Using the CORE Generator System

Introduction

This section on the Xilinx CORE Generator SystemTM and the Xilinx Intellectual Property (IP) Core offerings is provided as an overview of products that facilitate the Virtex-II design process. For more detailed and complete information, consult the *CORE Generator Guide*, which can be accessed online in the Xilinx software installation, as well as at the http://toolbox.xilinx.com/docsan/xilinx4/manuals.htm site, under the "Design Entry Tools" heading.

The CORE Generator System

The Xilinx CORE Generator System is the cataloging, customization, and delivery vehicle for IP cores targeted to Xilinx FPGAs. This tool is included with all Xilinx ISE BaseX, ISE Foundation, and ISE Alliance Series software packages. The CORE Generator provides centralized access to a catalog of ready-made IP functions ranging in complexity from simple arithmetic operators, such as adders, accumulators, and multipliers, to systemlevel building blocks, such as filters, transforms, and memories. Cores can be displayed alphabetically, by function, by vendor, or by type. Each core comes with its own data sheet, which documents the core's functionality in detail.

The CORE Generator User Interface (see Figure 2-122) has direct links to key Xilinx web support pages, such as the Xilinx IP Center website (<u>www.xilinx.com/ipcenter</u>) and Xilinx Technical Support, making it very easy to access the latest Virtex-II IP releases and get helpful, up-to-date specifications and information on technical issues. Links to partner IP providers are also built into the informational GUIs for the various partner-supplied AllianceCORE products described under "AllianceCORE Program" on page 331.

The use of CORE Generator IP cores in Virtex-II designs enables designers to shorten design time, and it also helps them realize high levels of performance and area efficiency without any special knowledge of the Virtex-II architecture. The IP cores achieve these high levels of performance and logic density by using Xilinx Smart-IP[™] technology.

Xilinx CORE Generator											J.	- 🗆 ×
<u>File Project Core Tools H</u> elp												
🗋 🗃 Current Project: 🖾 Ctorigents	\coregen\test	11	•	¥ .	6	6						
View Catalog: by Function												
Target Family: 🐺 Virtex2		Contents of: Communicat	tion &	Networki	ng≻Te	lecommun	icatio	ns				
🧰 Basic Elements	_	Name		Туре	Versi	on 🕂 😨	V	7 11	V# V	Vendor	Statu	s 🔺
Communication & Networking		1024 Channel ADPCM		Alliance	1.0		*		• •	Amphion S.		
Asynchronous Transfer Mode		16 Channel ADPCM		Alliance	1.0		•	•		Amphion S.		
Building Blocks		256 Channel ADPCM		Alliance	1.0				۰ ،	Amphion S		
Encryption-Decryption		512 Channel ADPCM		Alliance	1.0				• •	Amphion S		
Ethernet		768 Channel ADPCM		Alliance	1.0				• •	Amphion S		
		ADPCM32		LOGIC CAPE	1.0			۰.		Xilinx, Inc.		
🚞 Digital Signal Processing		BOOSTLite Bluetooth bas	eb	Alliance	1.0				•	NewLogic		
Building Blocks		Convolution Encoder		LOGIC PE	1.0			٠	۰	Xilinx, Inc.		
Correlators		DVB Satellite Modulator C	ore	Allance	1.0	+		٠		MemecCore		
DSP ProtoType & Development H	lardware	Flexbus-4 Information		LOQIC PE	1.0				• •	 Xilinx, Inc. 		
Filters		HDLC1		LOGIC CRE	1.0			۰.		Xilinx, Inc.		
🗄 🛄 Image Processing		HDLC32		BARIC	1.0			٠		Xilinx, Inc.		
🕀 💼 Modulation	<u> </u>	Interleaver/De-interleaver	Inf	LAQIC PE	1.1		*	۰	*	Xilinx, Inc.		
	•	Noisy Transmission Char	nne	CORE	1.0	*		•		TILAB		•
▲▼								_				
Generated Modules:												
Component Name		Core Name	V	ersion	Family	Vend	dor		G	enerated		<u> </u>
asyncfif31x16	Asynchrono	us FIFO	3.0		₩.	Xilinx, Inc.		J	lul 24,	2001		
asyncfif31x16_default	Asynchrono	us FIFO	3.0		▶	Xilinx, Inc.		J	lul 24,	2001		
dafir	Distributed A	Arithmetic FIR Filter	5.0		▶	Xilinx, Inc.		J	lun 25	, 2001		
distmem64x16_dec	Distributed N	vlemory	4.1		\	Xilinx, Inc.		J	lul 11,	2001		
distmem64x16_dec	Distributed N	Viemory	4.1		▶	Xilinx, Inc.		J	lul 12,	2001		
distmem64x16 sinale	Distributed N	Memory	4.1		\ _	Xilinx. Inc.		J	lul 11.	2001		-
Concrating the VEO(Vicimulation output	ut filos											-
reneration the verific simulation stinni	in mes		_					_			~ .	
											a 🔨	• ×

ug002_c2_068b_100901

Figure 2-122: Core Generator User Interface

Smart-IP Technology

Smart-IP technology leverages Xilinx FPGA architectural features, such as look-up tables (LUTs), distributed RAM, segmented routing and floorplanning information, as well as relative location constraints and expert logic mapping to optimize the performance of every core instance in a given Xilinx FPGA design. In the context of Virtex-II cores, Smart-IP technology includes the use of the special high-performance Virtex-II architectural features, such as embedded 18x18 multipliers, block memory, shift register look-up tables (SRL16's), and special wide mux elements.

