
Summary Data recovery allows a receiver to extract embedded clock data from an incoming data stream.
The receiver usually extracts the data from the incoming clock/data stream, and then moves
this data into a separate clock domain. Sometimes, the receiver’s clock is also used for onward
data transmission. The circuit described in this application note provides a partial solution at
data rates up to 160 Mb/s in a Virtex™-E -7 device and up to 420 Mb/s in a Virtex-II device. The
solution is partial in the sense that no clock is actually recovered, but the data arriving is fully
extracted. The speed is limited by the maximum frequency that can be accepted by the Data
Locked Loop (DLL), in a mode where the DLL is capable of providing both a new clock, and
another clock shifted by 90 degrees. A typical application is shown in Figure 1.

Introduction The circuit described herein uses a clock (local oscillator) that is running at the same nominal
frequency of the data stream being decoded. Typically, this means that the local oscillator is
either slightly faster or slightly slower than the incoming clock/data stream. For example, a
typical link may be running at 400 MHz plus or minus a small but different variation. The actual
performance relative to the clock rate will be discussed after giving a description of how the
circuit works.

Assuming that the incoming clock/data line is not encoded beyond a "1" being transmitted as
line High and a "0" as line Low. Other data encoding possibilities will be discussed in future
versions of this application note. Minimum transition requirements are discussed in the
following sections.

Application Note: Virtex Series and Virtex-II Family

XAPP224 (v2.0) January 30, 2002

Data Recovery
Author: Nick Sawyer

R

Figure 1: Typical Data Recovery Application

CLK0 CLK90

Virtex Series
FPGA

X224_01_010202

DLL

System Clock (420 MHz)

Data
Recovery

Data
Recovery

Data
Recovery

Data
Recovery

Serial Link 1

Serial Link 2

Serial Link 3

420 Mb/s
Serial Links

Serial Link n
XAPP224 (v2.0) January 30, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Data Recovery
R

For the Virtex-E or for a slow link using a Virtex-II, the incoming system clock is fed to a DLL
component, and the DLL CLK0 is used to provide a clock (CLK) for the synchronizer circuit, as
well as feedback for the DLL. Another version of the input clock, delayed by 90 degrees
(CLK90), and synchronized with the original clock is available. For a fast link using the
Virtex-II, two DLL (DCM) modules are required, one provides the CLK and the other CLK90
using the fixed phase shift feature available to the Virtex-II device. These waveforms are shown
in the Figure 2 timing diagram along with the four possible data arrival cases used in the next
section.

As shown in Figure 3, the incoming data is applied to four flip flops, two clocked by CLK (one
rising edge and one falling edge) and two by CLK90 (rising and falling edges). It is important
that the delay from the input pin to these four flip flops be almost equal. This is easily achieved
by giving the software a MAXSKEW parameter for this net, of 500 ps, for example. The
absolute delay is irrelevant; only the skew is important.

The first flip flop is clocked by the rising edge of the clock described as time domain A. The
second flip flop is clocked by the rising edge CLK90 (time domain B); the third flip flop is clocked
on the falling edge of CLK (time domain C); and the fourth is clocked on the falling edge CLK90
(time domain D). As shown in the timing diagram (Figure 2), this gives four data sample points,
each separated by 90 degrees of the original clock frequency. In the case of a 420 MHz system
clock, this logic is effectively running at 1680 MHz.

These four sample points are then clocked once more, to remove any metastability issues and
to move them into the same time domain. This actually takes place in three stages (again to
avoid any four times clock frequency logic paths).

Figure 2: Timing Diagram

A B C D

CLK

CLK90

CASE1 Data

CASE2 Data

CASE3 Data

CASE4 Data

x224_02_013001
2 www.xilinx.com XAPP224 (v2.0) January 30, 2002
1-800-255-7778

http://www.xilinx.com

Data Recovery
R

In the first decision stage, shown in Figure 4, the circuit detects transitions on the data lines.
The feedback path from the flip-flop ensures that the decision lines are only ever High for a
maximum of one clock cycle, otherwise the circuit would lock up. Four signals are now available
for the decision process. These are labeled AA to DD. Four mutually exclusive signals can now
be decoded, where only one transitions High whenever there is a negative data transition.
These four conditions are as follows:

1. AA = BB = 1 and C = DD = 0. Time domain C recognized the transition first. Use the data
clocked in during time domain A for forwarding into the system. This is the data that has
been sampled midway through its period, i.e., the best noise margin.

