
Summary Personal Digital Assistants, such as the Handspring Visor™, are increasingly being used for
data acquisition. One such application is the Digital Volt Meter, a device commonly used to
measure voltage at a particular source. This Application Note will discuss the design of an eight
channel Digital Volt Meter for the Handspring Visor. Specifically, it will illustrate how to use a
Xilinx ultra-low power CoolRunner CPLD to interface a Texas Instruments ADS7870 Data
Acquisition System to the Handspring Spingboard™ expansion slot.

This Application Note is intended for all Springboard designers. While it is true that the
accompanying design files are intended for an Insight Springboard Development Kit, the
concepts presented here are applicable to any other Springboard design.

This 8-channel Digital Volt Meter design builds upon the TI ADS7870 Data Aquisition System
Interface described in application note XAPP355. This Application Note will not discuss the
ADS7870 Interface in detail. Readers should familiarize themselves wiith XAPP355 before
proceeding.

All related source code will also be provided for download. To obtain the VHDL code described
in this document, go to section VHDL Code Download, page 9 for instructions.

Overview Operation of the Digital Volt Meter is simple. Once the Handspring application is launched, the
Visor’s LCD screen will automatically display and update the voltages on all eight channels of
the ADS7870. Therefore, all a user must do is connect any of the eight analog inputs of the
ADS7870 to a voltage source. In the default configuration, all eight channels of the data
aquisition system are configured for single ended operation, which means that single ended
input can vary between 0V to 2.5V. If a user desires wider input voltage, external biasing can be
introduced. Also, if the voltage source in question has differential outputs, the inputs to the
ADS7870 can easily be configured as differential. However, these options will not be discussed
here, as this reference design covers only the default configuration.

Operational
Flow

Figure 1 shows the operational flow of the Digital Volt Meter design. The Handspring
application enters an infinite loop in which it first issues a command to the Xilinx CoolRunner
CPLD. Upon receiving this specific data and address value, the CoolRunner device commands
the ADS7870 to begin converting. Immediately after the CoolRunner device orders the
ADS7870 to convert, the first analog input channel is sampled eight times, with each result
written to SRAM locations 1-8, respectively. Next, the second analog input channel is sampled
eight times, with each result stored in SRAM locations 9-16. This continues until the eighth (and
last) analog input channel is sampled and stored in SRAM locations 57-64. When all results
have been written to SRAM, the CoolRunner device allows the Visor to read the contents,
calculate the voltage, and display it to the screen.

Application Note: CPLD

XAPP146 (v1.1) January 3, 2002

Designing an Eight Channel Digital Volt
Meter with the Insight Springboard
Development Kit

R

XAPP146 (v1.1) January 3, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com/xapp/xapp355.pdf

Designing an Eight Channel Digital Volt Meter with the Insight Springboard Development Kit
R

Notice that the boxed area in Figure 1 represents tasks which hardware does. The boxes
outside of the shaded area represent tasks software does (Handspring). In other words, the
data aquisition process is done completely in hardware, while data gathering is done by the
Handspring Visor.

This is a classic scheme, as many processors are not fast enough handle high speed data
transfers. This is especially true in the case of the Handspring Visor, which utilizes a Motorola
Dragonball processor running at 16 MHz (33 MHz on the premium models). For very fast

Figure 1: Operational Flow of Digital Volt Meter Design

X146_01_080901

Issue Convert Command

Sample Channel 0
Write each result to SRAM location 1-8

Sample Channel 1
Write each result to SRAM location 9-16

Sample Channel 2
Write each result to SRAM location 17-24

Sample Channel 7
Write each result to SRAM location 57-64

Read, Calculate, and Display Channel 0
(Read SRAM location 1)

Read, Calculate, and Display Channel 1
(Read SRAM location 2)

Read, Calculate, and Display Channel 7
(Read SRAM location 36)

.

.

.

.

.

.

2 www.xilinx.com XAPP146 (v1.1) January 3, 2002
1-800-255-7778

Designing an Eight Channel Digital Volt Meter with the Insight Springboard Development Kit
R

transactions, such as handling data from a high speed A/D converter, dedicated external
hardware is often used to handle the bus transactions. The data can then be stored in memory
(SRAM) for the slower processor to read.

In this case, the Xilinx CoolRunner CPLDs combination of high speed and low power make it an
ideal candidate for high speed data manipulation.

VHDL Interface XAPP355 provides and explains the Texas Instruments ADS7870 Data Aquisition System
interface. The VHDL code presented in XAPP355 is intended to be a "building block" for future
designs. A detailed understanding of the VHDL code is not needed. Rather, the designer needs
only to focus on the details of the ADS7870. If certain aspects of the ADS7870 need to be
adjusted, the "constants" section of the VHDL code can then be modified to accordingly.

