
40

Applications -Virtex

Xilinx FPGAs have always had combina-
tions of Look-up Tables (LUTs) and flip-
flops, combined into Configurable Logic

Blocks (CLBs). With the introduction of the
XC4000 family, the Xilinx LUTs also have RAM
and ROM capability. Now, with introduction of
the new Virtex architecture, LUTs can also be
used as shift registers.

The Virtex LUT

The Virtex LUTs have four inputs and one out-
put, and can be used as RAM, ROM, or Serial
Shift Registers (SSRs):

• Used as a look-up table the LUT can con-
tain (up to) any four-input function.

• Used as RAM or ROM the LUT can have a
1X16-address configuration.

• Used as an SSR the LUT can be used as a
16-bit shift register.

Creating Counters in LUTs

A counter, whether it’s binary, Johnson ring, or
LFSR, is a sequence of repeating patterns. If you
program that sequence into a set of Look-up

Tables, then you can easily create fast, simple,
and large counters. Here are several examples.

A 4-Bit Binary Counter

A 4-bit binary counter has 16 possible states
which can be stored in a Look-up Table. By
cycling through the addresses you can generate
this binary counter pattern as shown in Figure 2.

When we initialize an SRL16 with these val-
ues and cycle the shift register, the output will
behave as a counter. However, the shift register
will be empty in 16 clock cycles so you need to
connect the input to the output to make the
counter repeat the cycle. It’s also possible to give

LOOK-UP
TABLES
The Virtex Look-up Tables have some interesting
capabilities that allow you to create very fast and
efficient designs.

by Marc Defossez, FAE, Xilinx BeNeLux,
Marc.Defossez@xilinx.com

RAM16X15

D
WE
 WCLK
A0
A1
A2
A3

D
WE
 CLK
A0
A1
A2
A3

SRL16E

A0
A1
A2
A3

O

O Q
LUT

ROM16X1

Figure 1 - LUTs used as RAM, ROM, or SSR.

Using the Virtex

mailto:Marc.Defossez@xilinx.com

41

this counter a terminal count. To do this, use the
carry chain as a wide AND gate and combine all
the outputs to create the desired terminal count,
as shown in Figure 3.

Using four LUTs, configured as an SRL16
shift register, can make a small 4-bit counter
with a full and repeatable sequence.

You can also make a counter or sequencer
that generates any count sequence you like, as
shown in Figure 4. By initializing the SRL16 with
a sequence, so that the counter starts counting
at a specific value and stops at another value,
then you only need to set the address of the
SRL16 to the correct number of stages.

SRL
3

SRL
2

SRL
1

SRL
0

Vcc

0 1

0 1

0 1

0 1

TC

Figure 3 - Creating a terminal count.

LUT

LUT

LUT

LUT

LUT

LUT

0

1

2

3

4

5

TC

Carry Chain

Figure 2 - 4-bit binary count sequence.

Figure 4 - A 6-bit counter.

Binary Counting Sequence

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

When we turn this counting sequence, then we get:

A LUT, RAM or SRL is 1 bit by 16.

Here we have i4 bits by 16.

So we have 4 LUTs that can be INITialized with
hard coded values:

LUT 3 gets 00FF = Q3
LUT 2 gets 0F0F = Q2
LUT 1 gets 3333 = Q1
LUT 0 gets 5555 = Q0

TC TC

42

A 5-Bit Binary Counter

To create a 5-bit counter, initialize the extra LUT
(SRL16) to “0” and feed it’s output back to it’s
input via an inverter. Then for the first 16 cycles
the LUT/SRL will give a zero at the output, while
loading a “1” into the SRL/LUT. For the next 16
cycles the counter will produce a “1” as the high
order bit.

A 6-Bit Binary Counter

To create a 6-bit counter, first create a 5-bit
counter as previously described. Then, to create
the sixth bit, initialize the LUT to all zeros.
Connect the output of the SRL to it’s input via an
inverter and then connect the enable of the SRL
to the output of the previous bit, as shown in
Figure 4.

The sequence for both upper bits will then be
as follows:

1. Both upper bits will be “0.”

2. After 16 clock cycles, bit 5 will become a “1”
and bit 6 stays “0.”

Figure 6 - Example of an LFSR counter.

D Q D Q D Q D Q D Q D Q D Q

D QD QD QD Q

D Q

A

D Q

A

D Q

A

D Q

A

1 2 3 4 20 21 22 23

39 55 56 57 64 65 66

F F 7

56
57
65
66

D

CE
C

O

SRL16E

D

CE
C

O

SRL16E

D

CE
C

O

SRL16E

D

CE
C

O

SRL16E

D

CE
C

O

SRL16E

D

CE
C

O

SRL16E

L

TC

Carry Chain
Figure 5 - A loadable counter.

TC

3. The LUT of bit 6 will be enabled for the next
16 clock cycles.

4. The LUT of bit 6 will output 16 zeros and then
load a “1.” Bit 5 will load “0” while the output
is “1.”

5. After 16 clock cycles, bit 5 will become “0”
and bit 6 will be a “1.”

The simulated counter is shown in Figure 7
and Figure 8.

A Loadable Counter

Figure 5 shows how to create a loadable
counter. A load operation will take 16 clock

cycles, and you can load the counter while it is
counting.

A Large LFSR Counter

An LFSR counter is a shift register with it’s input
fed back (XORed) from the bits of the different
stuck states that can appear in the sequence. In
the Virtex architecture we have the SRL16 ele-
ments that represent 16 flip-flops, thus large
LFSR counters with only certain outputs of inter-
est can be made efficiently.

43

Figure 7 - Simulated counter waveforms.

Figure 8 - Simulated counter waveforms, zoomed in.

For more information see Application note (Xapp052) on “Efficient
Shift Registers, LFSR counters, or see Xcell 35 article on “Pseudo
Random Noise Generators.”