Smart-IP technology delivers:

- Physical layouts optimized for high performance
- Predictable high performance and efficient resource utilization
- Reduced power requirements through compact design and interconnect minimization
- Performance independent of device size
- Ability to use multiple cores without deterioration of performance
- Reduced compile time over competing architectures

CORE Generator Design Flow

A block diagram of the CORE Generator design flow is shown in Figure 2-123.

Figure 2-123: CORE Generator Design Flow

Note:

1. The outputs produced by the CORE Generator consist of an implementation Netlist and optional schematic symbol, HDL template files, and HDL simulation model wrapper files.

Core Types

Parameterized Cores

The CORE Generator System supplies a wide assortment of parameterized IP cores that can be customized to meet specific Virtex-II design needs and size constraints. See Figure 2-124. For each parameterized core, the CORE Generator System supplies:

• A customized EDIF implementation netlist (.EDN)

- A parameterized Verilog or VHDL behavioral simulation model (.V, .VHD) and corresponding wrapper file (also .V, .VHD)
- Verilog or VHDL templates (.VEO, .VHO)
- An ISE Foundation or Viewlogic® schematic symbol

The EDIF implementation netlist is used by the Xilinx tools to implement the core. The other design files generated depend on the Design Entry settings specified (target CAE vendor, and design flow type -- schematic or HDL). Schematic symbol files are generated when a schematic design flow is specified for the project.

Parameterized HDL simulation models are provided in two separate HDL simulation libraries, one for Verilog functional simulation support, and the other for VHDL functional simulation support. The libraries, which are included as part of the Xilinx installation, are in the following locations:

\$XILINX/verilog/src/XilinxCoreLib

\$XILINX/vhdl/src/XilinxCoreLib

ogi <mark>că</mark> re _	Distributed Arithmetic FIR Filter										
		Component Name: Filter Type									
		Single Rate FIR C Halfband O Hilbert Transform									
		C Interpolated C Interpolation C Decimation									
	DOUT_G DOUT_G SEL_I SEL_O RDY	Filter Options Number of Channels: 1 <									
	RFD	Structure Number of Taps: Impulse Response									
		O Symmetric O Non Symmetric O Negative Symmetric									
		< Back Next > Page 1 of 2									

ug002_c2_070a_100501

Figure 2-124: Core Customization Window for a Parameterized Core

If using a compiled simulator, these libraries must be precompiled before performing a functional simulation of the cores. An analyze_order file describing the required compile order of these models is included with each XilinxCoreLib library, one for Verilog (verilog_analyze_order) and one for VHDL (vhdl_analyze_order).

For an HDL design flow, Verilog and VHDL templates (.VEO and .VHO files) are also provided to facilitate the integration of the core into the design for the purposes of functional simulation, synthesis, and implementation. The Verilog (.V) and VHDL (.VHD) wrapper files are also generated. The wrapper files for a particular core are compiled like normal simulation models. They convey custom parameter values to the corresponding generic, parameterized behavioral model for that core in the XilinxCoreLib library. The custom parameter values are used to tailor the behavior of the customized core.

```
The following is a sample VHO template:
```

```
component adder8
   port (
    a: IN std logic VECTOR(7 downto 0);
   b: IN std logic VECTOR(7 downto 0);
   c: IN std logic;
   ce: IN std_logic;
   ci: IN std logic;
   clr: IN std logic;
    s: OUT std logic VECTOR(8 downto 0));
end component;
-- Synplicity black box declaration
attribute black box : boolean;
attribute black box of test: component is true;
-- COMP TAG END ----- End COMPONENT Declaration ------
-- The following code must appear in the VHDL architecture
-- body. Substitute your own instance name and net names.
----- Begin Cut here for INSTANTIATION Template ----- INST TAG
your instance name : adder8
   port map (
   a => a,
   b => b,
   C => C,
   ce => ce,
   ci => ci,
   clr => clr,
    s => s);
-- INST TAG END ----- End INSTANTIATION Template -----
-- You must compile the wrapper file test.vhd when simulating
-- the core, test. When compiling the wrapper file, be sure to
-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "Core Generator Guide".
```

Fixed Netlist Cores

The other type of Virtex-II core provided by the CORE Generator is the fixed netlist core. These are preset, non-parameterized designs that are shipped with the following:

- A fixed EDIF implementation netlist (as opposed to one that is customized on the fly)
- .VEO and .VHO templates
- Non-parameterized .V and .VHD behavioral simulation models
- Schematic symbol support

Examples include the fixed netlist Xilinx FFTs and most AllianceCORE products.

Since the HDL behavioral models for fixed netlist cores are not parameterized, the corresponding .VEO and .VHO template files are correspondingly simple. They do not need to pass customizing parameter values to a library behavioral model.

Xilinx IP Solutions and the IP Center

The CORE Generator works in conjunction with the Xilinx IP Center on the world wide web to provide the latest IP and software upgrades. To make the most of this resource, Xilinx highly recommends that whenever starting a design, first do a quick search of the Xilinx IP Center (<u>www.xilinx.com/ipcenter</u>) to see whether a ready-made core solution is already available.

