are the software tool itself and the
version of that tool. I am restricted by licensing agreements to
not making direct comparisons between synthesizers. There-
fore, I take a result from one tool, in the latest version
available at the time, to get examples that fairly represent the
results for all of the available tools.

For clarity, the article’s “best results” were optimized for
minimum area, and word_wise compares were faster. I generally
try minimum area first as I find the results usually give close to
the best delays without exploding the number of CLBs.

If minimum delay is selected, then bit-wise is faster with a
sacrifice of using more CLBS.

“Best” really depends on how close you are to meeting area
or performance constraints. For one design you may be willing
to sacrifice a little area to tweak the performance, or give up a
little performance in order to fit in a smaller size device.


