
Summary The ANSI/SMPTE 259M-1997 standard specifies a serial digital interface (SDI) for digital video
equipment operating at either the 525-line, 60 Hz video standard or the 625-line, 50 Hz video
standard.[1] The SDI standard describes how to transport both composite and component
digital video over standard video coax. SDI is widely accepted and often forms the video
transportation "backbone" of television studios and broadcast centers.

The SDI standard can be broken down into three main functions: the encoder, the physical
layer, and the decoder. This is one in a series of application notes describing SDI
implementation in Xilinx FPGAs. Figure 1 shows the correlation between the various
application notes and the elements of the SDI link.

This application note focuses on the SDI decoder. The reference design includes several
implementations of the SDI decoder optimized for use with the Virtex™-II family and other
Xilinx family features. Both serial (bit-rate) and parallel (word-rate) implementations of the SDI
decoder are presented. Design examples are included to illustrate alternative solutions for
standard SDI decoder devices, the National CLC011 and the Cypress CY7C9335, by using the
decoder implementations developed in this application note.

SDI
Introduction

Digital Video Formats
The SDI standard describes how to transport standard definition digital video serially over a
video coax cable. This standard describes the encoding and decoding processes performed on
the video bitstream for transportation across the physical layer. The standard also describes
the electrical and mechanical characteristics of the physical layer. However, it does not define
the actual format of the digital video data. Refer to the following additional standards for the
definition of SDI compatible digital video formats:

• ANSI/SMPTE 125M, ANSI/SMPTE 267M, and ITU-R BT.601-5 for 4 x 3 and 16 x 9 aspect
ratio 4:2:2 component digital video [1][2]

• ANSI/SMPTE 244M for composite NTSC digital video [1]

• IEC 1179 (now called IEC 61179) for composite PAL digital video [3]

Application Note: MicroBlaze and Multimedia Development Board

XAPP288 (1.0) October 19, 2001

Serial Digital Interface (SDI)
Video Decoder
Author: John F. Snow

R

Figure 1: SDI Block Diagram and Application Notes

SDI
Preprocessor

XAPP299

Ancillary
Data

Digital
Video

SDI Video
Encoder

XAPP298

Test Pattern
Generator

XAPP248

SDI
Driver

XAPP247

SDI
Equalization

& CDR
XAPP247

SDI Video
Decoder

XAPP288

SDI
Postprocessor

XAPP299

Ancillary
Data

Digital
Video

Data

Clock

SDI
bitstream

x298_01_101901
XAPP288 (1.0) October 19, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Serial Digital Interface (SDI) Video Decoder
R

The SDI standard does not cover high-definition digital video. Another standard, SMPTE 292M,
defines a serial digital interface standard for high-definition digital video, commonly called
HD-SDI. The bandwidth requirements for high-definition video are significantly higher than for
standard definition video. Also, the HD-SDI standard differs from the SDI standard in the way
that the video components are interleaved. Because of these higher bandwidth requirements
and format differences, the implementation of a HD-SDI decoder has different considerations
than that of a standard definition SDI decoder and is not covered in this application note.

Any of the digital video formats supported by the SDI standard use either eight bits or ten bits
per data word. The SDI standard is natively a ten-bit format, but allows eight-bit video to be
transported across the interface.

Encoding and Decoding
Prior to sending digital video serially across the physical layer, a SDI transmitter must encode
the video in accordance with the SDI standard. This encoding process is designed to insure
that sufficient level transitions occur in the serial bitstream to allow the receiver to recover the
clock and data. After the receiver captures the serial data, the decoder must reverse the
encoding process to recover the original video data.

The SDI standard uses two generator polynomials, normally expressed as linear feedback shift
registers (LFSR), to implement two separate encoding stages. First, the video bitstream is
scrambled using the generator polynomial:

The output of this first encoding stage is referred to as the scrambled non-return-to-zero (NRZ)
bitstream.

The second encoding stage uses the generator polynomial:

to convert the scrambled NRZ bitstream to a polarity-free scrambled NRZ-inverted (NRZI)
bitstream. NRZI is DC balanced for transmission across the physical layer. If the bitstream is
inverted between the transmitter and the receiver, then the polarity-free nature of the SDI
bitstream allows the decoder to properly recover the original data.