A complete catalog of Xilinx cores and IP tools resides on the IP Center, including:

- LogiCORE Products
- AllianceCORE Products
- Reference Designs
- XPERTS Partner Consultants
- Design Reuse Tools

When installing the CORE Generator software, the designer gains immediate access to dozens of cores supplied by the LogiCORE Program. In addition, data sheets are available for all AllianceCORE products, and additional, separately licensed, advanced function LogiCORE products are also available. New and updated Virtex-II IP for the CORE Generator can be downloaded from the IP Center and added to the CORE Generator catalog.

LogiCORE Program

LogiCORE products are designed, sold, licensed, and supported by Xilinx. LogiCORE products include a wide selection of generic, parameterized functions, such as muxes, adders, multipliers, and memory cores which are bundled with the Xilinx CORE Generator software at no additional cost to licensed software customers. System-level cores, such as PCI, Reed-Solomon, ADPCM, HDLC, POS-PHY, and Color Space Converters are also available as optional, separately licensed products. Probably, the most common application of the CORE Generator is to use it to quickly generate Virtex-II block and distributed memories. A more detailed listing of available Virtex-II LogiCORE products is available in Table 2-62 and on the Xilinx IP Center website (www.xilinx.com/ipcenter).

Types of IP currently offered by the Xilinx LogiCORE program include:

- Basic Elements: logic gates, registers, multiplexers, adders, multipliers
- Communications and Networking: ADPCM modules, HDLC controllers, ATM building blocks, forward error correction modules, and POS-PHY Interfaces
- DSP and Video Image Processing: cores ranging from small building blocks (e.g., Time Skew Buffers) to larger system-level functions (e.g., FIR Filters and FFTs)
- System Logic: accumulators, adders, subtracters, complementers, multipliers, integrators, pipelined delay elements, single and dual-port distributed and block RAM, ROM, and synchronous and asynchronous FIFOs
- Standard Bus Interfaces: PCI 64/66 (64-bit, 66 MHz), 64/33 (64-bit, 33 MHz), and 32/33 (32-bit, 3 3MHz) Interfaces

AllianceCORE Program

The AllianceCORE program is a cooperative effort between Xilinx and third-party IP developers to provide additional system-level IP cores optimized for Xilinx FPGAs. To ensure a high level of quality, AllianceCORE products are implemented and verified in a Xilinx device as part of the certification process.

Xilinx develops relationships with AllianceCORE partners who can complement the Xilinx LogiCORE product offering. Where Xilinx does not offer a LogiCORE for a particular function, Xilinx partners with an AllianceCORE partner to offer that function. A large percentage of Xilinx AllianceCORE partners focus on data and telecommunication applications, as well as processor and processor peripheral designs.

Together, Xilinx and the AllianceCORE partners are able to provide an extensive library of cores to accelerate the design process. AllianceCORE products include customizable cores which can be configured to exact needs, as well as fixed netlist cores targeted toward specific applications. In many cases, partners can provide cores customized to meet the specific design needs if the primary offerings do not fit the requirements. Additionally, source code versions of the cores are often available from the partners at additional cost for those who need maximum flexibility.

The library of Xilinx and AllianceCORE IP cores allows designers to leverage the expertise of experienced designers who are well-versed in optimizing designs for Virtex-II and other Xilinx architectures. This enables designers to obtain high performance and density in the target Virtex-II device with a faster time to market.

Reference Designs

Xilinx offers two types of reference designs; application notes (XAPPs) developed by Xilinx, and reference designs developed through the Xilinx Reference Design Alliance Program. Both types are extremely valuable to customers looking for guidance when designing systems. Reference designs can often be used as starting points for implementing a broad spectrum of functions in Xilinx programmable logic.

Application notes developed by Xilinx usually include supporting design files. They are supplied free of charge, without technical support or warranty. To see currently available reference designs, visit the <u>www.xilinx.com/products/logicore/refdes.htm</u> website.

Reference designs developed through the Xilinx Reference Design Alliance Program are developed, owned, and controlled by the partners in the program. The goal of the program is to form strategic engineering and marketing partnerships with other semiconductor manufacturers and design houses so as to assist in the development of high quality, multicomponent reference designs that incorporate Xilinx devices and demonstrate how they can operate at the system level with other specialized and general purpose semiconductors.

The reference designs in the Xilinx Reference Design Alliance Program are fully functional and applicable to a wide variety of digital electronic systems, including those used for networking, communications, video imaging, and DSP applications. Visit the <u>www.xilinx.com/company/reference_design/referencepartners.htm</u> website to see a list of designs currently available through this program.

XPERTS Program

Xilinx established the XPERTS Program to provide customers with access to a worldwide network of certified design consultants proficient with Xilinx Platform FPGAs, software, and IP core integration. All XPERT members are certified and have extensive expertise and experience with Xilinx technology in various vertical applications, such as communications and networking, DSP, video and image processing, system I/O interfaces, and home networking.

XPERTS partners are an integral part of Xilinx strategy to provide customers with costefficient design solutions, while accelerating time to market. For more information on Xilinx XPERTS Program, visit the <u>www.xilinx.com/company/consultants/index.htm</u> website.

Design Reuse Tools

To facilitate the archiving and sharing of IP created by different individuals and workgroups within a company, Xilinx offers the IP Capture Tool. The IP Capture Tool helps to package design modules created by individual engineers in a standardized format so that they can be cataloged and distributed using the Xilinx CORE Generator. A core can take the form of synthesizable VHDL or Verilog code, or a fixed function netlist. Once it is packaged by the IP Capture Tool and installed into the CORE Generator, the *"captured"* core can be shared with other designers within a company through an internal network. The IP Capture Tool is supplied as a separate utility through the Xilinx IP Center. For more information, see the <u>www.xilinx.com/ipcenter/designreuse/ipic.htm</u> website.

