New Products -

Programming a

Xilinx FPGA in "' C"

Hardware designers are realizing they will need to use higher levels of
abstraction to increase their productivity.

by Doug Johnson, Business Development Manager, Frontier Design,
doug_johnson@frontierd.com; Marc Defossez, Field Applications Engineer,
Xilinx, Inc. - BeNeLux, Belgium, marc.defossez@xilinx.com

oday, many complex communications

and digital signal processing (DSP)

systems are described using ANSI C or
C++ with floating-point mathematics. ANSI C or
C++ is the language most commonly used by
system engineers because it is powerful and
popular, and a variety of environments are
available for code development, compilation,
and debugging. In addition, the simulation speed
using C or C++ can be substantially faster than
an equivalent design environment in Verilog or
VHDL.

Typically, DSP functions modeled in C are
algorithms that perform filtering, modulation,
demodulation, compression, coding, and other
operations on digital signals. However, most
hardware designers are using a design
methodology based on VHDL or Verilog HDL.
System designers typically deliver a C language
specification which has been simulated
extensively with internal system-level simulators
or commercial products like SPW (Cadence),
COSSAP (Synopsys), or HP-ADS (HP EESOF). The
hardware designer must then rewrite the
specification at least once by hand in VHDL or
Verilog and re-simulate the behavior. This
manual re-write is difficult, time-consuming, and
error prone. In addition, the floating-point C
specification must be transformed into a fixed-
point implementation in hardware—a daunting
task requiring extensive collaboration between
the system and hardware engineers.

26

Frontier Design’s C to HDL Solution

The EDA software tools from Frontier Design
bridge the gap between the system engineers,
working on a design at a high level of
abstraction, and the hardware engineer, tasked
with the implementation of the design in
hardware such as an FPGA or an ASIC. Frontier
Design has embodied its 15 years of experience
(in transforming DSP algorithms into working
silicon) into a methodology that is called
“Algorithm to Register Transfer,” or AIRT.

Two Frontier products incorporate the AIRT
methodology: AIRT Library and AIRT Builder.
AIRT Library extends ANSI C and C++ with fixed-
point data-types that allow bit-accurate
modeling of arithmetic operations as well as
modeling the overflow and quantization effects
associated with finite precision operations. AIRT
Builder supports automatic conversion from
ANSI C to VHDL or Verilog. The tools thus
enable architectural design in C. As a practical
test of the tools, Xilinx - BeNeLux employed the
AIRT methodology on three different test cases,
one of which is covered here.

Design Methodology Using A|RT

Xilinx - BeNeLux tested a “Coordinate Rotation
on a Digital Computer,” or CORDIC(1,2)
algorithm supplied by Frontier Design using both
AIRT Library and AIRT Builder. The algorithm is
an iterative computing technique that is capable
of evaluating mathematical functions like



multiplication, square roots, and logarithms. The
CORDIC algorithm is used extensively because
its implementation in hardware utilizes shifts
and adds only. A very important aspect of the
test was to evaluate the tools to determine their
applicability in implementing an algorithm based
on C in a Xilinx FPGA, using HDL generated by
the AIRT Builder product.

The design flow used for the evaluation is shown
in Figure 1. AIRT Builder is the only C-to-HDL

ART Library (e = C Source 3
—)

v

AIRT Builder

{C+ Simulation
Environment

Behav. Cand
Instantiation of
Core Generator

module

Reference Vectors
and Stimuli
RTL

HDL l

Code e & HDL Simulation
¢ A
FPGA
Synthesis

Xilinx FPGA
Alliance Tools

Core Generator

1.5is2

Figure 1 - AIRT Design Flow

conversion tool that fully supports fixed-point
algorithms. The tool employs a “What You Write
Is What You Get” (WYWIWYG) paradigm. What
WYWIWYG really means is that if you code in
behavioral C, the output VHDL or Verilog will be
behavioral. If you code in RTL C, you get RTL
VHDL or Verilog. It is a supported subset of C
that is utilized by AIRT Builder to generate the
HDL code. Because some C constructs have no
meaningful realization in hardware, there are
ANSI C constructs that AIRT Builder does not
support and for some constructs there are
restrictions on the way they are supported. AIRT
Builder automatically generates both C and HDL
test benches so that the HDL and C simulations
can be compared.

