
Summary This application note provides an overview of the files that are generated from the Xilinx CORE
Generator™ 3.1i for an HDL project and explains how and when each file is used. This
application note briefly explains how to create simulator libraries, map the created libraries, and
how to compile the XilinxCoreLib CORE Generator libraries to these user created libraries for
the supported simulators. Also explained in this document is:

• The methodology for declaring and instantiating a CORE Generator macro, and different
methodologies for simulating the macros

• How to load the design into the simulator

• How to run a functional and timing simulation

• How to download IP updates from the Xilinx website

• How to install the updates on the user's system

To obtain the VHDL code described in this document, go to section VHDL Disclaimer and
Download Instructions, page 19 for instructions.

When using a Xilinx CORE Generator macro in the VHDL design, there are some basic steps
to include the macro in the VHDL design.

1. Run the CORE Generator to create the macro of choice

2. Black box the CORE Generator module:

- Use the VHO template for the component declaration (See Instantiating a CORE
Generator Macro, page 5)

- Use the VHO template for the component instantiation (See Instantiating a CORE
Generator Macro, page 5)

3. Synthesize the design

4. Run the Xilinx implementation

Optional steps to run a functional simulation (in addition to the above steps):

1. Compile the Xilinx CORE Generator Libraries (See Compiling the CORE Generator
Libraries, page 3)

2. Select and use a Configuration methodology in order to bind the component parameters
selected with the precompiled model. A Configuration Declaration or a Configuration
Specification methodology can be used. Use the VHO for the configuration template (See
Using Configurations for Simulation, page 8)

3. Run the functional simulation. (See Running a Functional Simulation, page 15)

Note: For Timing simulation, SIMPRIM libraries are used and no configurations are needed for
simulation. (See Running a Timing Simulation, page 17)

The remainder of this application note describes the input/output files, steps needed to
instantiate a CORE Generator macro and simulate it (functional and timing), and downloading
IP Updates.

Application Note: FPGAs

XAPP409 (v1.0) June 11, 2001

Simulating a Xilinx 3.1i CORE Generator
VHDL Design

R

XAPP409 (v1.0) June 11, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

Input/Output
Files

This section describes the input/output files for a created project and also the input/output files
to the CORE Generator system.

Project Input Files

Project Input Files Description:

.COE ASCII data file. Defines the coefficient values for FIR Filters and initialization values for
memory modules such as single/dual port RAM and ROM. See $XILINX/coregen/data
for sample .COE files.

.XCO CORE Generator file containing the parameters used for regenerating a core. It can
also be used as a logfile to determine the settings used to generate a particular core.
This file is generated by the CORE Generator System along with any core that it
creates in the current project directory. For details on the .xco file refer to the “XCO
Files” section of the CORE Generator System User Guide 3.1i.

Project Output Files Overview
The .VEO and .VHO template files are for users to use to instantiate the cores into there
existing HDL files. They are not used for implementation nor simulation directly.

The EDIF .EDN file is used for implementation only. The Xilinx implementation tool (NGDBuild)
will pull this file in during the translate step, along with the other EDIF files for the entire design.

The .MIF file created by CORE Generator is used for simulation purposes only, and is
generated from the .COE file. For distributed memory, the .MIF gets generated with initial
default values when values are not specified.

Project Output Files

Project Output Files Description:

.EDN EDIF Implementation Netlist for the core. Describes how the CORE is to be
implemented. Used as input to the Xilinx Implementation Tools (NGDBuild).

.VEO Verilog Template file. The components in this file can be used as a guide to creating the
core’s Verilog instantiation and passing parameters to a Verilog behavioral model. For
more details refer to the “Using the CORE Generator Verilog Design Flow Procedure”
of the CORE Generator System User Guide 3.1i.

.VHO VHDL Template file. The components in this file can be used to instantiate a core and
to pass parameters to the VHDL behavioral model via a configuration declaration. For
more details, refer to the section “Using the CORE Generator VHDL Design Flow
Procedure” of the CORE Generator System User Guide 3.1i.

.MIF Memory Initialization File which is automatically generated by the CORE Generator
System for Virtex Block RAM modules when an HDL simulation flow is specified. A
.MIF data file is used to specify the initialization values for the Block RAM modules
during HDL functional simulation. To generate a MIF file you must direct CORE

Coefficients Parameter file

Verilog .COE .XCO

VHDL .COE .XCO

Implementation Template
Memory

Init
COREGen

Log Coefficients
Project

File

Verilog .EDN .VEO .MIF .LOG .COE .PRJ

VHDL .EDN .VHO .MIF .LOG .COE .PRJ
2 www.xilinx.com XAPP409 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

Generator System to generate an EDIF Implementation Netlist and specify either a
Verilog or a VHDL Behavioral Simulation output.

