
by Rob Weinstein
Senior Member of Technical Staff, 
Memec Design Services

There are times when it’s important to gen-
erate a status flag that is set by an event in
one clock domain and reset by an event in a
different clock domain. Using a D-type flip-
flop, where a “1” is clocked in from one
clock domain and its asynchronous reset is
pulsed by logic in the second clock domain,
is the time-honored method to achieve this
function. While there is nothing logically
wrong with this, it introduces other prob-
lems such as combinational logic driving an
asynchronous reset pin, uncertainty in tim-
ing constraint boundaries, and muddying
the global reset function. 

Here, I present an alternative method for
generating a multiple clock domain flag reg-

ister that mitigates these problems. It’s called
the “Flancter” (named by my colleague,
Mark Long), and is shown in Figure 1.

As you can see, it’s made up of two D-type
flip-flops, an inverter, and an exclusive OR
(XOR) gate. Notice that the asynchronous
reset inputs to the flip-flops are shown
unconnected for clarity only. Normally,
these would be tied to the global set/reset
net in the system.

Operation of the Flancter is simple; when
FF1 is clocked (rising edge of SET_CLK
while SET_CE is asserted), OUT goes high.
When FF2 is clocked (rising edge of
RESET_CLK while RESET_CE is asserted),
OUT goes low. Note that this circuit must
be used in an interlocked system where the
flip-flops won’t be continuously clocked by

the two clock domains. Also, the output
must be synchronized with additional flip-
flops to mitigate metastability when cross-
ing clock domains (more about this later).

How It Works

To explain its operation, I like to rearrange
the circuit as shown in Figure 2.

This is the same circuit as shown in Figure
1, but untwisted so that the two inputs to
the XOR gate are clearly visible. You can
see that the XOR gate’s upper input is
labeled Q1, while its lower input is labeled
Q2. Also, Q1 and Q2 are the Q outputs of
FF1 and FF2, respectively. Now for the
trick part of this magic trick: the D input
to FF1 comes from an inverter, so whenev-
er FF1 is clocked, Q1 assumes the opposite
state of Q2 and the output of the XOR

Applications Circuit Design

The “Flancter”
How to set a status flag in one clock domain,
clear it in another, and never have to use an
asynchronous clear for anything but reset.

The “Flancter”

54



gate will go high. When FF2 is clocked, Q2
becomes the same as Q1, and the output
will go low. In summary, clocking FF1
causes OUT to go high and clocking FF2
causes OUT to go low.

A timing diagram will help describe the
Flancter’s operation. Figure 3 shows the
basic timing diagram.

The basic points of interest in the timing
diagram are:

• SET_CLK and RESET_CLK are asynchro-
nous to each other.

• At point A, the rising edge of SET_CLK
while SET_CE is high causes Q1 to go
high because it gets the inverted value of
Q2. Also, OUT goes high because it is the
XOR of Q1 and Q2.

• At point B, the rising edge of
RESET_CLK while RESET_CE is high
causes Q2 to go high because it gets the

There are a few things wrong with the
Flancter from the start. One problem is
that it uses two flip-flops to create a single
flag bit. This is a minor fault when you
consider that most FPGAs have an abun-
dant supply of flip-flops. A more serious
issue is how to use the output. Remember
that the output can change synchronously
to either clock domain. You need to resyn-
chronize the output to whichever clock
domain needs to see it; often both clock
domains. It is common to use two flip-
flops in series as a metastability-resistant
synchronizer.

However, the most serious drawback to the
Flancter is that operating the set and reset
flip-flops must be mutually exclusive in
time. This means that when logic in clock
domain 1 sets the Flancter, it doesn’t
attempt to set the Flancter again until it
sees that it has been reset. Likewise, the
logic in clock domain 2 never attempts to
reset the Flancter unless it sees that it has
been set. Establishing this kind of inter-
locked protocol guarantees that both of the
Flancter’s flip-flops won’t be clocked simul-
taneously (or within each other’s setup and
hold time windows). 

Applications of the Flancter

There are many applications of the
Flancter, but a very common application is
interfacing a microprocessor to an FPGA.
Typically, the microprocessor and FPGA
logic run on separate clocks. When the
microprocessor writes a control register
within the FPGA, the Flancter can be used
as a status flag to tell an internal state
machine that new data is available.

value of Q1. Also, OUT goes low because
it is the XOR of Q1 and Q2.

• At point C, Q1 again gets the inverted
value of Q2, causing OUT to go high.

• At point D, Q2 goes low because it gets
the value of Q1, causing OUT to go low.

So What’s Wrong With It?

Applications Circuit Design

B

SET_CLK

SET_CE

Q1

Q2

OUT

A C

D

RESET_CLK

RESET_CE

Figure 3 - Basic Flancter timing

Figure 2 - Rearranged Flancter

Figure 1 - Basic Flancter.

55



Likewise, a state machine within the
FPGA can use the Flancter to generate an
interrupt to the microprocessor that is sub-
sequently cleared by a read or interrupt-
acknowledge cycle from the microproces-
sor, as shown in Figure 4.

Things to notice in Figure 4:

• The Flancter is made up of FF1, FF2, the
inverter, and the XOR gate.

• The state machine, FF1, FF3, and FF4
are all synchronous to SYSCLK.

• The microprocessor (µP) runs off its own
clock, PCLK.

• The state machine pulses SET_CE for
one SYSCLK cycle when it needs to
request an interrupt.

• The microprocessor performs a read
cycle from a predefined address to reset
the interrupt. Although not shown, read-
ing from this address may also cause a
status register to be driven onto the
microprocessor’s data bus allowing
simultaneous reading of status and reset-
ting of interrupt.

• FF3 and FF4 are resynchronizing flip-

flops used to filter any metastable logic
conditions from propagating into the
state machine.

• The particular microprocessor used in
this example employs metastable resistant

techniques on its INT input.

• The interrupt sequence is defined such
that setting and resetting the interrupt
flag cannot occur simultaneously. 

The following timing diagram helps illus-
trate the operation:

Things to notice in Figure 5:

• The FPGA’s state machine sets the inter-
rupt request (INT) at point A.

• Sometime later, the microprocessor
responds to the interrupt by reading a
status register, thus resetting the inter-
rupt request at point B.

Variations on a Flancter

While the basic Flancter is very simple, many
useful variations are possible. I describe some
of the more interesting variations in the
Flancter app-note available on our website,
h t t p : / / w w w. m e m e c d e s i g n . c o m /
resources/guides/. Some of the variations
you’ll find there include the 3-way Flancter,
the n-way Flancter, the async-reset emulating
Flancter, and the default-to-active-high
Flancter. The app-note also has VHDL and
Verilog listings for the basic Flancter.

Conclusion

I turned 37 this year and I got to thinking
that all the “greats” did their best work long
before they reached my age. As I look back
on my design career, I realize that I haven’t
designed any circuits or developed any the-
orems that will bear my name like the
Pierce Oscillator or Shannon’s Sampling
Theorem. The best I can do is to offer the
Flancter as my legacy. Perhaps someday, the
Weinstein-Flancter will be found in the
indexes of engineering tomes right between
Watt-Hour and Wien-Bridge.

SYSCLK

SET_CE

Q1

Q2

INT

A

RD_L

RESET_CE

ADDRESS

B

Status Address

Product Focus Circuit Design

Figure 5 - Flancter interrupt timing diagram

Figure 4 - Flancter used for microprocessor interrupt

56

http://www.memecdesign.com/resources/guides/