27

The AIRT software is available for both Unix
and PC environments; Windows NT for the PC,
HP-UX for Hewlett-Packard, and Solaris 2.6 for
Sun platforms. The user interface is simple to
use, and to ease the code development process,
a cross-highlighting capability has been added to
AIRT Builder. This feature allows you to highlight
the generated HDL code by selecting the
associated C code fragment.

Figure 2 shows the cross-highlighting built into
the AIRT Builder user interface.

.
§ [T sttt et

Figure 2 - AIRT Builder User Interface with Cross-highlighting

The Evaluation

First, the CORDIC algorithm was designed and
simulated in a C-based environment such as
Visual C++ or GNU. Floating-point variables in
the CORDIC algorithm were easily specified in
fixed-point form by using the AIRT Library data
type “Fix<w,p>", where “w” is the fixed word
width and “p” is the fixed number of precision
bits. For example, a variable with an 8-bit word
length and 5 bits of precision is specified as
follows: “Fix<8,5>".

Fixed-point values can also be specified as
unsigned fixed-point, Ufix<w,p>, or as signed or
unsigned integers, Int<w> and Uint<w>. In
addition, several overflow and quantization



characteristics can be applied to C variables to
model the potentially adverse effects of finite
precision arithmetic.

Once the desired response was achieved in C
simulation, AIRT Builder was used to
automatically convert the fixed-point CORDIC

algorithm to Verilog or VHDL. For the evaluation,

a number of different C coding “styles” were
employed to optimize the data path length, to
introduce pipelining, and to share resources and
hierarchy in the generated VHDL and Verilog
files.

Int<32> MultA;
Int<32> MultB;

MultA = InpA * InpB;
MultB = InpC * InpD;
OutP = MultA + MultB;

Figure 3 - No Resource Sharing In C Code

COMPUTE_PROC: process(
begin

InpA_nl := signed(InpA);
InpB_n1 := signed(InpB);
InpC_nl := signed(InpC);
InpD_n1 := signed(InpD);
OutP_n2 := signed(OutP);
MultA := InpA_nl * InpB_n1;
MultB := InpC_n1 * InpD_nl;
OutP_n2 := MultA + MultB;
OutP_n1 <= std_logic_vector(OutP_n2);
end process;

Figure 4 - No Resource Sharing in VHDL Code

The examples in figures 3 and 4 illustrate
two C coding styles: Figure 3 shows a non-
resource shared operation coded in C and Figure
4 shows the corresponding VHDL code fragment

28

generated by AIRT Builder to get a two
multiplier, one clock-cycle, non resource shared
implementation in VHDL.

static Uint<1> cycle = Ou;
static Int<32> MultA;
Int<32> MultB;

switch (cycle) {
case 0O:
MultA =
break;
case 1:
Int<32> MultB = InpC * InpD;
OutP = MultA + MultB;
break;

InpA * InpB;

}

++ cycle;

Figure 5 - Resource Sharing In C Code

begin
OutP_n2 :=
— copy state to local variables
MultA := signed(MultA_r);

— compute new state and outputs
InpA_nl := signed(InpA);

InpB_n1 := signed(InpB);

InpC_n1 := signed(InpC);

InpD_n1 := signed(InpD);

OutP_n2 := signed(OutP);

cycle := unsigned’ (“0");

case cycle is

when “0" =>

MultA := InpA_n1 * InpB_n1;
when “1” =>

MultB := InpC_n1 * InpD_n1;
OutP_n2 := MultA + MultB;

when others =>

assert false

report “Invalid (possibly unknown or dontcare)
value for cycle”

severity warning;

end case;

OutP_n1 <= std_logic_vector(OutP_n2);

— copy local variables to next value for state
MultA_nxt <= std_logic_vector(MultA);

end process;

Figure 6 - Resource Sharing in VHDL Code



To get a resource-shared implementation in
VHDL, a different C coding style is employed.
Figure 5 illustrates the C code required to get a
single multiplier, two clock-cycle implementation
in VHDL. Figure 6 shows the resulting VHDL
code fragment with only a single multiplier in
the VHDL process description. Because a switch
statement has been used in the C code, AIRT
Builder generated a VHDL case statement (or
switch in Verilog), indicating that the two
branches are exclusive, so the operators used in
them can be fully shared.