.PRJ The coregen.prj file contains a record of all installed COREs and their available
versions. When a new project is created where all the options are chosen for the
particular project the coregen.prj file is created. A link to the new project is also written
to the known.prj file found in the $XILINX/coregen/preferences directory. This will allow
users to load a previously created project from the CORE Generator GUI.

System Input/Output Files
The following files are defaultly located in the $XILINX/vhdl/src/XilinxCoreLib directory, except
for the get_models.log file which is located in the $XILINX/vhdl/src directory. If you manually
run get_models then the files will be located in the destination directory (get_models –dest
path_to_directory), that you specify.

Note: If get_models is run manually and a destination directory is not specified, it will default to
extract the files to the $XILINX/vhdl/src/XilinxCoreLib directory.

get_models.log

Log file containing all user visible messages displayed during a get_models run. The log
file is written to the get_models destination directory.

verilog_analyze_order

This file lists the CORE Generator Verilog behavioral models in a suggested compilation
order before performing a behavioral simulation in a compiled simulator. This applies to
compiled Verilog simulators only, for example, Cadence NC-Verilog, MTI Verilog, and
Synopsys VCS.

vhdl_analyze_order

This file lists the CORE Generator VHDL behavioral models in the order that they must be
compiled for simulation. More than one compile order may be valid for the library.

XilinxCoreLib/*.v

Verilog behavioral models extracted from the IP installed in the CORE Generator tree.

XilinxCoreLib/*.vhd

VHDL behavioral models extracted from the IP installed in the CORE Generator tree.

XilinxCoreLib/*_comp.vhd

VHDL component declaration files for each CORE Generator IP module extracted from the
CORE Generator.

Compiling the
CORE
Generator
Libraries

This section will describe how to create a library, map the library, and compile the XilinxCoreLib
CORE Generator libraries to the created library.

Note: “$XILINX/vhdl/src/XilinxCoreLib” is the location where the XilinxCoreLib VHDL uncompiled
libraries are located. get_models can still be run to extract all the files to a destination of choice, and
compile the extracted models.

Note: The Xilinx 3.1i VHDL libraries are VHDL87 compliant.

MTI — VHDL
The following will pertain to ModelSim PE, EE, and SE. For ModelSim XE users, the CORE
Generator libraries will be provided in precompiled format. If an IP Update has been
downloaded and ModelSim XE is being used, the precompiled CORE Generator IP Update
libraries will also need to be downloaded.

NOTE: For more information on compiling the Xilinx libraries (UNISIM, SIMPRIMS, etc.) refer to
http://support.xilinx.com/techdocs/2561.htm
XAPP409 (v1.0) June 11, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/techdocs/2561.htm

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

The Modelsim XE precompiled libraries can be downloaded from:

http://support.xilinx.com/support/mxelibs.htm

For information on how to compile the Xilinx CORE Generator libraries, refer to
http://support.xilinx.com/techdocs/8066.htm. This solution also has a link to TCL scripts that
can be run from within MTI to compile the CORE Generator libraries.

1. Creating the library named “xilinxcorelib”. For VHDL, the library name must be xilinxcorelib,
as this is the library referenced in the .VHO template file.

vlib xilinxcorelib

2. Mapping the library such that the modelsim.ini is updated and ModelSim can identify the
library.

vmap xilinxcorelib complete/path/to/xilinxcorelib

Note: If using the MODELSIM environment variable to point to a modelsim.ini, the user will need to
make sure that write permissions are open to that particular modelsim.ini file. If not, the user will have
to copy the modelsim.ini file to the local project directory, unset the MODELSIM variable, then run the
vmap command.

3. Compiling the XilinxCoreLib libraries

The vhdl_analyze_order file can be referenced for the order of compilation, located at
$XILINX/vhdl/src/XilinxCoreLib/vhdl_analyze_order. This file is updated with every IP
Update installed. This file can also be copied locally and modified to compile each line (vhdl
file) in the file individually, but then the entire file can be executed all at once. The command
would be similar to the following and would have to be added in front of every filename in
the vhdl_analyze_order file:

Vcom –work xilinxcorelib
$XILINX/vhdl/src/XilinxCoreLib/filename.vhd

Since there are a number of files that must be compiled, it is recommended to copy the
vhdl_analyze_order file locally and add the above command to each line, instead of
running the command manually for each file listed in the analyze_order file. Once this file is
updated, save the file with a “.do” file extension. Then from ModelSim, execute the file by
either running from the MTI command line “do analyze_order.do”, or from the pulldown
menu Macro Å Execute Macro and chose the file analyze_order.do.

VSS
To run simulation with VSS, the libraries must be precompiled and the CORE Generator
libraries must be compiled by doing the following:

1. Create the physical library by creating a directory.

mkdir xilinxcorelib

2. Map the created physical library to a library named “xilinxcorelib” in the
.synopsys_vss.setup file.

Example:

xilinxcorelib : <path_to_directory>/xilinxcorelib

The .synopsys_vss.setup needs to be in the same directory as where vhdlan is being run.