This reference design shows how to customize the original code presented in XAPP355. Slight
changes have been made to the "constants" section. Figure 2 below shows the portions of the
"constants" section that have been modified.

As shown, all eight analog input channels of the ADS7870 have been enabled and have been
configured for single-ended operation. The locations in SRAM that will store each channels’
conversion results have also been defined. Figure 2 shows the conversion result address map.

*************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 0 ********************
constant DM_SNG_LN0_EN : BOOLEAN := TRUE;
constant DM_SNG_LN0 : STD_LOGIC_VECTOR(7 downto 0) := "10001000";
constant SRAM_OFFSET0 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000000000";
constant SRAM_HIGH0 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000000111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 1 *********************
constant DM_SNG_LN1_EN : BOOLEAN := TRUE;
constant DM_SNG_LN1 : STD_LOGIC_VECTOR(7 downto 0) := "10001001";
constant SRAM_OFFSET1 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000001000";
constant SRAM_HIGH1 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000001111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 2 *********************
constant DM_SNG_LN2_EN : BOOLEAN := TRUE;
constant DM_SNG_LN2 : STD_LOGIC_VECTOR(7 downto 0) := "10001010";
constant SRAM_OFFSET2 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000010000";
constant SRAM_HIGH2 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000010111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 3 *********************
constant DM_SNG_LN3_EN : BOOLEAN := TRUE;
constant DM_SNG_LN3 : STD_LOGIC_VECTOR(7 downto 0) := "10001011";
constant SRAM_OFFSET3 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000011000";
constant SRAM_HIGH3 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000011111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 4 *********************
constant DM_SNG_LN4_EN : BOOLEAN := TRUE;
constant DM_SNG_LN4 : STD_LOGIC_VECTOR(7 downto 0) := "10001100";
constant SRAM_OFFSET4 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000100000";
constant SRAM_HIGH4 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000100111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 5 *********************
constant DM_SNG_LN5_EN : BOOLEAN := TRUE;
constant DM_SNG_LN5 : STD_LOGIC_VECTOR(7 downto 0) := "10001101";
constant SRAM_OFFSET5 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000101000";
constant SRAM_HIGH5 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000101111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 6 *********************
constant DM_SNG_LN6_EN : BOOLEAN := TRUE;
constant DM_SNG_LN6 : STD_LOGIC_VECTOR(7 downto 0) := "10001110";
constant SRAM_OFFSET6 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000110000";
constant SRAM_HIGH6 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000110111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 7 *********************
constant DM_SNG_LN7_EN : BOOLEAN := TRUE;
constant DM_SNG_LN7 : STD_LOGIC_VECTOR(7 downto 0) := "10001111";
constant SRAM_OFFSET7 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000111000";
constant SRAM_HIGH7 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000111111";

Figure 2: Modified "Constants" Section
XAPP146 (v1.1) January 3, 2002 www.xilinx.com 3
1-800-255-7778

Designing an Eight Channel Digital Volt Meter with the Insight Springboard Development Kit
R

PocketC Code The PocketC source code is shown in Appendix A: PocketC Source Code, page 7. As stated
in XAPP147, the Xilinx Native Library, "IOLib.prc", which defines the functions "IORead" and
"IOWrite", is needed in order for PocketC to access the Springboard IO. IOLib.prc must also be
installed on the Handspring Visor in order for this DVM Application to work.

The PocketC code is simple because the ADS7870 is interfaced through hardware. The
program is comprised of an infinite loop during which two major tasks take place:

1) Initiating a new conversion

2) Retrieving, computing and displaying results stored in SRAM

Initiating a New Conversion
The CoolRunner CPLD will only begin a new conversion process upon receiving a Springboard
address of 0x2900003E and a Springboard data value of 0xFFFF followed by an address of
0x2900003E and a data value of 0x0000.

The following two PocketC commands accomplish this:

IOWrite(0x2900003e,0xffff);

IOWrite(0x2900003e,0x0000);

Retrieving, Computing and Displaying Results
Immediately after initiating a new conversion, the software retrieves and computes the
conversion results for all 8 channels, one by one. Notice that a wait state is not needed
between the time when a new conversion is initiated and the time when the results are
retrieved. The hardware will have completed its entire chain of events well before the software
executes its next line of code.