The SDI decoder reverses the encoding process by using the same generator polynomials in
reverse order: G2 to convert from NRZI to NRZ and then G1 to descramble the bitstream.

Figure 2 illustrates the encoding and decoding processes when implemented in LFSRs. Using
standard LFSR notation, the circles with plus symbols inside are exclusive-OR gates. The
boxes represent individual flip-flops. The LSB of a data word is sent first.

Figure 2: Example SDI Encoder and Decoder Processes

G1 x() x
9

x
4

1+ +=

G2 x() x 1+=

Serial
Video In

SDI Scrambler

Encoded
Video In

SDI Descrambler

 G1(x) = x9 + x4 + 1

 G1(x) = x9 + x4 + 1 G2(x) = x + 1

 G2(x) = x + 1

Decoded
Video Out

Encoded
Video Out

x288_01_082001

+

+ +

+

+

+

2 www.xilinx.com XAPP288 (1.0) October 19, 2001
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Decoder
R

Framing
After decoding the video bitstream, the receiver determines where individual ten-bit words
begin and end in the serial bitstream for data-word extraction. This process is called framing. In
order to frame the bitstream, a unique and recognizable pattern must be sent periodically for
the framer to use as a framing reference.

All of the digital-video formats supported by SDI share similar definitions for the timing
reference signal (TRS) symbols. TRS symbols delineate between the active and inactive
portions of the video. There are two TRS symbols sent per line of video: one at the start of
active video called SAV, and one at the end of active video called EAV. A TRS symbol is sent as
four consecutive words, formatted as:

3ff 000 000 XYZ

The first word transmitted is hexadecimal 3ff and the last word is XYZ. The first three words of
the TRS symbol, called the preamble, form a unique bit sequence in the bitstream. The fourth
word, called XYZ, varies depending on the specific digital video format being transported.

Since the TRS preamble is common across all the supported digital video formats, is sent on a
regular basis, and is unique in the bitstream, it is used as the framing reference. Upon detecting
a sequence of ten consecutive ones and twenty consecutive zeros, the framer can determine
the proper boundaries of all subsequent data words in the bitstream.

SDI Bit Rates
The bit rates supported by SDI range from 143 Mb/s to 360 Mb/s, depending on the digital
video format being transported. The SDI standard defines four different bit rates and identifies
their "support levels" as shown in Table 1. SDI compliant equipment is not required to support
all bit rates. A piece of equipment supporting bit rates up to 270 Mb/s is said to conform to
ANSI/SMPTE 259M-ABC, meaning it supports levels A, B, and C.

Error Detection
The SDI standard does not mandate the use of an error detection mechanism. Some of the
digital video standards, SMPTE 125M for example, specify error detection bits in the XYZ word
of the TRS symbol to determine the validity of the TRS symbol. However, the SDI standard
highly recommends embedding error detection checkwords into the SDI video stream as
described in SMPTE RP 165-1994.

At the receiving end of the SDI link, checksums are generated for the incoming bitstream and
compared to the embedded checkwords. Error detection can only be done after the bitstream
is descrambled and framed. An optional error detection module can simply be bolted onto the
output of any of the framer modules described in this document. SDI error detection modules
are described in XAPP299: Serial Digital Interface (SDI) Ancillary Data and EDH Processors.[6]

Table 1: SDI Standard Bit Rates

Support Level Bit Rate Video Format Standard

Level A 143 Mb/s NTSC composite ANSI/SMPTE 244M-1995

Level B 177 Mb/s PAL composite IEC 61179

Level C 270 Mb/s 4 x 3
4:2:2 component

ANSI/SMPTE 125M-1995 and
ITU-R BT.601-5

Level D 360 Mb/s 16 x 9
4:2:2 component

ANSI/SMPTE 267M-1995 and
ITU-R BT.601-5
XAPP288 (1.0) October 19, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Decoder
R

Reference
Design

In the reference design available at ftp://ftp.xilinx.com/pub/applications/xapp/xapp288.zip,
the descrambler and framer functions are implemented as separate modules. Serial and
parallel implementations of both modules are provided.

Serial Descrambler Implementation: ser_descrambler.*
The descrambling process involves "division" of the incoming bitstream by the generator
polynomials. This can be implemented very simply by a LFSR configured as shown in the SDI
descrambler diagram in Figure 2, page 2. A serial implementation results in a very small
amount of hardware. However, a serial implementation of the descrambler must run at the full
bit rate of the SDI interface, up to 360 MHz. A serial implementation also requires the
availability of a bit-rate clock for the FPGA. By using Virtex-II devices, a serial descrambler can
be implemented to support SDI bit-rates up to 360 Mb/s.