The .synopsys_vss.setup must contain at least the following:

TIMEBASE = PS

 WORK > DEFAULT

 DEFAULT : .

 xilinxcorelib : <path_to_directory>/xilinxcorelib
4 www.xilinx.com XAPP409 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/support/mxelibs.htm
http://support.xilinx.com/techdocs/8066.htm

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

 -- VHDL library to UNIX dir mappings --

 SYNOPSYS : $SYNOPSYS/packages/synopsys/lib

 IEEE : $SYNOPSYS/packages/IEEE/lib

Note: Declare a working directory called xilinxcorelib to which the CORE Generator models will be
compiled.

Note: An example .synopsys_vss.setup file is located at:

$XILINX/synopsys/examples/template.synopsys_vss.setup

3. Compile the XilinxCoreLib libraries.

The vhdl_analyze_order file can be referenced for the order of compilation, located at
$XILINX/vhdl/src/XilinxCoreLib/vhdl_analyze_order. This file is updated with every IP
Update installed. This file can also be copied locally and modified to compile each line (vhdl
file) in the file individually, but then the entire file can be executed all at once. The command
would be similar to the following and would have to be added in front of every filename in
the vhdl_analyze_order file:

vhdlan -i -w xilinxcorelib
$XILINX/vhdl/src/XilinxCoreLib/<filename>.vhd

Since there are a number of files that must be compiled, it is recommended to copy the
vhdl_analyze_order file locally and add the above command to each line, instead of
running the command manually for each file listed in the analyze_order file.

See http://support.xilinx.com/techdocs/9755.htm for more information on compiling the
Xilinx libraries (UNISIM, SIMPRIMS, etc.).

Instantiating a
CORE
Generator
Macro

This section describes how to use the VHO template to cut and paste into existing VHDL files.

The design example used will have a CORE Generator macro down two levels in the hierarchy
to illustrate how parameters are passed to the macros for functional simulation. The
RAMB4_S16_S16 component is a 4096-bit dual-ported dedicated random access memory
blocks with synchronous write capability. Each port is independent of the other while accessing
the same set of 4096 memory cells. This example will not exercise the entire depth of the
block RAM, but will be generating a 512-bit memory image.

The top-level instantiates a macro or second level, and the second level instantiates the CORE
Generator macro.
XAPP409 (v1.0) June 11, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/techdocs/9755.htm

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

In the testbench (tb.vhd), stimulus generation and response checking is done entirely in the
code. Verifying results behaviorally is very efficient for simulation. If the design is not working
properly, error messages are displayed as part of the text output.

VHDL
This section first describes how to use the VHO template to instantiate the core. Separate
sections will explain how to use Configuration Declarations or Configuration Specifications to
configure the CORE Generator core for simulation.

VHO file (Generated by CORE Generator)

The VHDL VHO template file can be used to cut and paste the library declaration, module
declaration and instantiation, configuration declaration (to pass parameters to the simulation
model), and example configuration declarations.

Top.vhd (Top-level that Instantiates the second level)

For this example, only the second level of hiearchy will be instantiated and bidirectional bus will
be created. It is not necessary to cut and paste from the VHO into this file.

App Note Example for top.vhd:

The top level entity architecture pair is shown below.

Entity top is
…
end;

architecture struct of top is
 component level2 is

(…
);

 end component;
6 www.xilinx.com XAPP409 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

begin
 U0 : level2 port map
(…
);
 …
end struct;

Level2.vhd (second level of hierarchy that contains a CORE Generator macro)

The CORE Generator macro will be instantiated as a black-box in the VHDL code. Because of
the "black-box" in the VHDL code, there will be a component declaration as well as a
component instantiation in the HDL. For simulation, use a precompiled xilinxcorelib library,
which will require a library declaration, and use a configuration declaration or specification to
pass the appropriate parameters to the simulation model.

Library Declaration

For VHDL, declare the XilinxCoreLib library in the VHDL file that instantiates the CORE
Generator macro. The CORE Generator macro is used for the simulator compiler since a
precompiled CORE Generator simulation model (xilinxcorelib) is used to simulate the macro.
The following can be added to the VHDL code that instantiates the macro.