The Synplify FGPA synthesis tool was
employed to synthesize the HDL code and the
resulting netlist was input to the Xilinx Alliance
series tools. Thus, the CORDIC algorithm was
implemented in an XC4000 series FPGA. The
design can also be implemented in Virtex FPGAs.

The evaluation proved the validity of the
design flow from an algorithm written in C to an
implementation in a Xilinx FPGA. The quality of
VHDL or Verilog HDL generated by AIRT Builder
is comparable to that of hand-crafted code.
However, the HDL code generated by AIRT
Builder is only as good as the C code source. You
have full control over the code that is generated
and by adhering to specific coding styles,
generation of very efficient behavioral and RTL
code by AIRT Builder can greatly decrease the
time required to map a C algorithm into HDL
code.

Importing Components

One of the most powerful capabilities of the AIRT
methodology uncovered during the evaluation
was the ability to import pre-defined, optimized
components into the C code, such as those
created by the Xilinx Core Generator, those
offered by the Xilinx LogiCORE™ and
AllianceCORE programs, or any custom-made

modules. Then you can use AIRT Builder to
automatically map the instantiated components
in VHDL.

For example, to import a Xilinx CORE
Generator module, the C code would contain a
function call referencing the name of the specific
module. The Xilinx CORE Generator tool can be
used to create custom parameterized, pre-
optimized modules which are then imported as
black boxes into AIRT Builder as explained. All of
the parameters and pin names are named the
same in the C function as they are on the CORE
Generator instance. To simulate in C, you write a
behavioral model in C for the CORE Generator
module. The behavioral code, intended to be
used only for C simulation and HDL code
generation for the module, is inhibited by
encapsulating the behavioral code between
“#ifndef __ SYNTHESIS__"” and “endif” C
statements. AIRT Builder is then employed to
translate the C code into HDL. The C function
then becomes a component declaration in VHDL
or a module declaration in Verilog HDL.

For logic synthesis, these black-boxes are
defined as “don’t touch” to the synthesis tool. If
you want to perform behavioral simulation of
the CORE Generator modules in HDL, you have
two options:

e Use behavioral HDL that AIRT Builder
generates from your behavioral C code
without inhibiting the HDL translation.
Replace the behavioral HDL with a black-box
component or module declaration before
synthesis.

e Use the behavioral HDL code generated by
the CORE Generator for the module, and
replace it with a black-box declaration before
synthesis. The Xilinx Alliance Series tools can
automatically merge the black-boxes after
synthesis

29



The benefits to the DSP algorithm designer
and hardware engineer are enormous because
the LogiCORE and CORE Generator blocks are
now usable by both the system engineer and the
hardware engineer. The system engineer can
now incorporate pre-defined hardware
functionality directly in C code. The hardware
engineer gets a VHDL or Verilog HDL model
from AIRT Builder that directly instantiates area-
and performance-optimized LogiCORE and
CORE Generator DSP building blocks. Also, if a
DSP algorithm requires extensive memory
elements such as register files or block RAM, the
same code technique can be employed to target
the block RAM capabilities of the Virtex devices.

Conclusion

Hardware designers realize that they will have to
move to higher abstraction levels to increase
their productivity; there is just no question about
this. AIRT Builder is an ideal first step; it allows
you to use C, while still performing a WYWIWYG

translation for maximum control over the
generated HDL code. The main benefits of the
AIRT methodology are:

Automatic conversion from C/C++ to
HDL-Eliminates error-prone manual re-
coding from C to VHDL/ Verilog.

Architectural design from C/C++-C/C++
simulation can be substantially faster than
HDL,; richer and more attractive development
environments; more-compact code.

Open System-Easily include existing, pre-
optimized modules like LogiCORE, CORE
Generator, and AllianceCORE components. &

For further information about Frontier Design
and the AIRT tools, please contact Doug
Johnson at: doug_johnson@frontierd.com.

Consult the following references for more information about the CORDIC algorithm:

(1) Jack E. Volder, “The CORDIC Trigonometric Computing Technique” IRE Transactions on Electronic

Computers, Vol EC-8, pp. 330-334.

(2) Vladimir Baykov, CORDIC Bibliography, http://devil.ece.utexas.edu/cordic.html

30