The HDL files ser_descrambler.* contain direct implementations of the descrambler LFSR
described in Figure 2. As shown in Reference Design Results, this implementation occupies
eleven flip-flops and two LUTs for both Virtex-II and Spartan-II devices. In Virtex-II devices, the
serial descrambler runs fast enough to support the highest bit rate supported by the SDI
standard. In a Spartan-II device, it supports the 270 Mb/s rate.

It is also be possible to implement the LFSR using the SRL16 feature found in the Virtex
architecture. An SRL16-based implementation is smaller than the implementation presented
here, potentially about half the size. However, it is more difficult to get an SRL16-based
implementation to run at the highest SDI bit-rates.

The ser_descrambler module contains two control inputs, NRZI and DESC, to enable the
NRZI-to-NRZ conversion and the descrambler, respectively. These control signals allow the two
functions to be bypassed if the incoming data is non-SDI compliant. In normal SDI operation,
both inputs should be tied High.

Parallel Descrambler Implementation: par_descrambler.*
The descrambler function can also be implemented in a parallel manner, processing one ten-bit
word every clock cycle.This obviously requires more hardware but only needs to run at one-
tenth the bit rate of the SDI link.

In some situations it is advantageous to use a larger parallel descrambler implementation. The
FPGA could receive parallel data from some external SDI receiver device performing a serial-
to-parallel conversion of the data. It may also be more economical to use a parallel
implementation. Since the parallel descrambler only has to run at the word rate, lower
performance FPGAs can be used to support the highest SDI bit rates. An optimized parallel
descrambler is actually only about twice as much hardware as the serial descrambler described
in the previous section when implemented in a Xilinx FPGA.

A block diagram of the module described in the par_descrambler.* files is shown in Figure 3.
This module accepts a ten-bit input word and generates a ten-bit output word every clock cycle.
There is a one-clock cycle latency through the descrambler, caused by the output register.

The NRZI-to-NRZ converter is implemented as ten 2-input gates that XOR each bit with the bit
that preceded it in the bitstream. This requires the availability of eleven NRZI bits to generate
ten NRZ bits. The eleventh bit comes from storing the MSB of the input-data word in a register
making it available to be XORed with the LSB of the data word received in the next clock cycle.

Ten 3-input XOR gates form the SDI descrambler. These gates generate the ten descrambled
output bits by combining 19 bits from the NRZI-to-NRZ converter. Ten of the input bits are from
the current output of the NRZI-to-NRZ converter. The other nine-input bits were generated by
the NRZI-to-NRZ converter during the previous clock cycle and are stored in the desc_in
register.

As shown in Reference Design Results, this parallel descrambler turns out to be fairly small,
surprisingly only about twice the size of the serial descrambler, and runs well above the 36 MHz
clock rate required to support the highest SDI bit rate.
4 www.xilinx.com XAPP288 (1.0) October 19, 2001
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp288.zip
http://www.xilinx.com

Serial Digital Interface (SDI) Video Decoder
R

The parallel descrambler is implemented with a clock enable input called ld (Load). If ld is
asserted for one clock cycle out of every ten, the parallel descrambler can be clocked by the bit-
rate clock. If the parallel descrambler receives a word-rate clock, ld should be tied High.

Framer Implementation
The data stream coming out of the descrambler is unframed. There are no indications of where
the actual word boundaries occur in the data. If the framer is receiving ten-bit wide parallel data
words from the descrambler, the actual video word boundaries do not necessarily correspond
to the arbitrary word boundaries of the incoming data.

The framer must scan the unframed data stream for the 30-bit TRS preamble that consists of
ten consecutive "1" bits followed by twenty consecutive "0" bits. When a TRS preamble is
detected, the framer can resynchronize to the ten-bit word boundaries in the video stream in
order to generate properly framed video data words.

Most commercially available SDI framers allow control over whether the framer should
resynchronize if it receives a TRS at a new offset. Sometimes an error in the video bitstream
will cause a false TRS to be detected. It is also possible that a non-SDI standard compliant data
stream will occasionally be transmitted over a SDI link. In this case, the receiver must
temporarily disable resynchronization because the non-SDI data may contain bit sequences
falsely detected as TRS symbols. These false TRS symbols can be ignored or filtered if the
framer has an input to selectively control when resynchronization occurs.