-- synopsys translate_off

Library XilinxCoreLib;

-- synopsys translate_on

Component Declaration

The following section from the VHO file is used for the component declaration for the CORE
Generator macro in the VHDL file. The component declaration must appear in the VHDL files
architecture header, (before the architectures "BEGIN" statement).

component core32x16
port (
addra: IN std_logic_VECTOR(4 downto 0);
clka: IN std_logic;
addrb: IN std_logic_VECTOR(4 downto 0);
clkb: IN std_logic;
dia: IN std_logic_VECTOR(15 downto 0);
wea: IN std_logic;
dib: IN std_logic_VECTOR(15 downto 0);
web: IN std_logic;
ena: IN std_logic;
enb: IN std_logic;
rsta: IN std_logic;
rstb: IN std_logic;
doa: OUT std_logic_VECTOR(15 downto 0);
dob: OUT std_logic_VECTOR(15 downto 0));

end component;

Component Instantiation

The following section from the VHO file is used for instantiating the CORE Generator macro
into the VHDL file. The component declaration must appear in the VHDL files architecture body
(after the architectures "BEGIN" statement). Change the instance name and the port
connections to their own signal names.

your_instance_name : core32x16
port map (
addra => addra,
XAPP409 (v1.0) June 11, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

clka => clka,
addrb => addrb,
clkb => clkb,
dia => dia,
wea => wea,
dib => dib,
web => web,
ena => ena,
enb => enb,
rsta => rsta,
rstb => rstb,
doa => doa,
dob => dob);

App Note Example for level2.vhd:

The second level (level2) of hierarchy in the design entity architecture pair and CORE
Generator instantiation (core32x16) are shown below.

Entity level2 is
…
end;

Archtitecture struct of level2 is

 Component core32x16 port
 (…
);
 end component;

Begin
U0 : core32x16 port map (…);
…
end struct;

Tb.vhd (Testbench)

The testbench can be the same for a “top level configuration” or with a “lower-level
configuration”. The only difference is that with a lower level configuration methodology, there
will be a configuration on each level of hierarchy all the way down to the level that contains the
CORE generator macro, as opposed to having just one configuration at the top-level.

This testbench is only an example and will not fully stimulate the CORE Generator macro.

Using
Configurations
for Simulation

There are three methods to bind the simulation model to the component instantiation in order to
simulate a CORE Generator macro.

1. Declared from the top-level and used to configure a coregen macro that is buried in
hierarchy using a series of “For” statements to traverse the hierarchy.

2. The Configuration Declaration for the CORE Generator macro can be at the lower-level
where the macro is at, and a Configuration Declaration is declared at this level.

The next level up in the hierarchy will have to have a configuration declaration pointing to the
lower-level hierarchy configuration. The next level of hierarchy up from this will have to have a
Configuration Declaration pointing to this levels configuration, and so on.

3. Use a Configuration Specification. This method uses a separate file used for simulation
only that maps all the core parameters to the simulation model.

There are some advantages and disadvantages to using the different methods described
above. Using Configuration Declarations, either a top-level or lower level, make sure to simulate
8 www.xilinx.com XAPP409 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

on the configuration, or else the parameters for the CORE Generator macros will not be
mapped or bound. When compiling the file that instantiates the CORE Generator module, there
will be warnings about an unbound instance, since the model for the macro has been
precompiled, and gets mapped in the configuration which must be compiled last.

One advantage to using the lower level configuration, since there is a configuration on each
level of hierarchy above it, is that it will allow a simulation to take place at any level in the
hierarchy, as long the simulation is run on the configuration at that particular level. As opposed
to the top-level configuration, the configuration would have to be modified to simulate at a
particular point in the hierarchy. Another disadvantage to using configuration declarations is
that they are used for functional simulation only.

For a functional simulation, simulate on the configuration and on the back-end for timing
simulation while running the simulation on the testbench entity/architecture. A testbench that
contains the configuration (from the functional simulation) can be used for a timing simulation.
The simulation must take place on the entity/architecture and not on the configuration. Anytime
the configuration changes using a top-level configuration, only the file (or testbench depending
on where the configuration is), will have to be recompiled. If the testbench is large, have the
configuration in a separate file. When using a lower-level configuration, the file that contains the
configuration will have to be recompiled, which could be a disadvantage if that particular VHDL
is large.

The configuration specification method allows simulation using the same testbench in the front
and back-end. There will be no warnings about unbound instances since the (simulation only)
macro file will be compiled first. Also the user will not have to keep track of all the entity-
architecture pairs in the design hierarchy, as when using a top-level or lower level configuration
declaration style. When using this method, anytime the configuration changes the
entity/architecture will have to be recompiled to realize the changes. The advantage is that this
file will only contain the configuration parameters, and will be relatively small. The following
section describes the different methods for configurations.

Using a Top-level Configuration Declaration
Use a top-level Configuration Declartion when the Configuration Declaration is at the very top
level (from the simulation stand-point), such as in the testbench. The configuration can also be
in its own file, which can then be used for functional simulation. In doing this when running a
timing simulation, the configuration will not have to be compiled, and the testbench can then still
be used.

The entire hierarchy can be configured from a single declaration as in the following syntax:

Configuration config_name of entity_name is
 For architecture_name

For instance_label:component_name
 Use entity
 Library_name.entity_name(architecture_name);
For arch_name
 …
 lower-level configurations
 …
end for;

 end for;
 end for;
end config_name;

Note: In the statement "use configuration library_name.entity_name", note that the library_name is
going to be the name of the library that is being compiled to that particular VHDL file. Commonly used
is the library "work".
XAPP409 (v1.0) June 11, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

Cfg.vhd (Configuration Declaration in a single file)

The Configuration Declaration can be in the testbench file. For this example, the configuration
is put into its own file. When in its own file (for the backend timing simulation when the
testbench is compiled), the configuration will not show up as a component since it will not be
compiled.

