Using Digital Clock Managers (DCMs)

Overview

Virtex-II devices have 4 to 12 DCMs, and each DCM provides a wide range of powerful clock management features:

• **Clock De-skew**: The DCM contains a digitally-controlled feedback circuit (delay-locked loop) that can completely eliminate clock distribution delays. Clock de-skew works as follows:

The incoming clock drives a long chain of delay elements (individual small buffers). A wide multiplexer selects any one of these buffers as an output. A controller drives the select inputs of this multiplexer. The phase detector in this controller compares the incoming clock signal (CLKIN) against a feedback input (CLKFB), which must be another version of the same clock signal, usually from the far end of the internal clock distribution network (but it can also be from an output pin).

The phase detector steers the controller to adjust the tap selection, and thus the through-delay in the DCM, in such a way that the two inputs to the phase comparator coincide.(This is a typical servo loop.) The tap controller adds exactly the right amount of delay to the clock distribution network to give it a total delay of one full clock period. For a repetitive clock signal, this effectively eliminates the clock distribution delay completely.

• **Frequency Synthesis**: Separate outputs provide a doubled frequency (CLK2X and CLK2X180). Another output (CLKDV) provides a frequency that is a specified fraction of the input frequency (÷1.5, ÷2, ÷2.5, and so forth, up to ÷15 and ÷16.)

Two other outputs (CLKFX and CLKFX180) provide an output frequency that is derived from the input clock by simultaneous frequency division and multiplication. The user can specify any integer multiplier (M) and divisor (D) within the range specified in the DCM Timing Parameters section of the <u>Virtex-II Data Sheet</u>. An internal calculator figures out the appropriate tap selection, so that the output edge coincides with the input clock whenever that is mathematically possible. For example, M=9 and D=5, multiply the frequency by 1.8, and the output rising edge is coincident with the input rising edge every 5 input periods = every 9 output periods.

• **Phase Shifting**: Three outputs drive the same frequency as CLCK0 but are delayed by 1/4, 1/2, and 3/4 of a clock period. An additional control optionally shifts all nine clock outputs by a fixed fraction of the clock period (defined during configuration, and described in multiples of the clock period divided by 256).

The user can also dynamically and repetitively move the phase forwards or backwards by one unit of the clock period divided by 256. Note that any such phase shift is always invoked as a specific fraction of the clock period, but is always implemented by moving delay taps with a resolution of DCM_TAP (see DCM Timing Parameters in the <u>Virtex-II Data Sheet</u>).

- **General Control Signals**: The RST input, when High, resets the entire DCM. The LOCKED output is High when all enabled DCM circuits have locked. The active High STATUS outputs indicate the following:
 - Phase Shift Overflow (STATUS[0])
 - CLKIN Stopped (STATUS[1])
 - CLKFX Stopped (STATUS[2])

Clock De-Skew

The Virtex-II Digital Clock Manager (DCM) offers a fully digital, dedicated on-chip de-skew circuit providing zero propagation delay, low clock skew between output clock signals distributed throughout the device, and advanced clock domain control. These features can be used to implement several circuits that improve and simplify system level design.

Any four of the nine outputs of the DCM can be used to drive a global clock network. All DCM outputs can drive general interconnect at the same time; for example, DCM output can be used to generate board-level clocks. The well-buffered global clock distribution network minimizes clock skew caused by loading differences. By monitoring a sample of the output clock (CLK0 or CLK2X), the de-skew circuit compensates for the delay on the routing network, effectively eliminating the delay from the external input port to the individual clock loads within the device.

Figure 2-22 shows all of the inputs and outputs relevant to the DCM de-skew feature.

Figure 2-22: Clock De-Skew Outputs

The de-skew feature can also act as a clock mirror. By driving the CLK0 or CLK2X output off-chip and then back in again, the de-skew feature can be used to de-skew a board-level clock serving multiple devices.

By taking advantage of the de-skew circuit to remove on-chip clock delay, the designer can greatly simplify and improve system level design involving high-fanout, high-performance clocks.