2. AA = BB = CC = 1 and DD = 0. Time domain D was the first to see the data. Therefore, the
data from B is used for forwarding.

3. AA = BB = CC = DD = 1. Time domain A was the first to see the data. Therefore, the data
from C is used for forwarding.

4. AA = 1 and BB = CC = DD = 0. Time domain B was the first to see the data. Therefore, the
data from D is used for forwarding.

Figure 3: Input Stage

D Q

D Q

D Q

D Q

DATAIN

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

CLK

CLK

CLK

CLK

CLK

CLK90

CLK

CLK

CLK

CLK90

CLK

CLK90

CLK

CLK

CLK90

CLK

AZ(3)

BZ(3)

CZ(3)

DZ(3)

0.75 clock period

1 clock period 1 clock period 1 clock period 1 clock period

1 clock period1 clock period1 clock period0.75 clock period

0.75 clock period 0.75 clock period

1 clock period

1 clock period 1 clock period

0.75 clock period 0.75 clock period

AZ(2)

x224_03_121501
XAPP224 (v2.0) January 30, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Data Recovery
R

The selection of data is done with a very simple multiplexer used to select data bits from the
appropriate time domain, i.e., if the circuit has decided to use data from time domain A, then
data bit AZ(3) is passed on to the output.

As discussed, the local clock will probably be a bit faster or slower than the incoming clock/data
stream, and therefore, there will be clock cycle where the received data is either invalid (local
clock faster) or two data bits will be required (local clock slower). As the clock/data moves in
time, the multiplexer can be used to select data from one of the four available time domains, but
with two exceptions. If the circuit moves from domain A to domain D, then the data being output
is actually invalid. This is indicated to the user by lowering the data valid (DV) signal to 0. If the
circuit moves from domain D to domain A, two bits of data need to be generated. This is
indicated to the user by setting both data valid bits High. This is shown in Figure 5. In an actual
system, these events occur continuously but randomly, as the circuit moves due to clock jitter
and data eye closure, but the data output will always be valid according to the data available
bits. For example, with a 401 MHz (2.506 ns period) local clock and an incoming data stream of
400 Mb/s (2.500 ns period), the received data will be invalid (DV = "0") approximately every 416
local clock cycles.

In the opposite case, the local clock may be 400 MHz and the incoming data stream 401 Mb/s.
In this case, two bits of data will be generated on average every 416 clock cycles. In the case
where the frequencies are nominally the same, for instance, two separate crystal oscillators,
the separation in frequency will be a few ppm (in either direction), and it will be seen that circuit
oscillates between producing zero, one, or two valid data bits per receiver clock, but the data is
always correctly extracted.

Figure 4: Decision Stage 1

AZ(2)

AZ(3)

D Q AA

BZ(2)

BZ(3)

BB

CZ(2)

CZ(3)

CC

DZ(2)

DZ(3)

DD

x244_04_121401

D Q

D Q

D Q
4 www.xilinx.com XAPP224 (v2.0) January 30, 2002
1-800-255-7778

http://www.xilinx.com

Data Recovery
R

Using the
Received Data

As discussed, on each receive clock cycle, there is either zero, one, or two bits of data
generated by the data recovery circuit. These bits will normally be clocked into a FIFO for
further processing either 8,16, or 32 bits wide. Assuming that the requirement is for 8-bit data,
the logic required is a bit more complex than it first appears. Normally, the received data bits are
passed into a shift register for "parallelising," and when eight bits have been clocked in, the
resulting 8-bit word is clocked into a FIFO. However, because the data recovery circuit can
potentially generate two bits of data per clock, the case where the received bit counter goes
from 7 to 9 needs to be considered.

The best way around this is to use a 9-bit shift register. If no bits of data are available in a clock
cycle, the shifter and its associated counter remain static. If one bit is available, it is shifted in to
the MSB, and the counter incremented by 1. If two bits are available, they are both clocked in by
moving the shift register two positions and incrementing the counter by 2. If the counter reaches
8, then a valid byte is present in bit positions 1 to 8 of the shift register, and if the counter
reaches 9, then a valid byte is present in bit positions 0 to 7 of the shift register. The valid data
can, therefore, be passed to a FIFO (or the rest of the system directly) using a simple
multiplexer.