When writing a top-level single configuration, keep track of the entity/architecture pairs and the
component/s that are being configured in the configuration throughout the hierarchy that is
being traversed.

App Note Example for cfg_top.vhd (complete configuration example):

The design entity/architecture pairs and component instantiations are shown below and include
the testbench entity/architecture pair. The tb.vhd file instantiates top.vhd.

Note: The actual configuration can be in the testbench or in a separate file, but must configure the
testbench entity/architecture pair.

The resulting configuration for the above example is shown below (in a separate file from the
testbench):

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

Library XilinxCoreLib;

configuration cfg_top_lvl_config of bram32x16_tb is
for tb
 for uut: top use entity work.top(struct);
 for struct
 for U0 : level2 use entity work.level2(struct);
10 www.xilinx.com XAPP409 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

 for struct
 for all : core32x16 use entity \
 XilinxCoreLib.C_MEM_DP_BLOCK_V1_0(behavioral)
 generic map(
 c_depth_b => 32,
 c_depth_a => 32,
 c_has_web => 1,
 .

.

.
 c_wea_polarity => 1);
 end for;
 end for;

end for;
 end for;
 end for;
end for;
end cfg_top_lvl_config;

Note: In the above example, “work” is the library that the VHDL files are being compiled to.

Using a Lower-level Configuration Declaration
All of the same VHDL files, tb.vhd, top.vhd, and level2.vhd can be used for a top-level
configuration. In the top-level single configuration method, the configuration is in a single
declaration; the testbench, top-level, and second level were not modified. For the lower-level
configuration methodology, what needs to be added to the existing files will be described later.
Again, the differences in the lower-level method configurations will be added to every level of
hierarchy, as well as to the configuration for the testbench which will be different.

A Configuration Declaration is used at the level of hierarchy where the macro is instantiated at,
and also has a configuration in each level above it.

The following is a configuration form for a tree of config declarations

configuration config_name of entity_name is
 for architecture
 for instance:component_name
 use configuration library_name.config_name;
 end for;
 end for;
end config_name;

Note: In the statement "use configuration library_name.config_name;" note that the library_name is
going to be the name of the library that is being compiled to that particular VHDL file. Commonly used
is the library "work".

Top.vhd (Top-level that Instantiates the second level)

For this example, only the second level of hierarchy will be instantiated and a bidirectional bus
will be created; the template for the configuration declaration is used for this example. The
following lines will have to be added to the top.vhd file in order for the configuration to be
correctly compiled and used.

App Note Example for top.vhd

The following can be added to the existing top.vhd file. Refer to appropriate section in the “VHO
file (Generated by CORE Generator)” section for the entity/architecture pairs that the
configurations shown below are referencing.

configuration cfg_top of top is
for struct
 for U0 : level2

use configuration work.cfg_level2;
XAPP409 (v1.0) June 11, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

 end for;
end for;
end cfg_top;

Note: In the above example, "work" is the library that the VHDL files are being compiled to.

Level2.vhd (second level of hierarchy that contains a CORE Generator Macro)

The CORE Generator macro will be instantiated as a black-box in the VHDL code. Because of
the "black-box" in the VHDL code, there will be a component declaration as well as a
component instantiation in the HDL. For simulation, use a precompiled xilinxcorelib library,
which will require a library declaration, and use a configuration declaration or specification to
pass the appropriate parameters to the simulation model.

App Note Example for level2.vhd:

The second level (level2) of hierarchy in the design entity architecture pair and CORE
Generator instantiation (core32x16) is shown below.

The following can be added to the existing level2.vhd file. Refer to the appropriate section in the
“VHO file (Generated by CORE Generator)” section for the entity/architecture pairs that the
configurations shown below are referencing.

Library XilinxCoreLib;

Configuration cfg_level2 of level2 is
for struct
 for all : core32x16 use entity
XilinxCoreLib.C_MEM_DP_BLOCK_V1_0(behavioral)
 generic map(
 c_depth_b => 32,
 c_depth_a => 32,
 c_has_web => 1,
 .

.

.
 c_wea_polarity => 1);
 end for;
end for;
end cfg_level2;

Tb.vhd (Testbench)

The testbench can be the same for a “top level configuration” or a “lower-level configuration”.
The only difference is that with a lower level configuration methodology, there will be a
configuration on each level of hierarchy all the way down to the level which contains the CORE
generator macro, as opposed to having just one configuration at the top-level.

