
W ith the release of Alliance Series
2.1i software, Xilinx has added
support for compiled Verilog simu-

lators such as Synopsys VCS, Model Technology
VLOG, and Cadence NC-Verilog. These simula-
tors are full Verilog simulators but behave dif-
ferently in a few significant ways from interpre-
tive Verilog simulators like Verilog-XL. Please
see the individual tool manuals for details.

The previous GSR/GTS approach allowed
you to define the GSR/GTS signal as a text
macro with the ‘define construct, at any time
prior to the actual simulation of the GSR signal
by an interpretive simulator like Verilog-XL. For
example, ‘define GSR my_gsr_signal could be
entered on the command line at any time prior
to simulation. But in compiled Verilog it is a
requirement that all constructs be fully elabo-
rated at the time they are compiled. This pro-
hibits a text macro from being used by a ‘ifdef
construct contained in a library module if the
text macro is defined in a higher level module
or on the command line after the library has
been compiled.

The new methodology works for both com-
piled and interpretive simulators. It defines a
module called glbl that contains the GSR signal.
The Unified Library component modules drive
their internal GSR behavior by the glbl.GSR
wire. The glbl.GSR wire can in turn be driven by
any user-defined wire attached to it in the test
fixture.

The New Simulation Methodology
While GSR alone is described here for simplici-
ty, this methodology equally applies for the
CPLD PRLD signal and the GR signal in older

FPGA technologies, and works similarly for the
global GTS signal on the output buffers.
For a more complete explanation of the
GSR/GTS methodology, please refer the 2.1i
version of the Xilinx Synthesis and Simulation
Guide on the Alliance Series 2.1i
Documentation CD, or www.support.xilinx.com.

Describing the GSR Behavior (Verilog)
For Verilog simulation, all behaviorally
described (inferred) and instantiated registers
should have a common signal (GSR) that asyn-
chronously sets or resets the register. Toggling
GSR emulates the automatic Reset-on-
Configuration mode of the FPGA. This is similar
to the Power-on-Reset of an ASIC. If you do not
do this, the flip-flops and latches in your simu-
lation may initialize to an unknown state in the
simulation.

The GSR net is present and may be pulsed
in your implemented design (as it is in silicon)
even if you do not instantiate the STARTUP
block in your design. The function of STARTUP
is to give you the option to control the global
reset net from an external pin or from user-
defined internal circuitry.

Often, mismatches between the Register
Transfer Level (RTL) and gate-level simulations
are caused by not fully defining the GSR behav-
ior in the RTL. The new methodology allows
the GSR behavior to be fully defined in the RTL,
while properly synthesizing and implementing
to a post-route netlist that can use the same
test fixture. The Verilog UniSim library is used
in RTL or gate-level simulations prior to imple-
mentation. Simulation at other points in the
flow uses the Verilog SimPrims Libraries.

by Roberta Fulton, Technical
Marketing Engineer, Xilinx,
roberta.fulton@xilinx.com

Verilog GSR/GTS Simulation Methodology–
Changes in the Alliance Series 2.1i Software

(Continued)

THE XILINX

HDL
A DV I S O R

38

http://www.support.xilinx.com

Describing the GSR Behavior (UniSim)
For UniSim functional simulation, you must set
the value of the glbl.GSR net to the same name
value as the GSR net, qualified by the appropri-
ate scope identifiers. The scope identifiers are a
combination of the test module scope and the
design instance scope. The scope qualifiers are
required because the scope information is
needed when the glbl.GSR wires are interpret-
ed by the Verilog UniSim simulation models to
emulate a GSR signal.

For post-route timing simulation the test fix-
ture template (.tv file), produced by running
NGD2VER with the -tf option, contains most of
the code required for defining and toggling
GSR.
l Without a STARTUP module - Add the fol-

lowing to the test fixture file:

For post-route timing simulation, you must
omit the "assign" statement for GSR. This is
because the net connections exist in the post-
route design; retaining the assign definition
causes a possible conflict with these connec-
tions.

l With a STARTUP module - If you do have a
STARTUP block in your design, the signal you
toggle is the external input port that controls
the global reset pin of the STARTUP block.
You should add the following to the test fix-
ture module for the RTL modeling of the glob-
al reset pin:

For post-route timing simulation, you must omit
the assign statement for the global reset signal.
This is because the GSR net connections explic-
itly exist in the post-route design, and retaining
the assign definition causes a possible conflict
with these connections.

A Verilog global signal called glbl.GSR is
defined within the STARTUP and STARTUP_VIR-
TEX modules to make the connection between
the user logic and the global GSR net embedded
in the Unified Library models. For post-route
timing simulation, glbl.GSR is defined in the
Verilog netlist that is created by NGD2VER.

