
Applications - C i rcuit Design

he Xilinx software technology
provides all the information you
need to create reliable, high

performance designs, but you should
make sure that you don’t violate two of
the most important parameters:
setup and hold time.

The Basics

Synchronous elements such
as D flip-flops (DFF’s) accept
the data present on their D
inputs when the clock transi-
tions. However, the data must
be stable prior to the clock edge
(setup time, Tsu) and maintained
after the same clock edge (hold time,

Th); Th can safely be ignored with
Xilinx FPGAs (Th is 0). See Figure 1.

If the setup and hold times are
not violated, the data on the D input

is transferred to the Q output,
after the flip-flop clock-to-out-

put delay (Tcko). However, if
Tsu or Th timing is not
met, the Q output is inde-
terminate.

Controlling Logic Paths

A real design is usually
made of thousands of flip-

flops, with several levels of
logic between them, and moder-

ate to high utilization of routing

39

Understanding

Setup and Hold Times
One Key to Successful Designs

Using synchronous design techniques is one essential
key to creating reliable designs.

by Claude Gaschet, Xilinx Field Applications Engineer,
Reptronic (France), claude@xilinx.com

Figure 1 - Setup and hold timing.

resources. All those paths, from a data source
element (PAD, FF, RAM...) to a receiving element
(PAD, FF, RAM...), are known as logic paths.

Controlling those paths (giving the imple-
mentation tools the adequate directives to meet
the timing criteria) is one key to success. In the
Xilinx software tools, there are several graphical
tools (Constraints Editor, FloorPlanner) to help
you pass the right control information to the
Implementation Engine. Another set of verifica-
tion tools (the GUI or command-line-driven
Timing Analyzer or TRCE) give you everything
you need to check your results. But, what if
some of your timing criteria are not met? Is your
design failing because the timing constraint is
not possible to meet ? If so why? Is it failing
because of a setup time violation or a hold time
violation? And, how do you fix the problem?

If your timing is OK, you’ll get a Timing
Analyzer message (in the .TWR report) that says
“All Timing Constraints met.” If your timing is
not OK, you’ll see messages that tell you why
(such as “...clock frequency too high,” or “...too
many logic levels for the requested frequency,”
or “ ...too much routing delays versus logic
delays,”) and you will be given the actual timing
difference.

Two Examples of Clock Distribution

Consider a logic path starting at the Q output of
a flip-flop, going through a number of logic
stages, and ending at the D input of a another
flip-flop, as shown in Figure 2. The safe opera-
tion is specified by the equation:

Tclk ≥ Tcko + (logic and routing delays) + Tsu

The Best Case - Minimal Clock Skew

In an ideal design, there will be minimal clock
skew (all flip-flops see the clock edge at the

same time, within a few hundred picoseconds).
For synchronous designs, the optimum clock dis-
tribution is obtained when you use one of the
dedicated clock routing resources attached to a
global buffer (BUFG). Depending upon the FPGA
you select, you have from two to eight BUFGs
available.

For a given clock frequency, and for a given
FPGA, you only have to control the number of
logical levels (logic delays) the signal passes
through, and make sure that this sum of delays
does not exceed the clock period.

How to Correct the Problem

Figure 3 shows an excerpt of a report, showing a
timing error. The report shows that we missed
our timing goal (the slack value is negative, -
0.662ns). We have a 67% logic budget for a 33%
route budget (Xilinx recommends the opposite. A
50/50 ratio is generally OK for small design, and
the bigger the chip, the bigger the recommended
route budget (40/60 or 30/70).

The best solution is to decrease the number
of logic levels; this will remove one combinatori-
al logic delay (Tilo) and one net delay. An alter-
native would be to simply use a faster speed
grade, because the you only need to gain 0.66ns.

40

Figure 2 - Basic timing model.

The Worst Case - Significant Clock Skew

In designs where the number of clocks exceeds
the dedicated BUFG clock resources, some of the
clocks will need to use the non-dedicated, stan-
dard, routing resources which will introduce
clock skew. It’s best to assign the fastest, high
fanout, clocks to the dedicated BUFG routing
resources. How does clock skew affect the
design? And, how do you minimize its negative
effects?

In Figure 4, the FFB clock is delayed from the

FFA clock (skewed) and there is a direct connec-
tion from the Q output of FFA to the D input of
FFB.