Cfg.vhd (Configuration Declaration file)

The Configuration Declaration can be in the testbench file. For this example, the configuration
is put into its own file. When in its own file (for the backend timing simulation when the
testbench is compiled), the configuration will not show up as a component since it will not be
compiled.
12 www.xilinx.com XAPP409 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

App Note Example for cfg_low.vhd (complete configuration example):

The configuration to configure the testbench would then look like the following:

Configuration cfg_low_lvl_config of bram32x16_tb is
 for tb
 for uut : top
 use configuration work.cfg_top;
 end for;
 end for;
end cfg_low_lvl_config;

Note: In the above example, "work" is the library that the VHDL files are being compiled to.

Using a Configuration Specification
A Configuration Specification style can be utilized in a way such that a Configuration
Declaration will not have to be used. Instead, a separate simulation file will be created for
simulation purposes only and is used for a particular component’s configuration parameters.
There will be a separate VHDL file for each CORE Generator module. Using this method,
components can be configured in the architecture that instances them, as opposed to being
configured in a separate Configuration Declaration.

The same files that are used for “Using a Top-Level Configuration Declaration” can be used
except for the cfg_top.vhd file, which is not required. Instead, a separate simulatable VHDL file
XAPP409 (v1.0) June 11, 2001 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

for the CORE Generator macro will be created from the VHO file. This will result in being able
to simulate on the same testbench entity/architecture pair for functional and timing simulation.

App Note Example for core32x16.vhd (CORE Generator macro):

library IEEE;
use IEEE.std_logic_1164.all;

Library XilinxCoreLib;

entity core32x16 is
port (
addra: IN std_logic_VECTOR(4 downto 0);
clka: IN std_logic;
addrb: IN std_logic_VECTOR(4 downto 0);
clkb: IN std_logic;
dia: IN std_logic_VECTOR(15 downto 0);
wea: IN std_logic;
dib: IN std_logic_VECTOR(15 downto 0);
web: IN std_logic;
ena: IN std_logic;
enb: IN std_logic;
rsta: IN std_logic;
rstb: IN std_logic;
doa: OUT std_logic_VECTOR(15 downto 0);
dob: OUT std_logic_VECTOR(15 downto 0));

end core32x16;

architecture core32x16_sim_arch of core32x16 is

BEGIN

core32x16_SIM : entity
XilinxCoreLib.C_MEM_DP_BLOCK_V1_0(behavioral)

generic map(
c_depth_b => 32,
c_depth_a => 32,
c_has_web => 1,
c_has_wea => 1,
c_has_dib => 1,
c_has_dia => 1,
c_clka_polarity => 1,
c_web_polarity => 1,
c_address_width_b => 5,
c_address_width_a => 5,
c_width_b => 16,
c_width_a => 16,
c_clkb_polarity => 1,
c_ena_polarity => 1,
c_rsta_polarity => 1,
c_has_rstb => 1,
c_has_rsta => 1,
c_read_mif => 1,
c_enb_polarity => 1,
c_pipe_stages => 0,
c_rstb_polarity => 1,
c_has_enb => 1,
c_has_ena => 1,
14 www.xilinx.com XAPP409 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

c_mem_init_radix => 16,
c_default_data => "0",
c_mem_init_file => "./core32x16.mif",
c_has_dob => 1,
c_generate_mif => 1,
c_has_doa => 1,
c_wea_polarity => 1)

port map (
addra => addra,
clka => clka,
addrb => addrb,
clkb => clkb,
dia => dia,
wea => wea,
dib => dib,
web => web,
ena => ena,
enb => enb,
rsta => rsta,
rstb => rstb,
doa => doa,
dob => dob);

end core32x16_sim_arch;

Note: The path to the .MIF file may need to be modified.

Running a
Functional
Simulation

This section describes how to compile and load a design for functional simulation into the
various simulators.

MTI - VHDL

1. Create a library to compile to, if not already created.

vlib library_name

2. Compile the VHDL files.

Vcom file1.vhd file2.vhd file3.vhd

3. Load the design on the Configuration Declaration in order for the parameters/generics
specified in the configuration to be applied to the design.

Vsim config_name

4. The GUI will start up and waves and signals can be added and the design can be
simulated.

App Note Example:

vlib work

Using a Top-Level Configuaration Declaration:

vcom level2.vhd top.vhd
vcom –93 tb.vhd
vcom cfg_top.vhd
vsim –t ps cfg_top_lvl_config
add wave *
run -all

Using a Lower-Level Configuration Declaration:

vcom level2.vhd top.vhd
XAPP409 (v1.0) June 11, 2001 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

vcom –93 tb.vhd
vcom cfg_low.vhd
vsim –t ps cfg_low_lvl_config
add wave *
run -all

Using a Configuration Specification:

vcom -93 core32x16.vhd
vcom level2.vhd top.vhd
vcom top.vhd
vcom -93 tb.vhd
vsim -t ps ex_blkram_tb
add wave *
run -all

VSS

1. VSS requires a WORK directory to put the compiled data in. First, create the WORK
directory in the project directory as follows:

mkdir WORK

2. Make sure the following line is added to the .synopsys_vss.setup file:

WORK: /path_to_directory/WORK

3. Compile the files:

vhdlan -i file1.vhd file2.vhd

vhdlan -i testbench.vhd

vhdlan –i cfg_top.vhd (If the configuration is not in the testbench)

4. Load the simulation:

 vhdlsim -e commandfile.txt cfg_tstbench

The commandfile.txt contains the commands to start up the waveform viewer, add signals and
stimulus. For more information on the commandfile.txt, consult the Synopsys VSS
documentation.