You can compile the Verilog source files in
any order because Verilog is compiled indepen-
dently of the source module hierarchy except in
cases of constructs like ‘define or ‘defparam as
previously noted. However, Xilinx recommends
that you specify the test fixture file before the
Verilog netlist of your design, as in the follow-
ing examples.

Invoking the Simulators
l For RTL simulation, enter the following:

The path specified with the -y switch points
the simulator to the UniSim models and is
only necessary if Xilinx primitives are instan-
tiated in your code. When targeting a device
family other than the XC4000E/L/X,
Spartan/XL, or Virtex families, change the
UniSims reference in the path to the targeted
device family.

l For post-route simulation, enter the follow
ing:

In this example, the test fixture file is declared
first followed by the simulation netlist created
by the Xilinx tools. The name of the Xilinx
simulation netlist may change depending on
how the file was created. For Verilog-XL, it is
also assumed that the -ul switch was speci-
fied during NGD2VER to specify the location
of the SimPrims libraries using the uselib
directive.

verilog -y $XILINX/verilog/src/unisims
design.stim design.v $XILINX/verilog/src/glbl.v

verilog design.stim time_sim.v
$XILINX/verilog/src/glbl.v

(Continued)

reg GSR;
assign glbl.GSR = GSR;
a s s i g n t e s t f i x t u r e _ n a m e . i n s t a n ce_ n a m e . G S R=G S R ;
// Only for RTL modeling of GSR

reg port_connected_to_GSR_pin;
assign glbl.GSR = port_connected_to_GSR_pin;

39

MTI ModelSim
l For RTL simulation, enter the following:

This example targets the XC4000E/L/X,
Spartan/XL, or Virtex families and assumes
the UniSim libraries are properly compiled
and named "unisims". For more information
on the compilation of the ModelSim libraries,
refer to http://www.xilinx.com/tech
docs/1923.htm.

l For post-route simulation, enter the follow-
ing:

This example is based on targeting the
SimPrim libraries, which have been properly
compiled, named, and mapped to simprims.
Also, the name of the simulation netlist may
change depending on how the file is created.

Note: Xilinx recommends giving the name
"test" to the main module in the test fixture file.
This name is consistent with the name of the
test fixture module that is written later in the
design flow by NGD2VER during post-route
simulation. If this naming consistency is main-
tained, you can use the same test fixture file for
simulation at all stages of the design flow with
minimal modification.

Examples
module my_counter (CLK, D, Q, COUT);
input CLK, D;
output Q;
output [3:0] COUT;

wire GSR;
reg [3:0] COUT;

always @(posedge GSR or posedge CLK)
begin
if (GSR == 1'b1)
COUT = 4'h0;
else
COUT = COUT + 1'b1;
end

// FDCE instantiation
// GSR is modeled as a wire within a global module. So,
// CLR does not need to be connected to GSR and the flop
// will still be reset with GSR.

FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1'b1), .CLR (1'b0));

endmodule

Because GSR is declared as a floating wire and
is not in the port list, the synthesis tool opti-
mizes the GSR signal out of the design. GSR is
replaced later by the implementation software
for all post-implementation simulation netlists.
In the test fixture file, set GSR to
"test.uut.GSR" (the name of the global
set/reset signal, qualified by the name of the
design instantiation instance name and the test
fixture instance name). Because there is no
STARTUP block, a connection to GSR is made
in the test fixture via an assign statement.

In this example, the active high GSR signal
in the XC4000 family device is activated by dri-
ving it High. 100 ns later, it is deactivated by
driving it Low. (100 ns is an arbitrarily chosen
value.)
You can use the same test fixture for simulating
at other stages in the design flow if this method
is used.

vlog design.stim design.v
$XILINX/veilog/src/glbl.v
vsim -L unisims testfixture_name glbl

vlog design.stim time_sim.v
$XILINX/verilog/src/glbl.v
vsim -L simprims testfixture_name glbl

`timescale 1 ns / 1 ps
module test;
reg CLK, D;
wire Q;
wire [3:0] COUT;

reg GSR;
assign glbl.GSR = GSR;
assign test.uut.GSR = GSR;

my_counter uut (.CLK (CLK), .D (D), .Q (Q), .COUT (COUT));

initial begin
$timeformat(-9,1,"ns",12);
$display("\t T C G D Q C");
$display("\t i L S O");
$display("\t m K R U");
$display("\t e T");
$monitor("%t %b %b %b %b %h", $time, CLK, GSR, D, Q, COUT);
end

initial begin
CLK = 0;
forever #25 CLK = ~CLK;
end

initial begin
#0 {GSR, D} = 2'b11;
#100 {GSR, D} = 2'b10;
#100 {GSR, D} = 2'b00;
#100 {GSR, D} = 2'b01;
#100 $finish;
end

endmodule40

/techdocs/1923.htm