The framer modules each have an input called frame_en to control automatic
resynchronization. If frame_en is Low, the framer will detect new TRS offsets but it will not
resynchronize, therefore subsequent data words output by the framer are potentially not framed
properly.

The framer module also has a new start position (nsp) output. This signal can also be
interpreted as an indication of the presence of a framing error. It will be asserted High when a
TRS is detected at an offset different from the current offset used by the framer. It will remain
asserted until the offset error is corrected by either receiving another TRS matching the offset
used by the framer, or by receiving another TRS when frame_en is asserted High.

There are several ways to use the nsp output and the frame_en input to control how and when
the framer modules respond to new TRS offsets:

1. If frame_en is tied High, the framer will always resynchronize to new TRS offsets.

2. If frame_en is tied Low, the framer will not resynchronize. This is primarily useful when the
receiver knows the data sent over the interface is non-SDI compliant data. This is generally
not useful without control logic to enable and disable the resynchronization at the
appropriate times.

3. If frame_en is tied to the nsp output of the framer, automatic filtering of TRS offsets will
occur. When a TRS symbol is detected that is at a new offset, nsp will be asserted High but
the framer will not change the offset until another TRS symbol is detected. This filters out
one-time TRS offset errors.

Figure 3: Parallel Descrambler Block Diagram

Encoded
Video In

Prev
d9

[10:1]

[9:0]

desc
in

reg
11 19

18
13

9

9
4
0

Ten XOR Gates

out
reg

10 Decoded
Video Out

10

NRZI-to-NRZ Descrambler

SMPTE 259M-1997 Parallel Descrambler

10

MSB
Only

[9:1]

x288_02_092001
XAPP288 (1.0) October 19, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Decoder
R

4. More sophisticated TRS offset filtering algorithms can be implemented by designing a state
machine to monitor the nsp output and control frame_en.

During the time that the four words of the TRS symbol are present on the output, the framer
module generates an asserted High trs output. The trs output is asserted High even if
automatic resynchronization has been disabled (frame_en Low) and the TRS is at a new offset.
In this case, trs is asserted, but the TRS symbol coming out of the framer will not be properly
framed. If it is desired that trs only be asserted when framed TRS symbols are output, it is a
simple matter to use nsp to qualify the trs output.

The framer modules generate ten-bit words. If eight-bit video is being sent through the SDI link,
then use only the eight MSBs of the framer module output port.

As with the descrambler function, the framer function can be implemented both in a serial
manner and in parallel. The same trade-offs apply. A serial framer will be smaller but must run
at the bit rate. A parallel framer will be larger but only needs to run at one-tenth the bit rate.

Serial Framer: ser_framer.*

The block diagram of the serial framer implementation is shown in Figure 4. The incoming
video bitstream passes through a series of shift registers that, when combined, delay the video
bitstream by 32-clock cycles. These shift registers are the three registers located along the top
of Figure 4. The 32-bit delay generated by these video shift registers allows the TRS detection
logic to examine 30 consecutive bits for a TRS symbol and determine if the framer needs to be
resynchronized before any of those bits appear on the output port.

To detect a TRS preamble, a ten-bit wide AND gate and a ten-bit wide NOR gate determine if
the contents of the trs_detect register contains all zeros or all ones. The output of the AND gate
(all_ones) is delayed through a 20-bit long shift register (ones_reg). The output of the NOR gate
(all_zeros) is delayed through a ten-bit long shift register (zeros_reg). By ANDing together the
output of the ones_reg, zeros_reg and the all_zeros signal, a trs_detected signal is generated
to only be asserted when the TRS preamble is contained in the video shift registers.

The offset logic block contains a ten-bit ring counter called bit_cntr. This counter is reset to its
starting count when the framer resynchronizes. Otherwise, it causes the out_reg to load the ten
bits contained in the des_reg once every ten clock cycles.

The offset logic block generates the trs, nsp, and out_rdy outputs. The out_rdy signal is
asserted for one clock cycle when the out_reg is reloaded. This signal is generated by
assigning it to one of the bits of the bit_cntr. If downstream logic requires more setup time, the
clock cycle when out_rdy is asserted can easily be changed by changing the bit_cntr bit
assigned to out_rdy.