The PocketC code that is used to retrieve, compute and display the results for channel 1 is
shown below:

Table 1: Conversion Result Address Map

Channel Sample #
SRAM Location

(A17..A0)
SRAM Location

(Decimal)

0
1 000000000000000001 1

8 000000000000001000 8

1
1 000000000000001001 9

8 000000000000010000 16

2
1 000000000000010001 17

8 000000000000011000 24

3
1 000000000000011001 25

8 000000000000100000 32

4
1 000000000000100001 33

8 000000000000101000 40

5
1 000000000000101001 41

8 000000000000110000 48

6
1 000000000000110001 49

8 000000000000111000 56

7
1 000000000000111001 57

8 000000000001000000 64
4 www.xilinx.com XAPP146 (v1.1) January 3, 2002
1-800-255-7778

http://www.xilinx.com/xapps/xapp147.pdf

Designing an Eight Channel Digital Volt Meter with the Insight Springboard Development Kit
R

//Channel 1
result = IORead(0x29000002);
result=result >> 4;
Channel1 = result;
Channel1 = (Channel1/2047) * 2.5;
text(70,10, format(Channel1,2));

Table 1 shows the address values of each conversion result. However, keep in mind that these
address values are with respect to the SRAM. Because Springboard Address 0 (A0) is not
used, Springboard A1 is connected to A0 of the SRAM. This means that the address values are
slightly shifted. Table 2 summarizes this.

For Example, the results of Channel 1, Sample 1 are stored in SRAM location 1. Since A0 is not
used, A1 is connected to A0 of the SRAM. Therefore, SRAM address 1 corresponds to
Springboard Address 2. Since csSlot1 starts at a base of 0x29000000 by default, the function
IORead(0x29000002) will read from SRAM location 1.

Also notice that the software only reads the first sample of each channel. For simplicity’s sake,
the remaining seven samples are never read. This illustrates the point that the hardware is
always faster than the software.

For any given conversion, the ADS7870 stores the 12-bit conversion result in two internal
registers, ADDR0 and ADDR1. Both internal registers are each 8 bits wide. When combined,
they are sixteen bits wide. Since the conversion result is always 12 bits, there are 4 bits of extra
data. Of these four bits, three are unused, and one is used for an overflow flag. Table 3 and
Table 4 show the arrangement of ADDR1 and ADDR1.

Table 2: Springboard Address Values

Channel Sample #
SRAM Address

(Decimal)
Springboard Offset

(Decimal)
Springboard Offset

(Hex)
Springboard Address

(Hex)

1
1 1 2 0x000002 0x29000002

8 8 16

2
1 9 18 0x000012 0x29000012

8 16 32

3
1 17 34 0x000022 0x29000022

8 24 48

4
1 25 50 0x000032 0x29000032

8 32 64

5
1 33 66 0x000042 0x29000042

8 40 80

6
1 41 82 0x000052 0x29000052

8 48 96

7
1 49 98 0x000062 0x29000062

8 56 112

8
1 57 114 0x000072 0x29000072

8 64 128
XAPP146 (v1.1) January 3, 2002 www.xilinx.com 5
1-800-255-7778

Designing an Eight Channel Digital Volt Meter with the Insight Springboard Development Kit
R

Table 4: Contents of ADDR0, the LS Byte

Since the SRAM on the Insight Springboard Development Board is 16 bits wide, the ADS7870
interface, as described in XAPP355, writes to each SRAM location the contents of ADDR1
followed by the contents of ADDR0. (ADDR1 is Most Significant Byte and ADDR0 is the Least
Significant Byte. This is illustrated in Figure 3.)

Therefore, when software retrieves the conversion result (by executing the ’IORead’ function),
sixteen bits are returned. To calculate voltage, the result must first be shifted four bits to the
right, thereby eliminating the four extra bits and leaving only the 12-bit conversion result.

Once the four bit shift is complete, calculating voltage from the remaining 12-bit result is
straightforward. Since the ADS7870 is set for single ended operation, the input voltage may
vary from 0V-2.5V. The output codes of the ADS7870 will range from 0 to 2047.

The following formula may then be used to compute measured voltage:

[(12-bit result) / 2047] * 2.5V = Measured Voltage

The measured voltage will the be displayed to the screen and the software will do the same
procedure for all other channels. After all channels have been updated, the loop starts again.

Notice that in this implementation, the OVR bit is not monitored. Again this is done for simplicity
and software can be adjusted accordingly if you would like to monitor this bit.

Conclusion The Xilinx CoolRunner CPLD is ideal for Springboard applications. Its re-programmability and
its abundance of logic resources allow users to successfully prototype and debug Springboard
modules without having to make board changes. In addition, the Xilinx CoolRunner CPLD’s

Table 3: Contents of ADDR1, the MS Byte

ADDR 1 (MS Byte)

D7 D6 D5 D4 D3 D2 D1 D0

ADC11 ADC10 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4

ADDR 0 (LS Byte)

D7 D6 D5 D4 D3 D2 D1 D0

ADC3 ADC2 ADC1 ADC0 0 0 0 OVR

Figure 3: Contents of SRAM Memory

16 Bits

Address 0

Address 1

Address 2

Address 3

ADDR1

MS Byte LS Byte

ADDR0

ADDR1 ADDR0

ADDR1 ADDR0

ADDR0ADDR1
6 www.xilinx.com XAPP146 (v1.1) January 3, 2002
1-800-255-7778

http://www.xilinx.com/xapp/xapp355.pdf

Designing an Eight Channel Digital Volt Meter with the Insight Springboard Development Kit
R

exclusive combination of ultra low power and high speed make it the only feasible
programmable logic solution for Springboard designs.