For FFB to clock in the correct data, you must
respect the following condition :

Tcko(FFA) ≥ SKEW

However, due to the clock delay, the D out-
put of FFA may be unstable, changing, when FFB
receives the clock edge, causing FFB to latch the
wrong data. The CLK frequency does not affect
the problem, therefore reducing the CLK speed
won’t solve the problem.

Once again, the .TWR report will give you the
detailed information you need to identify and
correct the problem. In the report, shown in
Figure 5, you can quickly see that you missed
your timing goal (the report shows negative
slack, -3.234ns). The summary gives a (logic +
route delay) of 3.06ns for a 6.6ns clock skew;
The message “6.592ns skew between D_186 and
D_188” should alert you to a probable data hold
violation.

41

Figure 4 - Synchronous circuit with clock skew.

Timing constraint:TS_CLK = PERIOD TIMEGRP “CLK”5 nS HIGH 50.000 % ;

1 item analyzed,1 timing error detected.

Minimum period is 5.662ns.

————————————————————————————

Slack:-0.662ns path DLY1 to $Net00012_ relative to

5.000ns delay constraint

Path DLY1 to $Net00012_ contains 4 levels of logic:

Path starting from Comp:CLB_R5C4.K (from $Net00004_)

To Delay type Delay(ns) Physical Resource

Logical Resource(s)

————————————————————-———————

CLB_R5C4.XQ Tcko 1.192R DLY1

$I3/$1I37

CLB_R5C4.F1 net (fanout=1) 0.530R DIN_Q

CLB_R5C4.X Tilo 0.959R DLY1

$I8

CLB_R5C5.F1 net (fanout=1) 0.832R DLY1

CLB_R5C5.X Tilo 0.959R DLY2

$I9

CLB_R6C5.F1 net (fanout=1) 0.522R DLY2

CLB_R6C5.K Tick 0.668R $Net00012_

$I10

$I7/$1I37

——————————————————————————-

Total (3.778ns logic,1.884ns route) 5.662ns (to $Net00004_)

(66.7% logic,33.3% route)

Figure 3 - A .TWR report showing a timing violation.

How to Correct the Problem

The easiest solution is to compensate for the
clock skew by adding dummy logic in the data
path to delay the data.

Another solution is to propagate clock and
data in the opposite direction, as shown in
Figure 6, (this may require manual edits, using
the FPGA_Editor). You’ll still get skew, and it will
be reported in the .TWR, but you won’t experi-
ence data loss.

Compared to the first equation, now you
have the following relationship:

Tclk-skew = Tcko + (logic and routing delays) + Tsu

This simply means that you now have less
time for logic and routing delays, and you’ll have
to be careful not to violate the receiving flip-flop
setup time, especially for high frequency opera-
tion.

Of course, the best solution would be to use
BUFG to distribute the clock, which will elimi-
nate the skew entirely.

Conclusion

The techniques discussed here apply to any type
of logic design, not just programmable logic.
However, it’s easy to get reliable results with
Xilinx components because they include special
clock distribution networks (BUFGs). In our
newer families (Virtex, Virtex-E, SPARTAN-II) we
also include Delay Locked Loops that eliminate
skew for both on-chip and off-chip clocks.

42

Slack: -3.234ns path D_186 to D_188 relative to

6.592ns skew between D_186 and D_188

Path D_186 to D_188 contains 2 levels of logic:

Path starting from Comp: CLB_R45C25.S0.CLK (from clk_0)

To Delay type Delay(ns) Physical Resource

Logical Resource(s)

————————————————————————-

CLB_R45C25.S0.YQ Tcko 1.065F D_186

genck_0__genreg_185__ff

CLB_R45C10.S0.BY net (fanout=1) 2.127F D_186

CLB_R45C10.S0.CLK Tckdi -0.166F D_188

genck_0__genreg_186__ff

————————————————————————-

Total (0.899ns logic, 2.127ns route) 3.026ns (to clk_0)

(29.7% logic, 70.3% route)

Figure 5 - Timing report showing clock skew.

Figure 6 - Controlling the effects of clock skew through
propagating the clock in the opposite direction.

If you need more help, go to www.support.xilinx.com

http://www.support.xilinx.com