Figure 4: Serial Framer Block Diagram

Video In

10-bit Shift Register

10

trs_detect Register

12-bit Shift Register

Delay Register

10-bit Shift Register

Deserializer
 Register

Video Out
10

1010

ones_reg

20-bit Shift Register

10-bit Shift Register

zeros_reg

all_ones

all_zeros

out_rdy
trs
nsp

Output
Register

ld

Offset
Logic

frame_en

SMPTE 259M-1997 Serial Framer Module

trs_detected

x288_03_082301
6 www.xilinx.com XAPP288 (1.0) October 19, 2001
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Decoder
R

Two slightly different implementations of this serial framer are provided. The ser_framer.* files
are coded to cause the synthesis tool to infer flip-flops for all the shift registers in the module.
This results in the best performance and, as can be seen from Reference Design Results, it
runs at over 400 MHz in a Virtex-II device, sufficient to support the highest bit rates of the SDI
specification.

A more compact, but potentially lower performance, implementation is provided in the
ser_framer_srl16.* files. This version codes the delay_reg, ones_reg, and zeros_reg as arrays,
allowing most synthesis tools to infer SRL16 blocks for these registers. This results in a
significant reduction in the size of the module (Reference Design Results), but may not
always produce the fastest results.

Parallel Framer: par_framer.*

Figure 5 shows a block diagram of a parallel implementation of a framer. The par_framer.* files
contain the HDL descriptions of the parallel framer module.

The parallel framer accepts ten-bit unframed data words. It looks for 30-bit TRS preambles that
can begin at any of the ten bits in the input word and can span from the first word through the
next two or three words. The TRS detection logic needs to look across a total of 39 bits to
determine if a TRS symbol is present and to determine its offset.

The incoming data is pipelined through three cascaded registers called in1_reg, in2_reg, and
in3_reg. The 30 bits from these three registers plus the nine LSBs from the input port form the
39-bit wide vector that the TRS detection logic examines.

A series of ten-bit wide AND and NOR gates examine the 39-bit input vector to determine if a
TRS symbol is present. If so, an internal trs_detected signal is asserted, and the offset of the
TRS symbol is determined. The offset encoder produces a numerical offset value indicating the
starting bit position of the TRS symbol. The output of the offset encoder is compared to the
current offset value stored in the offset register to determine if the newly detected TRS symbol
is at a different offset position. The nsp logic uses the output of the comparator to generate the
nsp signal and to load the offset register from the output of the offset encoder when
resynchronization occurs. The offset register controls a barrel shifter that extracts the ten-bit
output word from a 19-bit wide piece of the input video stream.

As shown in Reference Design Results, the parallel framer is fast enough to support all bit
rates of the SDI standard.

It is tempting to try to reduce the number of 10-bit wide NOR gates from twenty to ten by using
one set of ten gates sequentially. This technique was explored and found to produce about the
same size result. With some synthesis tools it actually produced a much larger implementation.

The parallel framer uses a barrel shifter to extract the framed data from the bitstream. In the
original Verilog code, this was implemented with a simple assignment statement using the right
shift operator. This produced widely varied results with different synthesis tools. The barrel
shifter was subsequently re-coded with two levels of multiplexers. This produces good results in
all synthesis tools and in both Verilog and VHDL.

When using Virtex-II technology, it is possible to use an embedded 18 x 18 multiplier to
implement most of the barrel shifter.[4] The files par_framer_mult.* use one 18 x 18 embedded
multiplier to generate the nine LSBs of the multiplier. A 10-to-1 MUX to is used to generate the
tenth bit of the barrel shifter. If it is a Virtex-II design and a free multiplier is available, then using
the embedded multiplier results in significant savings in the number of LUTs required to
implement the parallel framer module.
XAPP288 (1.0) October 19, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Decoder
R

CLC011 Example: An Alternative Solution
The National CLC011 Serial Digital Video Decoder is a serial implementation of an SDI
decoder. It accepts a serial bitstream and a bit-rate clock and produces 10-bit-wide data words
on its output.

Using the ser_descrambler and ser_framer modules, it is easy to implement an alternative to
the CLC011 using Xilinx FPGAs. The inputs and outputs of these two modules are very similar
in function to the corresponding signals on the CLC011. However, the CLC011 provides two
output signals that are not generated by the ser_framer module: PCLK and EAV.

