
Application - Simulation & Synthesis

51

by Srikanth Vijayaraghavan, Applications Consultant, Synopsys,
raghavan@synopsys.com

ynopsys has combined its powerful logic
synthesis technology with innovative
architecture-specific optimization technol-

ogy to address the needs of FPGA designers who
are now adopting an HDL methodology. FPGA
Compiler II delivers powerful architecture-specif-
ic synthesis capabilities with features such as
behavioral re-timing and pipelining capability.
Synopsys VCS (Verilog Compiled Simulator) pro-
vides a fully-featured implementation of the ver-
ilog language as defined in the IEEE Standard
Hardware Description Language (IEEE Std 1364-
1995).

VCS is specifically designed to simulate large,
complex designs faster than any other Verilog-
HDL simulator. VCS supports interfaces to a vari-
ety of other simulators and models, including
(but not limited to) user PLI applications con-
forming to IEEE Std 1363-1995, delay calcula-
tors, SDF delay annotation, LMG Smatmodels,
and the LMSI hardware modeler.

The combination of the FPGA Compiler II
synthesis tool and the VCS simulator provides a
simple and accurate design and verification flow
that significantly reduces your total development
time.

Detailed Design Flow

The steps involved in taking a design from an
RTL description to a production FPGA are sum-

marized in Figure 1. These steps are explained in
detail using the RTL description of a flip-flop
shown in Example 1. After synthesizing the RTL
code for this flip-flop using FPGA Compiler II,
you can automatically generate a functional
Verilog simulation netlist as shown in Example
2. FPGA Compiler II is capable of synthesizing
the design, either by flattening the design com-
pletely, or by preserving the complete hierarchy.

FPGA System

Simulation and Synthesis
Using Synopsys VCS and FPGA Compiler II

Module reg1 (clk,reset,din,dout);

input clk,reset;

input din;

output dout;

wire clk,clk_enbl,reset;

wire din;

reg dout;

always@(negedge clk or posedge reset)

if (reset)

dout = 0;

else

dout = din;

endmodule

Example 1 - RTL description of a simple flip-flop.

This HDL design methodology can help you use the largest Virtex
FPGAs with a minimum amount of time spent on synthesis, simula-
tion, and verification.

52

The netlist can be simulated in VCS like any
other Verilog file. FPGA Compiler II maintains
the port names at the module level and therefore
debugging through the hierarchy is very easy.

Assuming you have a testbench for the
design module named test_reg1.v, a simple com-
mand line script for simulation in VCS will look
as follows:

vcs -RI -Mupdate reg1.v test_reg1.v -o reg1.simv -l reg1.log

Where:

• -RI is for simulating and bringing up the
XVCS Debugging debugging GUI
automatically.

• -Mupdate is to enable incremental compile.

• -o is to provide a distinct name for the exe-
cutable file; default name is simv.

• -l is to provide a distinct name for the log file
produced during compile.

Once the functionality of the design is veri-
fied, the EDIF equivalent to this Verilog netlist is
generated using FPGA Compiler II. The timing
constraints entered in the FPGA Compiler II GUI
can be exported into a spec file (.ncf), which is
understood by the Xilinx software tools. The
Xilinx software uses this EDIF netlist and the .ncf
constraint file to place and route the design.

If the design routes successfully, you can
write a Verilog simulation netlist in terms of gate
cells, and also a delay file (.sdf, Standard Delay
Format). A part of the delay file that corresponds
to the gate level netlist is shown in Example 3.
This .sdf file should be included during simula-
tion to back annotate the original delays into the
design.

The delay values need to be back annotated
through the PLI interface in VCS. The .sdf file is
called from the gate-level netlist through the
“$sdf_annotate” utility. For performing a gate-

// Synopsys FPGA Compiler II
// automatically generated file
// Author: raghavan
// Program:FPGA Compiler II
// Version:3.2.0.4206

module FDC_1 (Q ,D ,C ,CLR);
output Q ;
input D ;
input C ;
input CLR ;
wire synch_enable ;
reg Q ;
always@(negedge C or posedge CLR)
begin

if (CLR) Q = 1’b0;
else Q = (D);

end
assign synch_enable = (1’b1);
endmodule

module IBUF (O ,I);
output O ;
input I ;
assign O = (I);

endmodule

module OBUF_S_12 (O ,I);
output O ;
input I ;
assign O = (I);

endmodule

module reg1 (clk ,reset ,din ,dout);
input clk ;
input reset ;
input din ;
output dout ;

wire N_clk ;
wire N_reset ;
wire N_din ;
wire N_dout ;

FDC_1 dout_reg (.CLR (N_reset),.Q (N_dout),.C (N_clk),.D (N_din));
IBUF C_clk (.I (clk),.O (N_clk));
IBUF C_reset (.I reset),.O(N_reset));
IBUF C_din (.I (din),.O (N_din));
OBUF_S_12
C_dout (.I (N_dout),.O (dout));

Endmodule

Example 2 - Post synthesis functional netlist
generated by FPGA Compiler II.

53

level simulation, you need to first create
a table file. This table file will list all the
PLI tasks that need to be included. The
“simprims” directory inside the Xilinx
installation contains the Verilog descrip-
tion of all the library cells (.vmd exten-
sion). These descriptions contain the
timing checks for the setup and hold
time violations. Annotating the original
delay values from the .sdf file during
simulation performs these checks.

Now create a pli.tab file, with the fol-
lowing content:

$sdf_annotate call=sdf_annotate_call
acc+=mp,prx:reg_gate+

Where: reg_gate is the name of the
top level module

Now, to perform a gate level simulation,
you can use a sample script as follows:

vcs -RI -Mupdate reg_gate.v test_reg.v

-o gate_reg -l gate_reg.log \

-y $XILINX/verilog/src/simprims \

+libext+.vmd+ \

-P pli.tab

Where:

• -y stands for the library directory.

• +libext+.vmd+ stands for all the files with
extension .vmd.

• -P stands for pli table file.

Conclusion

The Synopsys FPGA Compiler II and VCS provide
an easy and intuitive HDL design methodology, a
seamless design flow, and high level control
within the design process. In addition, using
FPGA Compiler II gives you the power to effec-
tively use Xilinx Virtex devices with the highest
quality results.

(TIMESCALE 1 ps)
(CELL

(CELLTYPE “X_FF”)
(INSTANCE dout_reg)

(DELAY
(ABSOLUTE

(PORT IN (1948:1948:1948) (1948:1948:1948))
(PORT CLK (1520:1520:1520) (1520:1520:1520))
(PORT RST (0:0:0) (0:0:0))
(IOPATH CLK OUT (887:887:887) (887:887:887))
(IOPATH SET OUT (887:887:887) (887:887:887))
(IOPATH RST OUT (887:887:887) (887:887:887))

)
)

(TIMINGCHECK
(SETUP (negedge RST) (posedge CLK) (479:479:479))
(SETUP (posedge IN) (posedge CLK) (195:195:195))
(SETUP (negedge IN) (posedge CLK) (195:195:195))
(HOLD (posedge IN) (posedge CLK) (0:0:0))
(HOLD (negedge IN) (posedge CLK) (0:0:0))
(WIDTH (negedge CLK) (3456:3456:3456))
(WIDTH (posedge CLK) (3456:3456:3456))
(WIDTH (posedge RST) (3456:3456:3456))

)
)

Example 3 - SDF file generated by Xilinx software.

Figure 1 - Detailed design f.low for Xilinx FPGA’s