App Note Example:

Using a Top-Level Configuaration Declaration:

Vhdlan -i level2.vhd top.vhd tb.vhd
Vhdlan –i cfg_top.vhd
vhdlsim –e commandfile.txt cfg_top_lvl_config

Using a Lower-Level Configuration Declaration:

Vhdlan -i level2.vhd top.vhd tb.vhd
Vhdlan –i cfg_low.vhd
vhdlsim –e commandfile.txt cfg_low_lvl_config

Using a Configuration Specification:

Vhdlan –i core32x16.vhd level2.vhd top.vhd tb.vhd
Vhdlsim –e commandfile.txt cfg_tb.vhd

Note: VSS requires users to simulate on the configuration if it is used or not. In the above example,
the configuration is not doing anything.
16 www.xilinx.com XAPP409 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

Functional
Simulation
Hints, Tips, and
Common
Problems

This section gives examples of common problems and situations to watch out for when running
a functional simulation.

General
• Path to the MIF file: When using the VHO template file, be sure to modify the path to the

MIF file when initializing any components contents.

• Many times troubleshooting "U" and "X" coming out of the coregen macro can be difficult
to solve. The most common problems are related to the component and/or model binding:

- Component not getting bound. Be sure that the particular component is getting
loaded. Check the log files to see what is being loaded.

- Make sure to simulate on the Configuration if using the Configuration Declaration
method

• Be sure to declare the Xilinxcorelib library in the VHDL file that contains the configuration.

- Make sure all inputs are at known levels.

• Make sure the xilinxcorelib library is compiled and also that it is mapped for the particular
simulator being used. For instance, in MTI go to Design Å Browse Libraries, then verify
that the xilinxcorelib library is mapped, then verify the component being used exists in that
library.

VHDL
• There will be warning messages about VHDL unbound instance when using any type of

Configuration Declaration method. The warnings are normal and can be ignored as long
as the following is done:

- Be sure to load the simulation on the Configuration and not on the top level
entity/architecture pair

- Make sure that when the design is loading that the coregen model is loaded last

- Be Sure to load the simulation on the configuration when using the Configuration
Declaration methodology.

• Using a Configuration Declaration top-level method produces a lot of hieararchy. The
Configuration “For” structure can be confusing. It may be easier to use a Configuration
Specification method described in this App Note.

Running a
Timing
Simulation

This section describes how to load the backend timing simulation into the various simulators.
See the appropriate simulator section in “Compiling the CORE Generator Libraries” for links to
the appropriate solutions to compile the Xilinx Simprim libraries which are needed for the
compiled simulator.

MTI - VHDL

1. Create a library to compile to, if not already created.

vlib library_name

2. Compile the VHDL files.

Vcom time_sim.vhd testbench.vhd

3. Load the design on testbench entity/architecture pair.

Vsim –t ps testbench_arch

4. The GUI will start up and waves and signals can be added andthe design can be simulated.
XAPP409 (v1.0) June 11, 2001 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

App Note Example:

vlib work
vcom time_sim.vhd tb.vhd
vsim –t ps –sdfmax uut=./time_sim.sdf tb
add wave /*
run -all

VSS

1. VSS requires a WORK directory to put the compiled data in. First, create the WORK
directory in the project directory as follows:

mkdir WORK

2. Make sure the following line is added to the .synopsys_vss.setup file:

WORK: /path_to_directory/WORK

3. Compile the files:

vhdlan -i time_sim.vhd

vhdlan -i testbench.vhd

4. Load the simulation:

vhdlsim -e commandfile.txt cfg_tb_arch

The commandfile.txt contains the commands to start up the waveform viewer, add signals and
stimulus. For more information on the commandfile.txt, consult the Synopsys VSS
documentation.

Note: VSS requires users to simulate on the configuration if it is used or not. In the above example,
the configuration is not doing anything.

App Note Example:

Vhdlan –i time_sim.vhd tb.vhd
Vhdlsim –e commandfile.txt cfg_tb

Downloading
and Installing IP
Updates

The latest IP Updates and instructions are available from the Xilinx website at:

http://support.xilinx.com/ipcenter/coregen/updates.htm

The general procedure for installing IP Update #2 is described below, but refer to the latest
documentation for the Update, either in the downloaded files or from the IP Update download
page.