PCLK is used to indicate to downstream logic that data is valid on the PD outputs. The
ser_framer generates an out_rdy signal that is similar to PCLK but does not have a 50% duty
cycle. The out_rdy signal is better suited if the downstream logic is in the same FPGA as
ser_framer since it can be used as a clock enable signal. If a true PCLK signal is required, it is
quite simple to modify the ser_framer to generate a PCLK signal using the bit_cntr.

The EAV (end of active video) output is asserted Low during the time that the fourth word of a
TRS symbol is present on the outputs and bit six (the H bit) of that word is Low.

The framer_X011 module generates both the PCLK and EAV outputs. The combination of the
ser_descrambler module and the framer_X011 module completes an alternative
implementation of a CLC011.The file X011.* contains the top level HDL descriptions.

CY7C9335 Example: An Alternative Solution
The Cypress CY7C9335 SMPTE 259M/DVB-ASI Descrambler/Framer-Controller is a parallel
implementation of a SDI decoder. It accepts a ten-bit scrambled video word and generates a
ten-bit descrambled and framed video word every clock cycle. The par_descrambler and
par_framer modules plus a small amount of extra logic supplies most of the functionality of the
CY7C9335. The X7C9335.* files contain HDL descriptions of the X7C9335 design shown in
Figure 6.

The CY7C9335 is designed to operate in two modes, an SDI compliant mode and a DVB-ASI
mode when used in conjunction with a Cypress CY7B9334 receiver. The CY7B9334 receiver
takes in the serial bitstream, does clock and data recovery, and deserializes the bit-stream
before sending it to the CY7C9335 decoder.

Figure 5: SMPTE 259M-1997 Parallel Framer Block Diagram

in1
reg

in2
reg

in3
reg

Video
In

Video
Out

barrel
in reg

offset
encoder

offset
reg

x288_04_101501

new_offset

10 10barrel
shifter

10

9

19

nsp logic

=

trs_error

frame_entrs_detected

trs reg &
logic trs

nsp

ld

TRS Detector

9 LSBs 10 10 10
8 www.xilinx.com XAPP288 (1.0) October 19, 2001
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Decoder
R

In the DVB-ASI mode, the SDI decoder (both the descrambler and the framer functions) are
effectively bypassed and the CY7C9335 simply passes the incoming data straight through to its
outputs. In this case, the CY7B9334 implements 8B/10B decoding as defined in the DVB-ASI
standard. An input signal called DVB_EN puts the CY7C9335 into DVB-ASI mode. The
CY7C9335 will also bypass the SDI decoding if the BYPASS input is High and DVB_EN is Low.
A multiplexer prior to the output register implements the bypass functionality controlled by
DVB_EN and BYPASS.

The input and output signals of the X7C9335 are similar in function to the signals of the
CY7C9335. The following paragraphs describe these signals.

The X7C9335 has an input to control how framer resynchronization occurs. This signal, called
sync_en, will force the X7C9335 to always resynchronize (sync_en Low) or to filter out single
erroneous TRS symbols (sync_en High).

The CY7C9335 has an output called RF that is designed to connect to the CY7B9334. This
output is the inverted and registered DVB_EN input. The X7C9335 replicates this signal with its
rf output.

The X7C9335 has a horizontal sync output signal called h_sync. This signal toggles states
every time a TRS symbol is detected by the framer. If sync filtering is enabled (sync_en High),
h_sync still toggles even if the detected TRS symbol is at a new offset position. If the dvb_en
input is low, h_sync will not toggle.

The X7C9335 has a synchronization error output signal called sync_err. If TRS filtering is
enabled (sync_en High), this signal will pulse High for one (word-rate) clock cycle when the
framer filters out a TRS symbol that is offset from the current framer reference.

The CY7C9335 contains a DVB-ASI mode state machine. This state machine generates an
output called A/B used to control the CY7B9335 device. The purpose of this signal is to cause
the CY7B9335 to invert the DVB-ASI data stream if too many errors occur. If DVB-ASI data
streams are routed through SDI switches or repeaters, they can become inverted and can not
be decoded by the CY7B9335’s 8B/10B decoder. By examining the data stream for errors, the
state machine will toggle the A/B signal if too many errors are detected in order to try and
compensate for an inversion in the data stream. This A/B output and state machine have not
been implemented in the X7C9335 design.