Operation

A de-skew circuit in its simplest form consists of variable delay line and control logic. The delay line produces a delayed version of the input clock (CLKIN). The clock distribution network routes the clock to all internal registers and to the clock feedback CLKFB pin. The control logic samples the input clock, as well as the feedback clock, and adjusts the delay line.

For optimum performance, the Virtex-II DCM uses a discrete digital delay line, which is a series of buffer elements each with an intrinsic delay of less than DCM_TAP (see AC characteristics in the <u>Virtex-II Data Sheet</u>).

A de-skew circuit works by inserting delay between the input clock and the feedback clock until the two rising edges align, putting the two clocks 360 degrees out of phase, which means they are in phase. When the edges from the input clock line up with the edges from the feedback clock, the DCM achieves "lock." The two clocks have no discernible difference. Thus, the DCM output clock compensates for the delay in the clock distribution network, effectively removing the delay between the source clock and its loads.

Input Clock Requirements

The clock input of the DCM can be driven either by an IBUFG, an IBUF, or a BUFGMUX. An LVDS clock can also be used as input.

The output clock signal of a DCM, essentially a delayed version of the input clock signal, reflects any instability on the input clock in the output waveform. A DCM cannot improve the input jitter. The DCM input clock requirements are specified in the <u>Virtex-II Data Sheet</u>.

Once locked, the DCM can tolerate input clock period variations of up to the value specified by CLKIN_CYC_JITT_DLL_HF (at high frequencies) or CLKIN_CYC_JITT_DLL_LF (at low frequencies). Larger frequency changes can cause the DCM to lose lock, which is indicated by the LOCKED output going low. The user must then reset the DCM. The cycle-to-cycle input jitter must be kept to less than CLKIN_PER_JITT_DLL_LF in the low frequencies and CLKIN_PER_JITT_DLL_HF for the high frequencies.

Input Clock Changes

Changing the period of the input clock beyond the maximum drift amount requires a manual reset of the DCM. Failure to reset the DCM produces an unreliable lock signal and output clock.

It is possible to stop the input clock with little impact to the de-skew circuit. The clock should be stopped for no more than 100 ms to minimize the effect of device cooling, which would change the tap delays. The clock should be stopped during a Low phase, and when restored, must generate a full High half-period. During this time, LOCKED stays High and remains High when the clock is restored. So a High on LOCKED does not necessarily mean that a valid clock is available.

When the clock is being stopped, one to four more clock cycles are still generated as the delay line is flushed. When the clock is restarted, the output clock cycles are not generated for one to four clocks as the delay line is filled. The most common case is two or three clocks. In a similar manner, a phase shift of the input clock is also possible. The phase shift propagates to the output one to four clocks after the original shift, with no disruption to the DCM control.

Output Clocks

Some restrictions apply regarding the connectivity of the output pins. The DCM clock outputs can each drive an OBUF, a global clock buffer BUFGMUX, or they can route directly to the clock input of a synchronous element. The DCM clock outputs can drive BUFGMUXs that are on the same edge of the device (top or bottom).

Do not use the DCM output clock signals until after activation of the LOCKED signal. Prior to the activation of the LOCKED signal, the DCM output clocks are not valid and can exhibit glitches, spikes, or other spurious movement.

Characteristics of the De-Skew Circuit

- Can eliminate clock distribution delay by effectively adding one clock period delay. Clocks are de-skewed to within CLKOUT_PHASE, specified in the <u>Virtex-II Data Sheet</u>.
- Can be used to eliminate on-chip as well as off-chip clock delay.
- Has no restrictions on the delay in the feedback clock path.
- Requires a continuously running input clock.
- Adapts to a wide range of frequencies. However, once locked to a frequency, cannot tolerate large variations of the input frequency.
- De-skew circuit is part of the DCM, which also includes phase adjustment, frequency synthesis, and spread spectrum techniques that are described in this document.
- Does not eliminate jitter. The de-skew circuit output jitter is the sum of input jitter and some jitter value that the de-skew circuit might add.
- The completion of configuration can be delayed until after DCM locks to guarantee the system clock is established prior to initiating the device.