CORE Generator Summary

The CORE Generator delivers a complete catalog of IP including behavioral models, synthesis templates, and netlists with performance guaranteed by Xilinx Smart-IP technology. It is a repository for LogiCORE products from Xilinx, AllianceCORE products from Xilinx partners, and it supports Design Reuse for internally developed IP. In addition,

LogiCORE products are continuously updated to add support for new Xilinx architectures, such as Virtex-II. The most current IP updates are available from the Xilinx IP Center.

Utilizing the CORE Generator library of parameterizable cores, designed by Xilinx for Xilinx FPGAs, the designer can enjoy the advantages of design reuse, including faster time to market and lower cost solutions. For more information, visit the Xilinx IP Center www.xilinx.com/ipcenter website.

Virtex-II IP Cores Support

Table 2-62 provides a partial listing of cores available for Virtex-II designs. For a complete catalog of Virtex-II IP, visit the Xilinx IP Center <u>www.xilinx.com/ipcenter</u> website.

Function	Vendor	IP Type	Impler	nentatio	on Example	Kov Features	Application	
T unction	Name	птуре	Occ	MHz	Device	Rey reatures	Examples	
Basic Elements								
BUFE-based Multiplexer Slice	Xilinx	LogiCORE				1-256 bits wide		
BUFT-based Multiplexer Slice	Xilinx	LogiCORE				1-256 bits wide		
Binary Counter	Xilinx	LogiCORE				2-256 bits output width		
Binary Decoder	Xilinx	LogiCORE				2-256 bits output width		
Bit Bus Gate	Xilinx	LogiCORE				1-256 bits wide		
Bit Gate	Xilinx	LogiCORE				1-256 bits wide		
Bit Multiplexer	Xilinx	LogiCORE				1-256 bits wide		
Bus Gate	Xilinx	LogiCORE				1-256 bits wide		
Bus Multiplexer	Xilinx	LogiCORE				IO widths up to 256 bits		
Comparator	Xilinx	LogiCORE				1-256 bits wide		
FD-based Parallel Register	Xilinx	LogiCORE				1-256 bits wide		
FD-based Shift Register	Xilinx	LogiCORE				1-64 bits wide		
LD-based Parallel Latch	Xilinx	LogiCORE				1-256 bits wide		
RAM-based Shift Register	Xilinx	LogiCORE				1-256 bits wide, 1024 words deep		
Communication & N	etworking							
3G FEC Package	Xilinx	LogiCORE				Viterbi Decoder, Turbo Codec, Convolutional Enc	3G Wireless Infrastructure	
3GPP Compliant Turbo Convolutional Decoder	Xilinx	LogiCORE	80%	40	XC2V500	3GPP specs, 2 Mbps, BER=10-6 for 1.5dB SNR	3G Wireless Infrastructure	
3GPP Compliant Turbo Convolutional Encoder	Xilinx	LogiCORE	65%	60	XC2V250	Compliant w/ 3GPP, puncturing	3G Wireless Infrastructure	
3GPP Turbo Decoder	SysOnChip	AllianceCORE	87%	66	XC2V500-5	3GPP/UMTS compliant, IMT-2000, 2Mbps data	Error correction, wireless	

Table 2-62: Virtex-II IP Cores Support

[•••	1	,		1	Γ	
Function	Vendor	IP Type	Implen	nentati	on Example	Kev Features	Application	
ranotion	Name	птурс	Occ	MHz	Device	Key reatures	Examples	
8b/10b Decoder	Xilinx	LogiCORE	1 BRAM	100	XC2V1000	Industry std 8b/10b en/decode for serial data transmission	Physical layer of Fiber Channel	
8b/10b Encoder	Xilinx	LogiCORE	1 BRAM	100	XC2V1000	Industry std 8b/10b en/decode for serial data transmission	Physical layer of Fiber Channel	
ADPCM 1024 Channel	Amphion	AllianceCORE				G.721, 723, 726, 726a, 727, 727a, u-law, a-law	DECT, VOIP, cordless telephony	
ADPCM 256 Channel	Amphion	AllianceCORE				G.721, 723, 726, 726a, 727, 727a, u-law, a-law	DECT, VOIP, cordless telephony	
ADPCM 512 Channel	Amphion	AllianceCORE						
ADPCM 768 Channel	Amphion	AllianceCORE	89%	50	XC2V500-5	G.721, 723, 726, 726a, 727, 727a, u-law, a-law	DECT, VOIP, cordless telephony	
ADPCM Speech Codec, 32 Channel (DO-DI-ADPCM32)	Xilinx	LogiCORE	62%	25	XC2V500	G.726, G.727, 32 duplex channels	DECT, VOIP, Wireless local loop, DSLAM, PBX	
ADPCM Speech Codec, 64 Channel (DO-DI-ADPCM64)	Xilinx	LogiCORE	61%	27	XC2V500	G.726, G.727, 64 duplex channels	DECT, VOIP, wireless local loop, DSLAM, PBX	
BOOST LITE Bluetooth Baseband Processor	NewLogic	AllianceCORE	73%	33%	XC2V1000-4	Compliant to Bluetooth v1.1, BQB qualified software for L2CAP, LHP, HC1, voice support	Bluetooth applications	
BOOST Lite Bluetooth Baseband Processor	NewLogic	AllianceCORE	73%	33%	XC2V1000-4	Compliant to Bluetooth v1.1, BQB qualified software for L2CAP, LHP, HC1, voice support	Bluetooth applications	
Convolutional Encoder	Xilinx	LogiCORE	10%	26	XC2V40	k from 3 to 9, puncturing from 2/3 to 12/13	3G base stations, broadcast, wireless LAN, cable modem, xDSL, satellite com, uwave	
DVB-RCS Turbo Decoder	iCODING	AllianceCORE	54%	69	XC2V2000-5	DVB-RCS compliant, 9Mbps, data rate, switchable code rates and frame sizes	Error correction, wireless, DVB, Satellite data link	
Flexbus 4 Interface Core, 16-Channel (DO-DI-FLX4C16)	Xilinx	LogiCORE	31%	200	XC2V3000 FG676-5		Line card: terabit routers & optical switches	
Flexbus 4 Interface Core, 4-Channel (DO- DI-FLX4C4)	Xilinx	LogiCORE	27%	200	XC2V1000 FG456-5		Line card: terabit routers & optical switches	
Flexbus 4 Interface Core, 1-Channel (DO- DI-FLX4C1)	Xilinx	LogiCORE	12%	200	XC2V1000 FG456-5		Line card: terabit routers & optical switches	

