
by Howard Walker
Technical Marketing Engineer, Xilinx
howardw@xilinx.com

CLKDLLs (Clock Delay-Locked Loops)
circuits can be used in a variety of applica-
tions ranging from clock multiplication
and division to phase shifting and clock de-
skewing. In this article, we will show you
how to implement clock multiplications in
both Virtex™-E and Virtex-II devices
using either VHDL or Verilog™ code and
Synplify™ logic synthesis software.

The CLKDLLs components on the
Virtex-E device have four primary and
four secondary CLKDLLs. The secondary
CLKDLLs have dedicated feedback loops
that can be used to generate a 4X clock
using only one BUFG (global clock
buffer). Virtex-E devices have four clock
networks that can be used to create differ-
ent clock configurations. The
primary/secondary CLKDLLs must be
located in the same quadrant (top right,
top left, bottom right, or bottom left) to
create a 4X clock.

The Virtex-II devices offer even more ver-
satility than the Virtex-E FPGAs. The
Virtex-II devices have from four to twelve
DCMs (Digital Clock Managers) depend-
ing on the device size. The DCM not only
offers enhanced support for all DLL func-

tionality found in Virtex-E devices, but
the DCM also provides flexible frequency
synthesis, precise fine-grained phase shift-
ing, and spread spectrum clock genera-
tion. Virtex-II devices contain 16 global
clock multiplexers and buffers that can be
used with the DCMs to create different
clock configurations. A DCM with a
BUFG and an IBUFG (dedicated input
clock pad) can be used to generate a 7X
clock.

Set Up a 4X Clock in a Virtex-E FPGA

The VHDL and Verilog™ code examples
on the next page show how to implement
a 4X clock for use in a Virtex-E device.
The circuit includes two CLKDLLs (one
primary and one secondary), an IBUFG,
a SRL16 (shift register look-up table) and
inverter for the reset control signal, and a
BUFG used for the feedback from the
primary CLKDLL.

The SRL16 is used to delay the reset sig-
nal to the second CLKDLL (the primary
DLL), so that it will stay in reset until the
first CLKDLL (the secondary DLL) has
achieved a “lock” on the input clock. This
insures that the second CLKDLL is
sourcing a stable clock from the first
CLKDLL to produce a clock signal that is

4X the frequency of the CLKIN (clock
input) signal.

In all the examples in this article, we used
Synplify logic synthesis software from
Synplicity™ Inc.

If location constraints are required for the
CLKDLLs and the associated input clock,
these can be specified in a UCF (User
Constraints File). Only one of the
CLKDLLs or its associated global clock
buffer or clock pad needs to be given a
location constraint in the UCF. The
Xilinx 3.1i Alliance Series™ software (or
later release) will automatically place the
other CLKDLL, IBUFG, or BUFG in the
same quadrant (lower right, lower left,
upper right, or upper left). The following
constraints will place the CLKDLLs in the
lower left quadrant of a Virtex-E device:

#UCF with LOCs for DLLs, IBUFG
and BUFG for dll_4x example

inst dll2x LOC = DLL1S;

inst dll4x LOC = DLL1P;

Applications HDL - Advisor

How to set up clock multiplication into Virtex-E and Virtex-II devices using VHDL
or Verilog hardware description languages and Synplify synthesis software.

Clock Multiplication in
Virtex-E and Virtex-II FPGAs

48

mailto:howardw@xilinx.com

Applications HDL - Advisor

49

Virtex-E DLL 4X VHDL Example

library ieee;
use ieee.std_logic_1164.all;
—Include your vendor-specific library references for running synthesis
software here

entity dll_standard is
port (CLKIN, RESET : in std_logic;
CLK2X, CLK4X, LOCKED : out std_logic);

end dll_standard;

architecture structural of dll_standard is

component IBUFG
port (O : out std_logic;
I : in std_logic);

end component;

component CLKDLL
port(CLKIN, CLKFB, RST: in std_logic;
CLK0, CLK90, CLK180, CLK270, CLK2X, CLKDV, LOCKED : out
std_logic);

end component;

signal CLKIN_w, RESET_w, CLK2X_dll, CLK2X_g, CLK4X_dll,
CLK4X_g : std_logic;
signal LOCKED2X, LOCKED2X_delay, RESET4X: std_logic;
signal logic1 : std_logic;

begin

logic1 <= ‘1’;

clkpad : IBUFG port map (I=>CLKIN, O=>CLKIN_w);

rstpad : IBUF port map (I=>RESET, O=>RESET_w);

dll2x : CLKDLL port map (CLKIN=>CLKIN_w,
CLKFB=>CLK2X_g,
RST=>RESET_w, CLK0=>open, CLK90=>open,
CLK180=>open,
CLK270=>open, CLK2X=>CLK2X_dll, CLKDV=>open,
LOCKED=>LOCKED2X);

clk2xg : BUFG port map (I=>CLK2X_dll, O=>CLK2X_g);

rstsrl : SRL16 port map (D=>LOCKED2X, CLK=>CLK2X_g,
Q=>LOCKED2X_delay, A3=>logic1, A2=>logic1,
A1=>logic1, A0=>logic1);