Reference Design Results
The Table 2 shows the results after place and route of the various modules implemented in this
application note. All results were obtained using the Verilog versions with Xilinx ISE version
3.3i. Results using the VHDL files are not shown but are essentially identical. Virtex-II results
are for a -5 speed grade device. Spartan-II results are for a -6 speed grade device.

Figure 6: X7C9335 Block Diagram

Input
Register

D
10

sync_en
bypass
dvb_en

sync_en_q
bypass_q
dvb_en_q

SMPTE 259M
Descrambler

SMPTE 259M
FramerD Q D Q

trs

nsp
frame_en

Delay
Register

Output
Register

ckr

Bypass
Control

pd
10

h_sync

sync_err

x288_05_091701
XAPP288 (1.0) October 19, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Decoder
R

Testing
The best way to test the SDI decoder modules is in a test bench, connecting to an SDI encoder
module being driven by a video generator. The Xilinx application note XAPP298: Serial Digital
Interface (SDI) Video Encoder and Test Generator [5]describes not only the design of a SDI
encoder module, but also details the implementation of the test bench to test the decoder
modules implemented in this application note.

Conclusion Xilinx FPGAs can implement an SDI decoder function thus replacing costly external
components. The Virtex-II devices are fast enough to implement an SDI standard decoder in a
serial fashion thus producing a very compact implementation running at the full 360 Mb/s rate.
Parallel implementations of the SDI decoder are also possible. These parallel implementations
will be somewhat larger, but only need to run at one-tenth the bit rate of the SDI link.

References 1. All the SMPTE standards referenced in this application note are available from The Society
of Motion Picture and Television Engineers. These standards can be purchased at the
SMPTE web site: http://www.smpte.org.

2. The ITU-R BT.601-5 standard can be purchased from the International Telecommunication
Union at http://www.itu.int/itudoc/itu-r/rec/bt/.

3. The IEC 1179 standard is now called the IEC 61179 standard and can be purchased from
the International Electrotechnical Commission at http://www.iec.ch/webstore.

4. Xilinx application note XAPP195: Implementing Barrel Shifters Using Multipliers by Paul
Glover.

5. Xilinx application note XAPP298: MicroBlaze and Multimedia Development Board: Serial
Digital Interface (SDI) Video Encoder and Test Generator by John F. Snow.

6. Xilinx application note XAPP299: MicroBlaze and Multimedia Development Board: Serial
Digital Interface (SDI) Ancillary Data and EDH Processors by John F. Snow.

Table 2: Design Results

File

XST

Size in LUTs/FFs Virtex-II Speed Spartan-II Speed

ser_descrambler.v 2/11 490 MHz 300 MHz

par_descrambler.v 19/20 440 MHz 260 MHz

ser_framer.v 19/91 380 MHz 300 MHz

ser_framer_srl16.v 23/53 355 MHz 300 MHz

par_framer.v 84/49 100 MHz 80 MHz

par_framer_mult.v 51/55 85 Mhz NA1

X011.v 24/103 390 MHz 300 MHz

X7C9335.v 115/106 100 MHz 75 MHz

Notes:
1. par_framer_mult is applicable only to Virtex-II devices since it uses an embedded 18 x 18

multiplier.
10 www.xilinx.com XAPP288 (1.0) October 19, 2001
1-800-255-7778

http://www.xilinx.com
http://www.smpte.org
http://www.itu.int/itudoc/itu-r/rec/bt/
http://www.iec.ch/webstore

Serial Digital Interface (SDI) Video Decoder
R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

10/19/01 1.0 Initial Xilinx release.
XAPP288 (1.0) October 19, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

	Summary
	SDI Introduction
	Digital Video Formats
	Encoding and Decoding
	Framing
	SDI Bit Rates
	Error Detection

	Reference Design
	Serial Descrambler Implementation: ser_descrambler.*
	Parallel Descrambler Implementation: par_descrambler.*
	Framer Implementation
	Serial Framer: ser_framer.*
	Parallel Framer: par_framer.*

	CLC011 Example: An Alternative Solution
	CY7C9335 Example: An Alternative Solution
	Reference Design Results
	Testing

	Conclusion
	References
	Revision History