Table 2-62:	Virtex-II IP	Cores	Support	(Continued)
-------------	--------------	-------	---------	-------------

Eurotion	Vendor		Implen	nentatio	on Example		Application	
Function	Name	и туре	Occ	MHz	Device	Rey realures	Examples	
HDLC Controller Core, 32 Channels	Xilinx	LogiCORE	34%	81	XC2V250	32 full duplex, CRC- 16/32, 8/16-bit address insertion/deletion	X.25, POS, cable modems, frame relay switches, video confer. over ISDN	
HDLC Controller Core, Single Channel	Xilinx	LogiCORE	15%	115	XC2V250	16/32-bit frame seq, 8/16-bit addr insert/delete, flag/zerop insert/detect	X.25, POS, cable modems, frame relay switches, video conf. over ISDN	
Interleaver/De- interleaver	Xilinx	LogiCORE	30%	187	XC2V40	Convolutional, width up to 256 bits, 256 branches	Broadcast, wireless LAN, cable modem, xDSL, satellite com,uwave nets, digital TV	
PE-MACMII Dual Speed 10/100 Mbps Ethernet MAC	Alcatel	AllianceCORE	33%	60	XC2V500-4	802.3 compliant, Supports single & multimode fiber optic devices, M11 interfaces, RMON and Etherstate statistics	Networking, Broadband, NIC, SOHO, Home networking, storage, routers, switches, printers,	
POS-PHY Level 3 Link Layer Interface Core, 48 Channel (DO-DI- POSL3LINK48A)	Xilinx	LogiCORE	33%	104	XC2V6000 FF1152-4			
POS-PHY L3 Link Layer Interface, 16-Ch (DO-DI- POSL3LINK16)	Xilinx	LogiCORE	40%	104	XC2V1000 FG456-4		Line card: terabit routers & optical switches	
POS-PHY L3 Link Layer Interface, 4-Ch (DO-DI- POSL3LINK4)	Xilinx	LogiCORE	15%	104	XC2V1000 FG456-4		Line card: terabit routers & optical switches	
POS-PHY L3 Link Layer Interface, 2-Ch (DO-DI- POSL3LINK2)	Xilinx	LogiCORE	55%	104	XCV50E-8		Line card: terabit routers & optical switches	
POS-PHY L3 Link Layer Interface, Single Channel	Xilinx	LogiCORE	6%	104	XC2V1000 FG456-4			
POS-PHY L4 Multi- Channel Interface (DO-DI-POSL4MC)	Xilinx	LogiCORE	29%	104	XC2V3000 FG676-5			
Reed-Solomon Decoder	Xilinx	LogiCORE	40%	98	XC2V250	Std or custom coding, 3- 12 bit symbol width, up to 4095 symbols	Broadcast, wireless LAN, digital TV, cable modem, xDSL, satellite com,uwave nets	
Reed-Solomon Decoder	TILAB	AllianceCORE	56%	61	XC2V1000-5	parameterizable, RTL available	Error correction, wireless, DSL	

