
by Alan Ma
Senior Corporate Applications Engineer, Synopsys, Inc.
alanma@synopsys.com

Prior to the recent advancements in FPGA
technology, you had to rely on external
RAM or ROM. Now, with the introduc-
tion of million-gate FPGAs such as the
Xilinx Virtex devices, you have access to
abundant on-chip memory resources.
FPGA Compiler II/FPGA Express
(FCII/FE) takes advantage of Virtex
resources such as Look-Up Tables (LUTs)
MUXF5s, MUXF6s, and on-chip block
SelectRAM to provide the highest quality
of results for ROM functions.

Coding Styles

Version 3.4 of FCII/FE recognizes a ROM
description using CASE statements in both

Verilog and VHDL, and by using constant
arrays in VHDL.

Using CASE Statements

FCII/FE infers ROM when the inputs to
the CASE statement are constant and all
the states are specified. Figure 1 shows an
example of an 8x4 ROM in Verilog. Figure
2 illustrates its VHDL equivalent.

Using Constant Arrays

You also have the option of using constant
arrays in VHDL. Figure 3 describes the
coding style for the same 8x4 ROM where
CONV_INTEGER is a built-in function that
converts std_logic_vector to integer.

General Implementations

FCII/FE generally implements ROM using
LUTs, MUXF5s, and MUXF6s when tar-
geting Xilinx Virtex devices. The actual
resources used are closely related to the
width of the address port. If the address has
less than or equal to four bits, then the
ROM will be implemented using LUTs. If
the address has five bits, then MUXF5s,
(which provide multiplexer functions in
one half of a Virtex Configurable Logic
Block), will be used in addition to the
LUTs. If the address has between six to
nine bits, the ROM will be implemented
using LUTs, MUXF5s, and MUXF6s
which provide multiplexer functions in a

Applications Software

Inferring
Read Only
Memory in
FPGA
Compiler II
and FPGA
Express

22

mailto:alanma@synopsys.com

full Virtex CLB. When the address has ten or more bits, FCII/FE
implements ROM using on-chip block SelectRAM resources if certain
conditions are met.

Using Block SelectRAM

The Virtex series provides dedicated blocks of on-chip, dual port syn-
chronous RAM, with 4096 memory cells (bits). These resources can
also be used for ROM if certain conditions are met. Our research indi-
cates that when the address of the ROM has ten bits and the data has
more than or equal to three bits, quality of results can be improved by
mapping the ROM to block SelectRAM if the output of the ROM is
registered. However, if the data has less than or equal to two bits (when
the address has ten bits), using LUTs, MUXF5s, and MUXF6s, as
described in the previous section, yields better results. For ROM whose
address has more than or equal to eleven bits, block SelectRAM will
always be used if the output is registered. Table 1 summarizes the con-
ditions for ROM inference.

To reserve block SelectRAM for user-defined functions, you can use
the scripting command “set_chip_instantiated_blockram”. For exam-
ple, the following reserves 4096 bits of block SelectRAM for
inferred ROM:

set_chip_instantiated_blockram 4096

While set_chip_instantiated_blockram applies to the current project,
you can use the variable proj_user_instantiated_blockram to reserve
block SelectRAM globally for all the subsequent projects. For exam-
ple, the following reserves 4096 bits of block SelectRAM for all
future projects:

proj_user_instantiated_blockram 4096

Conclusion

Inferring ROM is easy with FPGA Compiler II and FPGA Express,
which take full advantage of the abundant on-chip memory resources
of the Xilinx Virtex devices.

Visit the Synopsys FPGA website at www.synopsys.com/fpga for other
information on the latest FPGA synthesis technologies.

Applications Software

 library ieee;
 use ieee.std_logic_1164.all;

 entity rom_8x4 is port (
address: in std_logic_vector(2 downto 0);

 output: out std_logic_vector(3 downto 0)
);

 end rom_8x4;

 architecture rtl of rom_8x4 is
 begin

process (address)
begin

case address is
when "000" => output <= "0001";
when "001" => output <= "0010";
when "010" => output <= "0100";
when "011" => output <= "1000";
when "100" => output <= "1000";
when "101" => output <= "0100";
when "110" => output <= "0010";
when "111" => output <= "0001";
when others => output <= "0000";

end case;
end process;

 end rtl;

 library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_unsigned.all;

 entity rom_8x4 is port (
address: in std_logic_vector(2 downto 0);

 output: out std_logic_vector(3 downto 0)
);

 end rom_8x4;

 architecture rtl of rom_8x4 is

 constant num_word : integer := 8;
 constant num_bit : integer := 4;
 signal int_add : integer range 0 to 7;

 type ROMARRAY is array (0 to (num_word-1)) of
std_logic_vector((num_bit-1) downto 0);

 constant ROM: ROMARRAY := (
 "0001",
 "0010",
 "01 00",

"1000",
"1000",
"0100",
"0010",
"0001"
);

 begin
int_add <= CONV_INTEGER(address);
output <= ROM (int_add);

 end rtl;

 module rom_8x4 (
address,

 rom_out
);

 input [2:0] address;
 output [3:0] rom_out;

 reg [3:0] rom_out;

 always @(address)
case (address)

3’b000 : rom_out <= 4’b0001;
3’b001 : rom_out <= 4’b0010;
3’b010 : rom_out <= 4’b0100;
3’b011 : rom_out <= 4’b1000;
3’b100 : rom_out <= 4’b1000;
3’b101 : rom_out <= 4’b0100;
3’b110 : rom_out <= 4’b0010;
3’b111 : rom_out <= 4’b0001;

endcase
 endmodule

Figure 1 - Using CASE statements for ROM in Verilog.

Figure 2 - Using CASE statements for ROM in VHDL.

Figure 3 - Using constant arrays for ROM in VHDL.

LUT MUXF5 MUXF6 SelectRAM

ADD <= 4 Bits Any Data Width ◆

ADD = 5 Bits Any Data Width ◆ ◆

6 Bits <= ADD <= 9 Bits Any Data Width ◆ ◆ ◆

ADD = 10 Bits 1 Bit <= DATA <= 2 Bits ◆ ◆ ◆

ADD = 10 Bits* DATA >= 3 Bits* ◆

ADD >= 11 Bits* Any Data Width* ◆

Table 1 - LUTs, MUXF5s, MUXF6s, and block SelectRAM utilization.

* Note that LUTs, MUXF5s, and MUXF6s will be used if the output of the ROM is not registered.

23

http://www.synopsys.com/fpga