Port Signals

Source Clock Input — CLKIN

The CLKIN pin provides the user source clock (the clock signal on which the de-skew circuit operates) to the DCM. The CLKIN frequency must fall in the ranges specified in the <u>Virtex-II Data Sheet</u>. The clock input signal can be provided by one of the following:

IBUF - Input buffer

IBUFG — Global clock input buffer on the same edge of the device (top or bottom)

BUFGMUX — Internal global clock buffer

Feedback Clock Input — CLKFB

A reference or feedback signal is required to delay-compensate the output. Connect only the CLK0 or CLK2X DCM outputs to the feedback clock input (CLKFB) pin to provide the necessary feedback to the DCM. The feedback clock input signal can be driven by an internal global clock buffer (BUFGMUX), one of the global clock input buffers (IBUFG) on the same edge of the device (top or bottom), or IBUF (the input buffer.)

If an IBUFG sources the CLKFB pin, the following special rules apply:

- 1. An external input port must source the signal that drives the IBUFG input pin.
- 2. That signal must directly drive only OBUFs and nothing else.

Reset Input - RST

When the reset pin is activated, the LOCKED signal deactivates within four source clock cycles. The RST pin, active High, must either connect to a dynamic signal or be tied to ground. As the DCM delay taps reset to zero, glitches can occur on the DCM clock output pins. Activation of the RST pin can also severely affect the duty cycle of the clock output pins. Furthermore, the DCM output clocks no longer de-skew with respect to one another. For these reasons, use the reset pin only when reconfiguring the device or changing the input frequency. The reset input signal is asynchronous and should be held HIGH for at least 2 ns. It takes approximately 120 µs for the DCM to achieve lock after a reset in the slowest frequency range. The DCM locks faster at higher frequencies. See the LOCK_DLL teiming parameter in the <u>Virtex-II Data Sheet</u>.

Locked Output — LOCKED

In order to achieve lock, the DCM may need to sample several thousand clock cycles. After the DCM achieves lock, the LOCKED signal goes High. The DCM timing parameter section of the <u>Virtex-II Data Sheet</u> provides estimates for locking times.

To guarantee that the system clock is established prior to the device "waking up," the DCM can delay the completion of the device configuration process until after the DCM locks. The STARTUP_WAIT attribute activates this feature.

Until the LOCKED signal activates, the DCM output clocks are not valid and can exhibit glitches, spikes, or other spurious movement. In particular, the CLK2X output appears as a 1x clock with a 25/75 duty cycle.

Status - STATUS

The STATUS output is an 8-bit output, of which STATUS[1] reveals the loss of the input clock, CLKIN to the DCM.

Attributes

The following attributes provide access to some of the Virtex-II series de-skew features, (for example, clock division and duty cycle correction).

Frequency Mode

The de-skew feature of the DCM is achieved with a delay-locked loop (DLL). This attribute specifies either the high or low-frequency mode of the DLL. The default is low-frequency mode. In high-frequency mode, the only outputs available from the DLL are the CLK0, CLK180, CLKDV, and LOCKED. (CLK90, CLK270, CLK2X, and CLK2X180 are not available in high-frequency mode.) The frequency ranges for both frequency modes are specified in the <u>Virtex-II Data Sheet</u>. To set the DLL to high-frequency mode, attach the DLL_FREQUENCY_MODE=HIGH attribute in the source code or schematic.

Feedback Input

This attribute specifies the feedback input to the DCM (CLK0, or CLK2x). CLK0 is the default feedback. When both the CLK0 and the CLK2x outputs are used internally or externally to the device, the feedback input can be either the CLK0 or CLK2x. In order to set the feedback to CLK2X, attach the CLOCK_FEEDBACK=2X attribute in the source code or schematic.

Duty Cycle Correction

The 1x clock outputs, CLK0, CLK90, CLK180, and CLK270, use the duty cycle corrected default such that they exhibit a 50/50 duty cycle. The DUTY_CYCLE_CORRECTION attribute (by default TRUE) controls this feature.

To deactivate the DCM duty cycle correction for the 1x clock outputs, attach the DUTY_CYCLE_CORRECTION=FALSE attribute in the source code or schematic. This makes the output clocks have the same duty cycle as the source clock.