IP Update # 2 Install Instructions
• While not required, it is recommended the latest 3.2i Software Service Pack be installed.

• This IP Update is available both as a .zip fil, and as a .tar file, which has been compressed
using "gzip". The Zip file can be unpacked using a recent release of WinZip (such as 7.0
SR-1 or later) on Windows. On Unix, some versions of Unzip as may be used to unpack
this Zip file on UNIX, but see Xilinx Answer #7711 for information on some known issues
with this. On UNIX platforms, it is recommended that the ".tar.gz" file be downloaded and
unpacked using the UNIX command line utilities gzip and tar. (Note the problems seen
with older UNIX "tar" commands below.)

• Quit the CORE Generator application if it is running.

• Download the zip file 32i_ip_update2.zip or 32i_ip_update2.tar.gz and save it to a
temporary directory.

• Extract the zip file or tar.gz archive to the $XILINX directory, preserving the relative paths
such as: coregen/ip/xilinx/baseblox_v1_0/com/xilinx/ip/baseblox_v1_0/

• Delete the corelib.xml file located in $XILINX/coregen/ip to force the CORE Generator to
18 www.xilinx.com XAPP409 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com

Simulating a Xilinx 3.1i CORE Generator VHDL Design
R

regenerate this database during startup.

• Restart the Xilinx CORE Generator. The Xilinx CORE Generator will automatically detect
that new IP has been added and will provide an opportunity to update "All" cores to the
latest versions, add only "New" cores, or make only a "Custom" selection of cores
available for the current CORE Generator project. Verify whether the installation has
succeeded by verifying that the new cores can be seen in the CORE Generator GUI, such
as "ADPCM for Virtex" in the "Communication & Networking/Telecommunication" folder.

VHDL
Disclaimer and
Download
Instructions

Limited Warranty and Disclaimer. These designs are provided "as is". Xilinx and its licensors
make and you receive no warranties or conditions, express, implied, statutory or otherwise, and
Xilinx specifically disclaims any implied warranties of merchantability, non-infringement, or
fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be
uninterrupted or error free, or that defects in the Designs will be corrected. Furthermore, Xilinx
does not warrant or make any representations regarding use or the results of the use of the
designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost
profits, cost or procurement of substitute goods or services, or for any special, incidental,
consequential, or indirect damages arising from the use or operation of the designs or
accompanying documentation, however caused and on any theory of liability. This limitation will
apply even if Xilinx has been advised of the possibility of such damage. This limitation shall
apply not-withstanding the failure of the essential purpose of any limited remedies herein.

ftp://ftp.xilinx.com/pub/applications/xapp/XAPP409.zip

or

ftp://ftp.xilinx.com/pub/applications/xapp/XAPP409.tar.gz

Revision
History

The following table shows the revision history for this document.

Date Version Revision

06/11/01 1.0 Initial Xilinx release.
XAPP409 (v1.0) June 11, 2001 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/XAPPXXX.zip
ftp://ftp.xilinx.com/pub/applications/xapp/XAPPXXX.tar.gz

	Summary
	Input/Output Files
	Project Input Files
	Project Input Files Description:
	Project Output Files Overview
	Project Output Files
	Project Output Files Description:

	System Input/Output Files

	Compiling the CORE Generator Libraries
	MTI — VHDL
	VSS

	Instantiating a CORE Generator Macro
	VHDL
	VHO file (Generated by CORE Generator)
	Top.vhd (Top-level that Instantiates the second level)

	App Note Example for top.vhd:
	Level2.vhd (second level of hierarchy that contains a CORE Generator macro)
	Library Declaration
	Component Declaration
	Component Instantiation
	App Note Example for level2.vhd:
	Tb.vhd (Testbench)

	Using Configurations for Simulation
	Using a Top-level Configuration Declaration
	Cfg.vhd (Configuration Declaration in a single file)
	App Note Example for cfg_top.vhd (complete configuration example):

	Using a Lower-level Configuration Declaration
	Top.vhd (Top-level that Instantiates the second level)
	App Note Example for top.vhd
	Level2.vhd (second level of hierarchy that contains a CORE Generator Macro)
	App Note Example for level2.vhd:
	Tb.vhd (Testbench)
	Cfg.vhd (Configuration Declaration file)
	App Note Example for cfg_low.vhd (complete configuration example):

	Using a Configuration Specification
	App Note Example for core32x16.vhd (CORE Generator macro):

	Running a Functional Simulation
	MTI - VHDL
	App Note Example:
	VSS
	App Note Example:

	Functional Simulation Hints, Tips, and Common Problems
	General
	VHDL

	Running a Timing Simulation
	MTI - VHDL
	App Note Example:
	VSS
	App Note Example:

	Downloading and Installing IP Updates
	IP Update # 2 Install Instructions

	VHDL Disclaimer and Download Instructions
	Revision History