Some example code for this circuitry is given in the design files as mentioned below.

It should also be noted that there is no guarantee that the first few bits received will be correct,
as during this time the circuit will be "hunting" for the correct phase relationships. This applies
to the first eight bits received, after which data will be valid.

Metastability Since it is possible that the data will not properly change state between clock sample points,
there is a possibility of metastability. As the data transition approaches a sample point (in
example "A"), it will eventually end up inside the setup time to the clock CLK, causing one of
several outcomes to occur.

If the flip flop is fast enough to still see the zero, then A = 1 and B = C = D = 0, (i.e., case 1) and
all will work as previously described. If the flip flop does not see the zero and remains High,
then B = 1 and C = D = E = 0, (i.e., case 2) and again all will work properly.

Finally, the flip flop could briefly enter a metastable state. If this occurs, then the second
synchronizing flip flop will still "see" a 1 or 0 and will register that state, leading to the same
arguments as above. There is no problem as long as the load on the potentially metastable
flip flop is one, except when the metastable period is exactly equal to the input clock period.
However, this event is extremely unlikely with today’s very fast silicon, and even then, there are

Figure 5: Data Available Logic

USEA

USEB

USEC

USED

AZ(3)

BZ(3)

CZ(3)

DZ(3)

SDATA (1 down to 0)

DAV (1 down to 0)

x244_05_121401
XAPP224 (v2.0) January 30, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Data Recovery
R

three further registers in the data path. Therefore, the chance of a metastable event upsetting
the operation of the circuit is vanishingly small.

Lock
Requirements

The circuit has a lock requirement for a data transition to occur often enough to maintain data
integrity. At least one data transition is required in the time that the circuit takes to drift one-
quarter clock period. In the example in Figure 1, the data is arriving at 400 Mb/s, making one
data period approximately 2.500 ns. One-quarter period is then 0.625 ns. The local oscillator
frequency is 401 MHz; this equates to a period of 2.506 ns, making it (2.506 − 2.500) =
0.006 ns faster than the incoming data. The quarter period (0.625 ns) divided by 0.006 ns is
approximately 100. Therefore, the circuit requires at least one negative transition every 100
clock cycles to function correctly.

By reducing the local oscillator frequency to 400.5 MHz, the clock cycle requirement number is
increased to 200. If the received data is coded in some method such as 8b/10b, this will not be
a problem, because an adequate number of transitions will exist. Care should be taken if the
received data is a raw bitstream, because an adequate number of transitions may not exist. The
design has been successfully tested at 420 Mb/s using a 23-bit prbs data pattern on the LVDS
demo board that is using two separate oscillators for transmission and reception.

Simulation By definition, the circuit uses two asynchronous clock domains. Simulation provides setup time
violations and possible "X" propagation. This "X" propagation can be removed in MTI by using
the "vsim+no_notifier" command. The "X" propagation can be safely turned off due to the
arguments used in the metastability section.

Reference
Design Files

The reference design circuit is implemented in HDL. It is fully synthesizable. The reference
design files (xapp224.zip) include a top.ucf file, containing all the timing constraint information.
It is important to use this file, because some paths are very fast.

Conclusion Virtex devices can be used to extract data from a serial link at speeds up to 160 Mb/s in a
Virtex-E device and up to 420 Mb/s in a Virtex-II device.

Revision
History

The following table shows the revision history for this document

Date Version Revision

09/18/00 1.0 Initial Xilinx release.

01/10/01 1.1 Updated for Virtex-II series of FPGAs.

01/31/01 1.2 Edited Figures 1, 2, and 3, and added a Simulation section.

01/30/02 2.0 Circuit was redesigned to allow for slower and faster local oscillators.
6 www.xilinx.com XAPP224 (v2.0) January 30, 2002
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp
http://www.xilinx.com

	Summary
	Introduction
	Using the Received Data
	Metastability
	Lock Requirements
	Simulation
	Reference Design Files
	Conclusion
	Revision History