Startup Delay

The default value of the STARTUP_WAIT attribute is FALSE. When STARTUP_WAIT is set to TRUE, and the LCK_cycle BitGen option is used, then the configuration startup sequence waits in the specified cycle until the DCM locks. For details, see Chapter 3: Configuration and Appendix B: BitGen and PROMGen Switches and Options.

Legacy Support

The Virtex/Virtex-E library primitives/sub modules are supported in Virtex-II for legacy purposes. The following are supported primitives/submodules:

- CLKDLL
- CLKDLLE
- CLKDLLHF
- BUFGDLL

Library Primitive

Only a single library primitive is available for the DLL, a part of the DCM. It is labeled the 'DCM' primitive.

Submodules

UG002_C2_061_112800

UG002_C2_062_112800

UG002_C2_063_100901

2

Figure 2-27: BUFG_CLKDV_SUBM

Frequency Synthesis

The DCM provides several flexible methods for generating new clock frequencies. Each method has a different operating frequency range and different AC characteristics. The CLK2X and CLK2X180 outputs double the clock frequency. The CLKDV output provides divided output clocks with division options of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16.

The DCM also offers a fully digital, dedicated Frequency Synthesizer output (CLKFX) and its opposite phase (CLKFX180). The output frequency can be any function of the input clock frequency described by $M \div D$, where M is the multipler (numerator) and D is the divisor (denominator).

The two counter-phase frequency synthesized outputs can drive global clock routing networks within the device. The well-buffered global clock distribution network minimizes clock skew due to differences in distance or loading. See Figure 2-28.

Operation

The DCM clock output CLKFX is any M/D product of the clock input to the DCM. Specifications for M and D, as well as input and output frequency ranges for the frequency synthesizer, are provided in the <u>Virtex-II Data Sheet</u>. The frequency synthesizer output is

phase aligned to the clock output, CLK0, only if feedback is provided to the CLKFB input of the DCM.

Figure 2-28: Frequency Synthesis Outputs

The internal operation of the frequency synthesizer is complex and beyond the scope of this document. The frequency synthesizer multiplies the incoming frequencies by the precalculated quotient M/D and generates the correct output frequencies as long as it is within the range specified in the <u>Virtex-II Data Sheet</u>.

For example, assume input frequency = 50 MHz, M = 25, and D = 8 (note that M and D values have no common factors and hence cannot be reduced). The output frequency is correctly 156.25 MHz, although 25 x 50 MHz = 1.25 GHz and 50 MHz / 8 = 6.25 MHz, and both of these values are far outside the range of the input frequency.

Frequency Synthesizer Characteristics

- The frequency synthesizer provides an output frequency equal to the input frequency multiplied by M and divided by D.
- The outputs CLKFX and CLKFX180 always have a 50/50 duty-cycle.
- Smaller M and D values achieve faster lock times. The user should divide M and D by the largest common factor.
- The outputs are phase aligned with CLK0 when CLKFB is connected.

Port Signals

Source Clock Input - CLKIN

The CLKIN pin provides the user source clock to the DCM. The CLKIN frequency must fall in the ranges specified in the <u>Virtex-II Data Sheet</u>. The clock input signal can be provided by one of the following:

- IBUF Input buffer
- IBUFG Global clock input buffer
- BUFGMUX Internal global clock buffer

2x Clock Output — CLK2X

The CLK2X output provides a frequency-doubled clock with an automatic 50/50 duty-cycle correction. This output is not available in high-frequency mode.

Until the DCM has achieved lock, the CLK2X output appears as a 1x version of the input clock with a 25/75 duty cycle. This behavior allows the DCM to lock on the correct edge with respect to source clock.

Clock Divide Output - CLKDV

The clock divide output pin CLKDV provides a lower frequency version of the source clock. The CLKDV_DIVIDE property controls CLKDV such that the source clock is divided by N where N is either 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, or 16.

This feature provides automatic duty cycle correction such that the CLKDV output pin has a 50/50 duty cycle always in low-frequency mode, as well as for all all integer values of the division factor N in high-frequency mode.

