
43

inear Feedback Shift Registers (LFSRs)
are a fundamental function in applica-
tions such as pseudo-random noise (PN)

generators, stream encryption, and error detec-
tion/correction. You can achieve extremely effi-
cient LFSR implementations by using the Virtex
Shift Register LUT (SRL). And, with today’s
Virtex-friendly synthesis tools, HDL code can be
used to infer the SRL, thereby maintaining code
portability.

PN Generators

PN generators are at the heart of every spread
spectrum system, and are a good example for
demonstrating how you can dramatically reduce
FPGA utilization by exploiting the Virtex SRL. In
a CDMA system, many PN generators are needed
to distinguish channels, base stations, and hand-
sets. Rake receivers, used in CDMA systems,
consist of many copies of the same receiver,
each called a finger, and each finger requires
two PN generators, one for the “I” (In-phase) and
one for the “Q” (Quadrature) channel.

Finding a way to improve the FPGA imple-
mentation efficiency of a circuit that is copied

many times in a system (such as a PN genera-
tor), will obviously provide a huge savings.

Linear Feedback Shift Registers

Though the mathematics behind a PN code can
be extremely complicated, the LFSR implementa-
tion can be relatively simple. A typical LFSR con-
sists of a chain of registers and a modulo-2
adder (XOR gate). Predefined registers are
“tapped” and fed to the XOR gate, and the XOR
output is fed back to the first register in the
chain, as shown in Figure 1. In a CDMA system,
the predefined register taps are carefully deter-
mined to provided good auto correlation and
cross correlation, and are often expressed as a
polynomial such as, P(x) = x17+ x4 + 1. An LFSR
with n registers can sequence through (2n - 1)
states. (See Xilinx XAPP 210 and XAPP 211 for
additional information regarding LFSRs and
SRLs).

Applications - S o f t w a re

Inferring Virtex SRL macros results in extremely efficient Linear
Feedback Shift Register implementations.

by Mike Gulotta, Field Application Engineer, Xilinx,
mike.gulotta@xilinx.com

HDL Coding for

PSEUDO-RANDOM

Figure 1 - A typical LFSR.

Noise Generators

44

CDMA system requirements may require
additional control of the basic LFSR.
“Augmenting” the sequence, by adding an addi-
tional state, may be required to achieve 2n states
(instead of 2n - 1), to maintain an even modulo
count. Also, “puncturing” the sequence by peri-
odically skipping a state may be required, if only
a subset of the total 2n states (such as 3 out of 4)
are needed.

LFSR HDL Coding

The Virtex FPGA architecture is highly efficient
for creating LFSRs. For example, the following
code will infer a 64-bit shift register using Virtex
SRLs rather than flip-flops (FFs).

Using SRLs instead of FFs, this circuit will
cost only one Configurable Logic Block (CLB)
instead of 16. With such dramatic savings it is
worth looking into ways to use SRLs whenever
possible.

However, SRL registers cannot be loaded or
read simultaneously, nor can they be asyn-
chronously reset. In a PN generator application it
may be necessary to jump out of sequence,
which can be done by various techniques such
as parallel loading the LFSR with a predeter-
mined state. This can still be satisfied with the

SRL by serially filling the LFSR with a predeter-
mined state. To do this, a multiplexer is required
in the LFSR feedback path allowing the loop to
be broken while the predetermined state is shift-
ed in, as shown in figure 3.

The following verilog code implements an
LFSR with several input controls that may be
used to accommodate a PN generator applica-
tion. The ShiftEn signal may be used to stall
(augment) and/or puncture the sequence, and
the FillSel and DataIn signals may be used to
jump out of sequence. The `define compiler
directive along with the Reset signal provide
code portability by allowing the code to infer
SRLs if targeting Virtex FPGAs, or to infer typical
asynchronous reset FFs if targeting another tech-
nology. The number of taps are fixed, however
the tap points and LFSR length are parameter-
ized.

Conclusion

The Virtex architecture is very efficient for creat-
ing PN generators by using the Virtex Shift
Register LUT (SRL). The SRL can also be used in
many other applications such as pipeline bal-
ancers, filters, dividers, and waveform genera-
tors. In large systems, such as CDMA, the overall
FPGA utilization can be reduced considerably by

VHDL Verilog

process(clk) Always @(posedge clk) begin

begin Y <= {Y[62:0],INPUT};

if clk’event and clk=’1’ then end

Y <= Y(62 downto 0) & INPUT;

end if;

end process;

Figure 3 - PN generator.

Figure 2 - HDL Code.

45

taking advantage of the SRL, which can lead to
smaller, fewer, and less expensive parts. With
only a basic understanding of the SRL, along
with today’s Virtex-friendly synthesis tools, these
savings can be accomplished easily and without
sacrificing code portability.

/**

The following is example code that implements an LFSR that can be used as

part of a pn generator.

The number of taps are fixed,however the tap points are parameratized. The

LFSR length is also parameritized. This code is not intended to be technology

specific. When targeting Xilinx (Virtex) however, all the latest synthesis tools

(Leonardo, Synplify, and FPGA Express) will infer the Shift Register LUTS

(SRL16) resulting in a very efficient implementation.

Control signals have been provided to allow external circuitry to control such

things as filling,puncturing,stalling (augmentation),etc. Only minimal simula-

tions have been run on this code as it is intended to be used for reference pur-

poses only.

A compiler directive can be used to steer the following code to infer typical FF’s

(w/async resets),or, infer Virtex SLR16E elements. Controlling the compiler

flow can be done by uncommenting the following line. This can also be done

from a top level module.

**/

//`define non_Virtex_device // Comment out to infer Virtex SRL16s.

module pn_gen_iq__srl (clk, pn_out_i,ShiftEn,FillSel, DataIn_i,RESET);

parameter Width = 17; // LFSR length (ie, number of storage elements)

// Parameratize I channel LFSR taps.

// I(x) = X**17 + X**4 + 1

parameter I_tap4 = 4; // I channel LFSR,single tap.

// Ports

input clk,DataIn_i,FillSel,ShiftEn,RESET;

output pn_out_i;

// I channel ////////////////////

reg [I_tap4-1:0] srl1_i;

reg [Width-1:I_tap4] srl2_i;

wire lfsr_in_i,par_out_i;

assign pn_out_i = srl1_i[0];

assign par_out_i = srl2_i[I_tap4] ^ srl1_i[0];

assign lfsr_in_i = FillSel ? DataIn_i :par_out_i;

`ifdef non_Virtex_device // compiler directive, if defined,will infer asyn reset FF.

always @(posedge clk or negedge RESET) begin

if (!RESET) begin

srl1_i <= 0;

srl2_i <= 0;

end

else

`else // compiler directive, if not defined,will infer SRL16.

always @(posedge clk) begin

`endif

if (ShiftEn) begin

srl2_i <= {lfsr_in_i,srl2_i[Width-1:I_tap4+1]};

srl1_i <= {srl2_i[I_tap4],srl1_i[I_tap4-1:1]};

end

end

endmodule

When targeting Virtex,all the latest synthesis tools (Leonardo,

Synplify, and FPGA Express) will infer the SRL16E resulting in a very

efficient implementation. The compiler directive, used to steer the

code to infer FFs or Virtex SLR16E elements, may not be supported

by all synthesis tools. Controlling the compiler flow can be done by

un-commenting the first line. (This can also be done from a top

level module). Only minimal simulations have been run on this

code as it is intended to be used for reference purposes only.

