
H aving the ability to remotely update
hardware with new features or the
latest bug fix can accelerate your

time-to-market, extend the useful life of exist-
ing systems, and significantly cut production,
maintenance, and support costs. If you plan for
remote updates during your initial specification
and design process, your systems can easily
reap all the benefits of the Xilinx Online capa-
bility.

The Remote Field Upgrade Process
FPGAs are SRAM-based, so you can reconfigure
them an unlimited number of times. To use this
capability for field upgrades, you must include a
mechanism for updating the configuration bit-
stream. To support remote field updates a sys-
tem must have some sort of communication
channel across which a replacement bitstream
can be transferred; this could be a cable or
modem connection; or a satellite, infrared or
radio interface.

To initiate a remote field update, a com-
mand is sent across the communication inter-
face to the communication processor, signaling
to the system that the FPGA needs to be updat-
ed. The communication processor can be as
complex as a microprocessor, or as simple as a
CPLD.

Once the communication processor knows
that an update is required, it can reconfigure
the FPGA directly using the slave, Boundary-
Scan, or peripheral FPGA configuration modes.
Alternatively the processor can update a non-
volatile memory bank (typically an EEPROM or

Flash memory) and then simply initiate a stan-
dard FPGA reconfiguration cycle.

Planning for Remote Upgrade
Once you have made the decision to take
advantage of remote field updates, a number of
issues must be addressed.

Data Transmission
The type of communication channel will affect
the speed, security, and integrity of the data
that is used to update the FPGA. A communica-
tion interface already being used for sending
and receiving data in the system (for normal
operation or for firmware type updates) can
usually be reused to perform the FPGA remote
update.

Data Integrity and Verification
It's important that you verify the integrity and
reliability of the update data before the FPGA
configuration process even begins. Xilinx
FPGAs have a cyclic redundancy check (CRC)
built into each frame of the configuration data
so that an error in the bitstream will cause the
FPGA configuration to fail. You should design
the system to be able to detect transmission
errors, and request a re-send of the data, if nec-
essary.

Security
If FPGA update information is sent over an
unsecured network, design security may be an
issue. However, it is practically impossible to
decipher a configuration bitstream, to extract

by Tom Branca, Applications
Engineer, Xilinx,
tomb@xilinx.com

How to Add Features and Fix Bugs - Remotely
Here's what you need to consider when designing a Xilinx Online application.

(Continued)

12

information on the functionality of a design or
make intelligent modifications to it. Xilinx
keeps the specifications of the bitstream a
closely guarded secret. If you feel the need for
an additional level of security to keep your
update data confidential, you can also use
encryption.

Compression
As FPGA densities increase, the amount of data
required to configure a device increases, and
for larger designs compression can be benefi-
cial. This would require some kind of additional
software or hardware support to manage the
data compression and extraction.

Planning for Adding New
Features and Bug Fixes
Designing your system so that it can implement
the current functionality and still be flexible
enough to meet the requirements for future
design revisions requires some advanced plan-
ning.

Choosing the Optimal FPGA Density
When you choose an FPGA for a remotely
updateable application you should consider
future expandability and compatibility. To deter-
mine the optimal FPGA density, you must con-
sider the device resource requirements of the
current design and that of any potential future
design enhancements. An advantage of Xilinx
FPGAs is that for any device in a given architec-
ture, in the same package, all device sizes are
footprint compatible. This gives you the ability
to select and work with a specific device and
still have the flexibility to easily change to a
larger or smaller device before going to produc-
tion.

Configuration Memory
You can choose either volatile or non-volatile
memory for storing FPGA configuration data.
The advantage of non-volatile (EEPROM or
Flash) memory is that when reconfiguring the

FPGA after a power cycle, the system will still
have the most recent configuration data in
memory and will not require extra clock cycles
to update its configuration data across the
communication interface.

Most FPGA configuration modes require the
entire bitstream to be loaded into the FPGA
during the configuration cycle. Some Xilinx
FPGAs (including the Virtex family) allow partial
configuration. The Xilinx data book has more
information on the different configuration
modes available for specific device architec-
tures.

Design Expandability
If additional connections between the FPGA
and other devices are required in future revi-
sions, then defining the interface between
devices will need to be done during the initial
product revision. You can create test programs
that toggle these future I/O connections, so you
can test specific interfaces, without actually
completing the design. Or, you can perform an
EXTEST using the FPGA's built-in Boundary-
Scan functionality.

Archiving the Design for Future Updates
It is critical to not only archive all source,
implementation, and constraint files that were
used to create the existing revision of the
design, but to also document the entire flow
used to create the final bitstream. Also,
depending on the expected life of the applica-
tion, it may be a good idea to archive the tools
(save the CDROM) used in the creation of the
bitstream. This will make it much easier to
update the devices in the field, even years from
now.

Conclusion
With a little planning, your next design can eas-
ily have the ability to be remotely fixed or
upgraded, a feature that your customers will
find very appealing.

13