RESET4X <= not LOCKED2X_delay;

dll4x : CLKDLL port map (CLKIN=>CLK2X_g,
CLKFB=>CLK4X_g, RST=>RESET4X, CLK0=>open,
CLK90=>open, CLK180=>open, CLK270=>open,
CLK2X=>CLK4X_dll, CLKDV=>open,
LOCKED=>LOCKED);

clk4xg : BUFG port map (I=>CLK4X_dll, O=>CLK4X_g);

CLK2X <= CLK2X_g;

CLK4X <= CLK4X_g;

end structural;

Virtex-E DLL 4X Verilog Example

//
//Include your synthesis vendor-specific library references here

module dll_standard (CLKIN, RESET, CLK2X, CLK4X, LOCKED);

input CLKIN, RESET;

output CLK2X, CLK4X, LOCKED;

wire CLKIN_w, RESET_w, CLK4X_dll, LOCKED2X,
LOCKED4X;

wire LOCKED2X_delay, RESET4X;

wire logic1;

assign logic1 = 1’b1;

IBUFG clkpad (.I(CLKIN), .O(CLKIN_w));

IBUF rstpad (.I(RESET), .O(RESET_w));

CLKDLL dll2x (.CLKIN(CLKIN_w), .CLKFB(CLK2X),
.RST(RESET_w), .CLK0(), .CLK90(), .CLK180(),
.CLK270(), .CLK2X(CLK2X),
.CLKDV(),.LOCKED(LOCKED2X));

SRL16 rstsrl (.D(LOCKED2X), .CLK(CLK2X),
.Q(LOCKED2X_delay),.A3(logic1),.A2(logic1),
.A1(logic1), .A0(logic1));

assign RESET4X = ~LOCKED2X_delay;

CLKDLL dll4x (.CLKIN(CLK2X), .CLKFB(CLK4X),
.RST(RESET4X), .CLK0(), .CLK90(),.CLK180(),
.CLK270(), .CLK2X(CLK4X_dll), .CLKDV(),
.LOCKED(LOCKED));

BUFG clk4xg (.I(CLK4X_dll), .O(CLK4X));

endmodule

Applications HDL - Advisor

Set Up a 7X Clock in a Virtex-II FPGA

The following VHDL and Verilog code
examples show how to implement a 7X
clock multiplication in a Virtex-II device.
In these examples, attributes of the DCM
are passed in the hardware description lan-
guage code. Alternatively, they could be
specified in the UCF.

The input clock first goes through an
IBUFG component and then to the
CLKIN pin of the DCM. The CLK0 pin
from the DCM is connected to a BUFG,
and this output feeds back to the CLKFB
input pin of the DCM. Using the BUFG
to connect the CLK0 output pin to the
CLKFB input pin is only required if you
want to have the CLKFX output phase-
aligned with the CLK0 output. If this is
not required, then the BUFG resource
(and the power it consumes) can be saved
for other uses. In order to create the
desired frequency, two attributes are
assigned to the DCM in the source code.
These are the “CLKFX_MULTIPLY”
(assigned a value of “7”) and
“CLKFX_DIVIDE” (assigned a value of
“1”). These attributes can be any value
between 1 and 4,096 as long as the input
frequency is from 1-300 MHz and the
output frequency is from 24-300 MHz.

As with the examples before, we used the
Synplify logic synthesis engine.

Using the CLKDLL and DCM in Simulations

The following hints will help guarantee
the CLKDLL or DCM simulation will
work correctly:

• The simulation resolution time must be
set to display in pico-seconds as part of
the simulation setup. In VHDL, the
simulator resolution is set within the
simulator. When running Verilog, set
the following timing specification at the
top of the main Verilog source code:
`timescale 1 ns / 1 ps

• The simulation must run long enough
for the LOCKED output signal of the
Virtex-E CLKDLL and the Virtex-II
DCM to go high. The CLKDLL hard-
ware in Virtex-E using an input clock

50

Virtex-II VHDL DCM/DLL Example

library IEEE;

use IEEE.std_logic_1164.all;