	Vendor	Vendor		nentati	on Example		Application	
Function	Name	ІР Туре	Occ	MHz	Device	Key Features	Examples	
Reed-Solomon Encoder	Xilinx	LogiCORE	42%	180	XC2V40	Std or cust coding, 3-12 bit width, up to 4095 symbols with 256 check symb.	Broadcast, wireless LAN, digital TV, cable modem, xDSL, satellite com,uwave nets	
SDLC Controller	CAST	AllianceCORE	38%	158	XC2V100-5	Like Intel 8XC152 Global Serial Channel, Serial Comm., HDLC apps, telecom	Embedded systems, professionalaudio, video	
SPEEDROUTER Network Processor	IP	AllianceCORE	64%	80 MHz, 2.5 Gbps	XC2V1500-5	Solution requires SPEEDAnalyzer ASIC, 2.5 Gbps fdx wire speed; net processor (NPV)	Networking, edge and access, Switches and routers	
Turbo Decoder - 3GPP	SysOnChip	AllianceCORE	88%	65	XC2V2000-5	3GPP/UMTS compliant, 2Mbps data rate	Error correction, wireless	
Turbo Encoder	TILAB	AllianceCORE	48%	120	XC2V80-5	3GPP/UMTS compliant, upto 4 interleaver laws	Error correction, wireless	
TURBO_DEC Turbo Decoder	TILAB	AllianceCORE	99%	65	XC2V2000-5	3GPP/UMTS compliant, >2Mbps data rate	Error correction, wireless	
Viterbi Decoder	Xilinx	LogiCORE	80%	100	XC2V250	Puncturing, serial & parallel architecture,	3G base stations, broadcast, wireless LAN, cable modem, xDSL, satellite com, uwave	
Viterbi Decoder, IEEE 802-compatible	Xilinx	LogiCORE	70%	147	XC2V250	Constraint length(k)=7, G0=171, G1=133	L/MMDS, cable modem, broadcast equip, wireless LAN, xDSL, sat com, uwave nets	
Digital Signal Proces	sing			-				
1024-Point Complex FFT IFFT for Virtex-II	Xilinx	LogiCORE	62%	41us, 100 MHz	XC2V500	16 bit complex data, 2's comp, forward and inverse transform		
16-Point Complex FFT IFFT for Virtex-II	Xilinx	LogiCORE	37%	123ns, 130 MHz	XC2V500	16 bit complex data, 2's comp, forward and inverse transform		
256-Point Complex FFT IFFT for Virtex-II	Xilinx	LogiCORE	54%	7.7us, 100 MHz	XC2V500	16 bit complex data, 2's comp, forward and inverse transform		
32 Point Complex FFT/IFFT	Xilinx	LogiCORE						
64-Point Complex FFT IFFT for Virtex-II	Xilinx	LogiCORE	38%	1.9us, 100 MHz	XC2V500	16 bit complex data, 2's comp, forward and inverse transform		
Bit Correlator	Xilinx	LogiCORE				4096 taps, serial/parallel input, 4096 bits width		
Cascaded Integrator Comb (CIC)	Xilinx	LogiCORE				32 bits data width, rate change from 8 to 16384		

Implementation Example Vendor Application Function **IP** Type **Key Features** Examples Name Occ MHz Device 8-65K samples, 32-bits Direct Digital Xilinx LogiCORE output precision, phase Synthesizer dithering/offset 32-bit input/coeff width, 1024 taps, 1-8 chan, Distributed Xilinx LogiCORE polyphase, online coeff Arithmetic FIR Filter reload GVA-300 Virtex-II 2 Virtex-II, Spartan-II DSP Hardware GV AllianceCORE NA NA FPGAs, 1 CPLD, Matlab DSP prototyping Accelerator I/F LFSR, Linear 168 input widths, Feedback Shift Xilinx LogiCORE SRL16/register Register implementation **Math Functions** Xilinx Accumulator LogiCORE 1-256s bit wide Xilinx 1-256s bit wide Adder Subtracter LogiCORE Full IEEE-754 **DFP2INT Floating** compliance, 4 pipelines, DSP, Math, Digital AllianceCORE 39% XC2V250-5 Point to Integer 66 Single precision real Arithmetic apps Converter format support Full IEEE-754 **DFPADD** Floating compliance, 4 pipelines, DSP, Math, AllianceCORE 39% XC2V250-5 Digital 66 Point Adder Single precision real Arithmetic apps format support Full IEEE-754 DSP, Math, **DFPCOMP** Floating compliance, 4 pipelines, Digital AllianceCORE 16% 91 XC2V80-5 Point Comparator Single precision real Arithmetic apps. format support Full IEEE-754 **DFPDIV** Floating compliance, 15 pipelines, DSP, Math, Digital AllianceCORE 99% 53 XC2V250-5 Point Divider Single precision real Arithmetic apps format support Full IEEE-754 compliance, 7 **DFPMUL** Floating DSP, Math, Digital AllianceCORE 44% 74 XC2V250-5 pipelines,32x32 mult, Point Multiplier Arithmetic apps. Single precision real format support Full IEEE-754 DFPSQRT Floating compliance, 4 pipelines, DSP, Math, Digital AllianceCORE 39% 66 XC2V250-5 Point Square Root Single precision real Arithmetic apps format support Full IEEE-754 DINT2FP Integer to compliance, double DSP, Math, Floating Point Digital AllianceCORE 37% 73 XC2V250-5 word input, 2 pipelines, Arithmetic apps Converter Single precision real output Input width up to 32 bits, Multiply Xilinx LogiCORE 65-bit accumulator, Accumulator (MAC) truncation rounding