Frequency Synthesized Clock Output - CLKFX

The CLKFX output provides a frequency-synthesized clock (M/D * CLKIN) with a 50/50 duty cycle. For the CLKFX output to be phase-aligned with CLKIN, the clock feedback (CLK0) must be provided at the CLKFB input. With M and D adjusted such that they have no common factor, the alignment occurs only once every D input clock cycles.

Frequency Synthesized Clock Output 180° Phase Shifted - CLKFX180

The CLKFX180 output is a 180° phase shifted version of the CLKFX clock output, also with a 50/50 duty cycle.

Locked Output - LOCKED

The LOCKED signal is activated after the DCM has achieved the parameter values set by the user parameters. To guarantee that the system clock is established prior to the device "waking up," the DCM can delay the completion of the device configuration process until after the DCM locks. The STARTUP_WAIT attribute activates this feature. Until the LOCKED signal activates, the DCM output clocks are not valid and can exhibit glitches, spikes, or other spurious signals.

Reset Input - RST

When the reset pin activates, the LOCKED signal deactivates within four source clock cycles. The M and D values at configuration are maintained after the reset. The RST pin, active High, must either connect to a dynamic signal or be tied to ground. Activation of the RST pin can also severely affect the duty cycle of the clock output pins. For this reason, activate the reset pin only when reconfiguring the device or changing the input frequency. The reset input signal is asynchronous and should be held High for at least 2 ns.

Status - STATUS

The STATUS output is an 8-bit output:

- STATUS[1] indicates the loss of the input clock, CLKIN, only when CLKFB is connected.
- STATUS[2] indicates loss of CLKFX and CLKFX180 even though LOCKED might still be High. Note that this "CLKFX stopped" status functions only when CLKIN is present.

Attributes

The following attributes provide access to some of the Virtex-II series frequency synthesis features, (for example, clock multiplication, clock division).

Clock Divide

The CLKDV_DIVIDE attribute specifies how the signal on the CLKDV pin is frequency divided with respect to the CLK0 pin. The values allowed for this attribute are 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, or 16; the default value is 2.

Frequency Mode for Frequency Synthesis

This attribute specifies either the high or low-frequency mode of the frequency synthesizer. The default is low-frequency mode. The frequency ranges for both frequency modes are specified in the <u>Virtex-II Data Sheet</u>.

To set the frequency synthesizer to high-frequency mode, attach the DFS_FREQUENCY_MODE=HIGH attribute in the source code or schematic.

Multiply/Divide Attribute

The M and D values can be set using the CLKFX_MULTIPLY and the CLKFX_DIVIDE attributes. The default settings are M = 4 and D = 1.

Startup Delay

The default value of the STARTUP_WAIT attribute is FALSE. When STARTUP_WAIT is set to TRUE, and the LCK_cycle BitGen option is used, then the configuration startup sequence waits in the specified cycle until the DCM locks. For details, see Chapter 3: Configuration and Appendix B: BitGen and PROMGen Switches and Options.

Submodules

UG002_C2_075_110800

Figure 2-30: BUFG_DFS_FB_SUBM

2

Phase Shifting

The DCM can also provide coarse and fine-grained phase shifting. The CLK0, CLK90, CLK180, and CLK270 outputs are each phase shifted by ¼ of the input clock period relative to each other, providing coarse phase control. Note that CLK90 and CLK270 are not available in high-frequency mode.

Operation

Figure 2-31 shows a block diagram of the DCM and all of the outputs affected by the circuitry of the phase shift feature.

Figure 2-31: Phase Shift Outputs

Fine-phase adjustment affects all nine DCM output clocks. When activated, the phase shift between the rising edges of CLKIN and CLKFB is a specified fraction of the input clock period.