- - Include your synthesis vendor-specific library references here

entity clock_distribution_block is

port (CLK_IN, RST_DLL : in std_logic;
CLK7X, LOCKED : out std_logic);

end clock_distribution_block;

architecture STRUCT of clock_distribution_block is

attribute CLKFX_MULTIPLY : string;

attribute CLKFX_DIVIDE : string;

attribute CLKFX_MULTIPLY of U2 : label is “7”;

attribute CLKFX_DIVIDE of U2 : label is “1”;

signal CLK, CLK_int, CLK_dcm, CLKFX_int, LCK_int, RST_int: std_logic;

signal DUMMY : std_logic := ‘0’;

component IBUFG

port (I : in std_logic; O : out std_logic);

end component;

component BUFG

port (I : in std_logic; O : out std_logic);

end component;

component DCM is

port (CLKFB,CLKIN,DSSEN,PSCLK,PSEN,PSINCDEC,RST : in std_logic;
CLK0,CLK90,CLK180,CLK270,CLK2X,CLK2X180,CLKDV,
CLKFX,CLKFX180,LOCKED,PSDONE : out std_logic;
STATUS : out std_logic_vector (7 downto 0));

end component;

begin

U1 : IBUFG port map (I => CLK_IN, O => CLK_int);

U2 : DCM port map (CLKIN => CLK_int, CLKFB => CLK,
RST => RST_int, DSSEN => DUMMY, PSINCDEC => DUMMY,
PSEN => DUMMY, PSCLK => DUMMY, CLK0 => CLK_dcm,
CLKFX => CLKFX_int, LOCKED => LCK_int);

U3 : BUFG port map (I => CLK_dcm, O => CLK);

RST_int <= RST_DLL;

CLK7X <= CLKFX_int;

LOCKED <= LCK_int;

end architecture STRUCT;

Applications HDL - Advisor

51

running at 40-50 MHz will take up to
50 microseconds to achieve a lock sig-
nal. (Refer to the DLL clock tolerance, jit-
ter, and phase information in the Xilinx
Data Book 2000 for more information.
The Data Book is online at
www.xilinx.com/partinfo/databook.htm.)

The DCM in a Virtex-II device will
exhibit similar lock times as the
CLKDLL in Virtex-E, with the exception
of the use of CLKFX and CLKFX180
outputs. If these outputs are used, the
lock times may be significantly shorter or
longer, with a maximum of a few

milliseconds for very large
CLKFX_MULTIPLY attribute values.
When run in a simulator, such as
ModelSim XE™, the LOCKED output
signal of the CLKDLL and the DCM will
go high approximately 1 microsecond
after the reset signal goes from high to low.

• The CLKDLLs and DCM must also be
run within certain frequencies to adhere
to the timing specs. (Refer to the Xilinx
Data Book 2000 for the timing specs of
the Virtex-E DLL and the Virtex-II
Platform FPGA Handbook for the timing
specs of the DCM.)

In order to run a simulation on these
VHDL and Verilog examples, the Virtex-E
or Virtex-II library references must be
included. In the VHDL example, to pre-
vent compiler problems when the VHDL
is run through your chosen synthesis soft-
ware, you must add the following lines in
between the “translate_off” and
“translate_on” statements:

library unisim;

use unisim.vcomponents.all;

In the Verilog examples, an “`include” state-
ment is needed to reference the path to the
Virtex-E or Virtex-II libraries. In addition,
a global Verilog file must be referenced
and compiled in the simulator
(glbl.v). Refer to “XAPP108”
(www.xilinx.com/xapp/xapp108.pdf) or
the “Synthesis and Simulation Design
Guide” (toolbox.xilinx.com/docsan/3_1i/).

Conclusion

DLLs and DCMs offer great flexibility for
clock management in demanding designs.
Just make sure you refer to the specifics in
your vendor’s synthesis tool when using
attributes in HDL designs.

For additional information about
using CLKDLLs to generate or manage
various clock signal configurations,
refer to “XAPP132”
(www.xilinx.com/xapp/xapp132.pdf).

Virtex-II Verilog DCM/DLL Example

//Include your synthesis vendor-specific library references here

module clock_distribution_block

(CLK_IN,RST_DLL,CLK7X,LOCKED);

input CLK_IN, RST_DLL;

output CLK7X, LOCKED;

wire CLK, CLK_int, CLK_dcm;

IBUFG U1 (.I(CLK_IN), .O(CLK_int));

DCM U2 (.CLKFB(CLK), .CLKIN(CLK_int), .RST(RST_DLL), DSSEN(1’b0),
.PSINCDEC(1’b0), .PSEN(1’b0), .PSCLK(1’b0),

.CLK0(CLK_dcm),
.CLK90(), .CLK180(), .CLK270(), .CLK2X(), .CLK2X180(),
.CLKDV(), .CLKFX(CLK7X), .CLKFX180(), .LOCKED(LOCKED))
/* synthesis CLKFX_MULTIPLY=7 CLKFX_DIVIDE=1 */;

BUFG U3 (.I(CLK_dcm), .O(CLK));

endmodule // clock_distribution_block

If location constraints are required for the DCM, they can be specified in a UCF. In the
following example, the DCM is placed in the upper left quadrant of 2v40 device:

#UCF with LOCs for DCM for Virtex-II DCM/DLL example

inst U2 LOC = DCM_X0Y1;

xapp/xapp108.pdf
http://toolbox.xilinx.com/docsan/3_1i/
partinfo/databook.htm
xapp/xapp132.pdf