Function	Vendor	IP Type	Impler	nentati	on Example	Key Features	Application	
	Name		Occ	MHz	Device	, , , , , , , , , , , , , , , , , , , ,	Examples	
Multiply Generator	Xilinx	LogiCORE				64-bit input data width, constant, reloadable or variable inputs, parallel/sequential implementation		
Pipelined Divider	Xilinx	LogiCORE				32-bit input data width, multiple clock per output		
Sine Cosine Look Up Table	Xilinx	LogiCORE				3-10 bit in, 4-32 bit out, distributed/block ROM		
Twos Complementer	Xilinx	LogiCORE				Input width up to 256 bits		
Memories & Storage	Elements							
Asynchronous FIFO	Xilinx	LogiCORE				1-256 bits, 15-65535 words, DRAM or BRAM, independent I/O clock domains		
Content Addressable Memory (CAM)	Xilinx	LogiCORE				1-512 bits, 2-10K words, SRL16		
Distributed Memory	Xilinx	LogiCORE				1-1024 bit, 16-65536 word, RAM/ROM/SRL16, opt output regs and pipelining		
Dual-Port Block Memory	Xilinx	LogiCORE				1-256 bits, 2-13K words		
Single-Port Block Memory	Xilinx	LogiCORE				1-256 bits, 2-128K words		
Synchronous FIFO	Xilinx	LogiCORE				1-256 bits, 16-256 words, distributed/block RAM		
Microprocessors, Cor	ntrollers & I	Peripherals						
10/100 Ethernet MAC	Xilinx	LogiCORE				Interfaces through OPB to MicroBlaze	Networking, comm., processor applications	
AX1610 16-bit RISC Processor	Loarant	AllianceCORE	12%	91	XC2V500-5	44 opcode, 64-K word data, program, Harvard arch.	Control functions, State mach, Coprocessor	
C165X MicroController	CAST	AllianceCORE	60%	134	XC2V80-5	Microchip 16C5X PIC like	Embedded systems, telecom	
C68000 Microprocessor	CAST	AllianceCORE	90%	32	XC2V500-5	MC68000 Compatible	Embedded systems, pro audio, video	
CPU FPGA (Virtex-II) MicroEngine Cards	NMI	AllianceCORE	NA	NA	NA	Hitachi SH-3 CPU	Embedded systems	
CZ80CPU Microprocessor	CAST	AllianceCORE	55%	72	XC2V500-5	Zilog Z80 compatible, 8- bit processor	Embedded systems, Communications	

E	Vendor	ID Town	Implen	nentatio	on Example		Application
Function	Name	ір Туре	Occ	MHz	Device	Key Features	Examples
DDR SDRAM Controller Core	Memec- Core	AllianceCORE	7%	133	XC2V1000-4	DDR SDRAM burst length support for 2,4,8 per access, supports data 16,32, 64, 72.	Digital video, embedded computing , networking
DFPIC125X Fast RISC MicroController	Digital	AllianceCORE	49%	126	XC2V80-5	PIC 12c4x like, 2X faster, 12-bit wide instruction set, 33 instructions	Embedded systems, telecom, audio and video
DFPIC1655X Fast RISC MicroController	Digital	AllianceCORE	79%	140	XC2V80-5	S/W compatible with PIC16C55X, 14-bit instruction set, 35 instructions	Embedded systems, telecom, audio and video
DFPIC165X Fast RISC MicroController	Digital	AllianceCORE	49%	126	XC2V80-5	PIC 12c4x like, 2X faster, 12-bit wide instruction set, 33 instructions	Embedded systems, telecom, audio and video
DI2CM I2C Bus Controller Master	Digital	AllianceCORE	58%	143	XC2V50-5	I2C-like, multi master, fast/std. modes	Embedded systems
DI2CM I2C Bus Controller Slave	Digital	AllianceCORE	28%	157	XC2V50-5	I2C-like, Slave	Embedded
DI2CSB I2C Bus Controller Slave Base	Digital	AllianceCORE	15%	187	XC2V50-5	I2C-like, Slave	Embedded Systems
DR8051 RISC MicroController	Digital	AllianceCORE	68%	73	XC2V250-5	80C31 instruction set, RISC architecture 6.7X faster than standard 8051	Embedded systems, telecom, video
DR8051BASE RISC MicroController	Digital	AllianceCORE	46%	80-90	XC2V250-5	80C31 instruction set, high speed multiplier, RISC architecture 6.7X faster than standard 8051	Embedded systems, telecom, video
DR8052EX RISC MicroController	Digital	AllianceCORE	99%	71	XC2V250-5	80C31 instruction set, high speed mult/div ,RISC 6.7X faster than standard 8051	Embedded systems, telecom, video
e8254 Programmable Interval Timer/Counter	einfochips	AllianceCORE	1%	175	XC2V1000-5	Three 8-bit parallel ports, 24 programmable IO lines, 8-bit bidi data bus	Processor, I/O interface
e8255 Peripheral Interface	einfochips	AllianceCORE	1%	175	XC2V1000-5	Three 8-bit parallel ports, 24 programmable IO lines, 8-bit bidi data bus	Processor, I/O interface
Flip805x-PS Microprocessor	Dolphin	AllianceCORE	39%	38	XC2V1000-5	Avg 8X faster & code compatible v. legacy 8051, verification bus monitor, SFR IF, DSP focused	DSP, Telecom, industrial, high speed control
IIC	Xilinx	LogiCORE				Interfaces through OPB to MicroBlaze	Networking, com, processor applic
LavaCORE Configurable Java Processor Core	Derivation	AllianceCORE	38%	20	XC2V1000-5	32b data/address optional DES	Internet appliance, industrial control
LavaCORE Configurable Java Processor Core	Derivation	AllianceCORE	38%	20	XC2V1000-5	32b data/address optional DES	Internet appliance, industrial control