Appendix A:
PocketC Source
Code

//8 Channel digital volt meter

@cid "FFFF";
@ver "1.0";
@name "8 Channel DVM";
@dbname "8 Channel DVM";
@licon1 "xilinx.bmp";
@sicon1 "small1.bmp";

library "IOLib"

main(){

int result;
int i;
float Channel1, Channel2, Channel3, Channel4, Channel5, Channel6, Channel7,
Channel8;

graph_on();
clearg();
rect(0,0,0,165,165,1);
textattr(0,1,0);

text(10,10, "Channel 1");
text(10,20, "Channel 2");
text(10,30, "Channel 3");
text(10,40, "Channel 4");
text(10,50, "Channel 5");
text(10,60, "Channel 6");
text(10,70, "Channel 7");
text(10,80, "Channel 8");

text(90,10, "V");
text(90,20, "V");
text(90,30, "V");
text(90,40, "V");
text(90,50, "V");
text(90,60, "V");
text(90,70, "V");
text(90,80, "V");

while(1){

IOWrite(0x2900003e,0xffff);

IOWrite(0x2900003e,0x0000);

//Now, Clear the numbers:

text(70,10, " ");
text(70,20, " ");
text(70,30, " ");
text(70,40, " ");
text(70,50, " ");
text(70,60, " ");
text(70,70, " ");
XAPP146 (v1.1) January 3, 2002 www.xilinx.com 7
1-800-255-7778

Designing an Eight Channel Digital Volt Meter with the Insight Springboard Development Kit
R

text(70,80, " ");

//Channel 1
result = IORead(0x29000002);
result=result >> 4;
Channel1 = result;
Channel1 = (Channel1/2047) * 2.5;
text(70,10, format(Channel1,2));

//Channel 2
result = IORead(0x29000012);
result = result >> 4;
Channel2 = result;
Channel2 = (Channel2/2047) * 2.5;
text(70,20, format(Channel2,2));
//Channel 3
result = IORead(0x29000022);
result=result >> 4;
Channel3 = result;
Channel3 = (Channel3/2047) * 2.5;
text(70,30, format(Channel3,2));
//Channel 4
result = IORead(0x29000032);
result=result >> 4;
Channel4 = result;
Channel4 = (Channel4/2047) * 2.5;
text(70,40, format(Channel4,2));
//Channel 5
result = IORead(0x29000042);
result=result >> 4;
Channel5 = result;
Channel5 = (Channel5/2047) * 2.5;
text(70,50, format(Channel5,2));
//Channel 6
result = IORead(0x29000052);
result=result >> 4;
Channel6 = result;
Channel6 = (Channel6/2047) * 2.5;
text(70,60, format(Channel6,2));
//Channel 7
result = IORead(0x29000062);
result=result >> 4;
Channel7 = result;
Channel7 = (Channel7/2047) * 2.5;
text(70,70, format(Channel7,2));
//Channel 8
result = IORead(0x29000072);
result=result >> 4;
Channel8 = result;
Channel8 = (Channel8/2047) * 2.5;
text(70,80, format(Channel8,2));

for(i=0;i<800;i++); //wait for a little bit before refreshing the screen

//volt2=result2;
//volt2=(volt2/2047)*2.5;
//text(50,110,format(volt2,2));
//text(70,110,"volts");
}

event(1);
}

8 www.xilinx.com XAPP146 (v1.1) January 3, 2002
1-800-255-7778

Designing an Eight Channel Digital Volt Meter with the Insight Springboard Development Kit
R

VHDL Code
Download

VHDL source code and test benches are available for this design. THE DESIGN IS PROVIDED
TO YOU "AS IS". XILINX MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND XILINX SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
OR FITNESS FOR A PARTICULAR PURPOSE. While this design has been verified on
hardware, it should be used only as an example design, not as a fully functional core. XILINX
does not warrant the performance, functionality, or operation of this design will meet your
requirements, or that the operation of the design will be uninterrupted or error free, or that
defects in the design will be corrected. Furthermore, XILINX does not warrant or make any
representations regarding use or the results of the use of the design in terms of correctness,
accuracy, reliability or otherwise.

XAPP146 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/24/01 1.0 Initial Xilinx release.

01/03/02 1.1 Minor revisions
XAPP146 (v1.1) January 3, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com/products/xaw/coolvhdlq.htm

	Summary
	Overview
	Operational Flow
	VHDL Interface
	PocketC Code
	Initiating a New Conversion
	Retrieving, Computing and Displaying Results

	Conclusion
	Appendix A: PocketC Source Code
	VHDL Code Download
	Revision History