	Vendor	ndor		nentati	on Example		Application
Function	Name	ІР Туре	Occ	MHz	Device	Key Features	Examples
Lightfoot 32-bit Java Processor Core	Digital	AllianceCORE	33%	40	XC2V1000-5	32bit data, 24 bit address, 3 Stage pipeline, Java/C dev. tools	Internet appliance, industrial control, HAVi multimedia, set top boxes
MicroBlaze Soft RISC Processor	Xilinx	LogiCORE		125		Soft RISC Processor, small footprint	Networking, communications
OPB Arbiter	Xilinx	LogiCORE		125		Bundled in the MicroBlaze Development Kit	Processor applications
OPB GPIO	Xilinx	LogiCORE		125		Bundled in the MicroBlaze Development Kit	Processor applications
OPB Interrupt Controller	Xilinx	LogiCORE		125		Bundled in the MicroBlaze Development Kit	Processor applications
OPB Memory Interface (Flash, SRAM)	Xilinx	LogiCORE		125		Bundled in the MicroBlaze Development Kit	Processor applications
OPB Timer/Counter	Xilinx	LogiCORE		125		Bundled in the MicroBlaze Development Kit	Processor applications
OPB UART (16450, 16550)	Xilinx	LogiCORE		125		Interfaces through OPB to MicroBlaze	Processor applications
OPB UART Lite	Xilinx	LogiCORE		125		Bundled in the MicroBlaze Development Kit	Processor applications
OPB WDT	Xilinx	LogiCORE		125		Bundled in the MicroBlaze Development Kit	Processor applications
PF3100 PC/104-Plus Reconfigurable Module	Derivation	AllianceCORE	N/A	N/A	XC2V1000 FG256	PC/104 & PC/104+ devlopment board	Internet appliance, industrial control
SPI	Xilinx	LogiCORE				Interfaces through OPB to MicroBlaze	Networking, communications, processor applications
XF-UART Asynchronous Communications Core	Memec- Core	AllianceCORE	15%	50	XCS20-4	UART and baud rate generator	Serial data communication
Standard Bus Interfa	ces						
PCI-X 64/100 Interface for Virtex-II (DO-DI-PCIX64-VE)	Xilinx	LogiCORE	30%	100	XC2V1000 FG456-5	PCI-X 1.0 comp, 64/32- bit, 66 MHz PCI-X initiator and target IF, PCI 2.2 comp, 64/32-bit, 33 MHz PCI initiator and target IF, 3.3 V PCI-X at 33-66 MHz, 3.3 V PCI at 0-33 MHz	Server,Embedded, gb ethernet,U320 SCSI,Fibre Ch,RAID cntl,graphics

Function	Vendor		Implen	nentati	on Example	Key Feeturee	Application	
Function	Name	ір туре	Occ	MHz	Device	Key Features	Examples	
PCI32 Virtex Interface Design Kit (DO-DI- PCI32-DKT)	Xilinx	LogiCORE	6%	66	XC2V1000 FG456-5	Includes PCI32 board, drive development kit, and customer education 3-day training class		
PCI32 Virtex Interface, IP Only (DO-DI-PCI32-IP)	Xilinx	LogiCORE	6%	66	XC2V1000 FG456-5	v2.2 comp, assured PCI timing, 3.3/5-V, 0- waitstate, CPCI hot swap friendly	PC add-in boards, CPCI, Embedded	
PCI64 & PCI32, IP Only (DO-DI-PCI-AL)	Xilinx	LogiCORE	6 - 7%	66	XC2V1000 FG456-5	v2.2 comp, assured PCI timing, 3.3/5-V, 0- waitstate, CPCI hot swap friendly	PC boards,CPCI,Emb edded,hiperf video,gb ethernet	
PCI64 Virtex Interface Design Kit (DO-DI- PCI64-DKT)	Xilinx	LogiCORE	7%	66	XC2V1000 FG456-5	v2.2 comp, assured PCI timing, 3.3/5-V, 0- waitstate, CPCI hot swap friendly	PC boards, CPCI, Embedded, hiperf video, gb ethernet	
PCI64 Virtex Interface, IP Only (DO-DI-PCI64-IP)	Xilinx	LogiCORE	7%	66	XC2V1000 FG456-5	v2.2 comp, assured PCI timing, 3.3/5-V, 0- waitstate, CPCI hot swap friendly	PC boards,CPCI,Emb edded,hiperf video,gb ethernet	
RapidIO 8-bit port LP-LVDS Phy Layer (DO-DI-RIO8-PHY)	Xilinx	LogiCORE	24%	250	XC2V1000 FG456-5	RapidIO Interconnect v1.1 compliant, verified with Motorola's RapidIO bus functional model v1.4	Routers, switches, backplane, control plane, data path, embedded sys, high speed interface to memory and encryption engines, high end video	
USB 1.1 Device Controller	Memec- Core	AllianceCORE	21%	12	XC2V1000-5	Compliant with USB1.1 spec., Supports VCI bus, Performs CRC, Supports 1.5 Mbps & 12 Mbps	Scanners, Printers, Handhelds, Mass Storage	
Video & Image Proce	ssing							
1-D Discrete Cosine Transform	Xilinx	LogiCORE				8-24 bits for coeff & input, 8-64 pts		
2-D DCT/IDCT Forward/Inverse Discrete Cosine Transform	Xilinx	LogiCORE					image, video phone, color laser printers	
FASTJPEG_BW Decoder	BARCO- SILEX	AllianceCORE	67%	73	XC2V1000-4	Conforms to ISO/IEC Baseline 10918-1, Gray- Scale	Video editing, digital camera, scanners	
FASTJPEG_C Decoder	BARCO- SILEX	AllianceCORE	78%	56	XC2V1000-4	Conforms to ISO/IEC Baseline 10918-1, color, multi-scan, Gray-Scale	Video editing, digital camera, scanners	