In variable mode, the PHASE_SHIFT value can also be dynamically incremented or decremented as determined by PSINCDEC synchronously to PSCLK, when the PSEN input is active. Figure 2-32 illustrates the effects of fine-phase shifting.

www.xilinx.com 1-800-255-7778

Two separate components of the phase shift range must be understood:

- PHASE_SHIFT attribute range
- FINE_SHIFT_RANGE DCM timing parameter range

The PHASE_SHIFT attribute is the numerator in the following equation:

Phase Shift (ns) = (PHASE_SHIFT/256) * PERIOD_{CLKIN}

The full range of this attribute is always -255 to +255, but its practical range varies with CLKIN frequency, as constrained by the FINE_SHIFT_RANGE component, which represents the total delay achievable by the phase shift delay line. Total delay is a function of the number of delay taps used in the circuit. Across process, voltage, and temperature, this absolute range is guaranteed to be as specified in the DCM Timing Parameters section of the <u>Virtex-II Data Sheet</u>.

Absolute range (fixed mode) = ± FINE_SHIFT_RANGE

Absolute range (variable mode) = ± FINE_SHIFT_RANGE/2

The reason for the difference between fixed and variable modes is as follows. For variable mode to allow symmetric, dynamic sweeps from -255/256 to +255/256, the DCM sets the "zero phase skew" point as the middle of the delay line, thus dividing the total delay line range in half. In fixed mode, since the PHASE_SHIFT value never changes after configuration, the entire delay line is available for insertion into either the CLKIN or CLKFB path (to create either positive or negative skew).

Taking both of these components into consideration, the following are some usage examples:

- If PERIOD_{CLKIN} = two times FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to ± 128, and in variable mode it is limited to ± 64.
- If PERIOD_{CLKIN} = FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to ± 255, and in variable mode it is limited to ± 128.
- If PERIOD_{CLKIN} ≤ half of the FINE_SHIFT_RANGE, then PHASE_SHIFT is limited to ± 255 in either mode.

In variable mode, the phase factor can be changed by activating PSEN for one period of PSCLK. Increments or decrements to the phase factor can be made by setting the PSINCDEC pin to a High or Low, respectively. When the de-skew circuit has completed an increment or decrement operation, the signal PSDONE goes High for a single PSCLK cycle. This indicates to the user that the next change may be made.

The user interface and the physical implementation are different. The user interface describes the phase shift as a fraction of the clock period (N/256). The physical implementation adds the appropriate number of buffer stages (each DCM_TAP) to the clock delay. The DCM_TAP granularity limits the phase resolution at higher clock frequencies.

Phase Shift Characteristics

- Offers fine-phase adjustment with a resolution of ±1/256 of the clock period (or ± one DCM_TAP, whichever is greater) by configuration and also dynamically under user control.
- The phase shift settings affect all nine DCM outputs.
- V_{CC} and temperature do not affect the phase shift.

Port Signals

1x Clock Outputs — CLK[0|90|180|270]

The 1x clock output pin CLK0 represents a delay-compensated version of the source clock (CLKIN) signal. In low-frequency mode, the DCM provides three phase-shifted versions of the CLK0 signal (CLK90, CLK180, and CLK270), whereas in high-frequency mode, only the 180 phase-shifted version is provided. All four (including CLK0) of the phase shifted outputs can be used simultaneously in low-frequency mode. The relationship between phase shift and the corresponding period shift appears in Table 2-8. The timing diagrams in Figure 2-33 illustrate the DLL clock output characteristics.

Table 2-8: Relationship of Phase-Shifted Output Clock to Period Shift

Phase (degrees)	% Period Shift
0	0%
90	25%
180	50%
270	75%

By default, the DCM provides a 50/50 duty cycle correction on all 1x clock outputs. The DUTY_CYCLE_CORRECTION attribute (TRUE by default), controls this feature. Attach the DUTY_CYCLE_CORRECTION=FALSE property to the DCM symbol in order to deactivate the DCM duty cycle correction. With duty cycle correction deactivated, the output clocks have the same duty cycle as the source clock.

The DCM clock outputs can drive an OBUF, a BUFGMUX, or they can route directly to the clock input of a synchronous element.

Figure 2-33: DLL Output Characteristics

Source Clock Input — CLKIN

The CLKIN pin provides the user source clock to the DCM. The CLKIN frequency must fall in the ranges specified in the <u>Virtex-II Data Sheet</u>. The clock input signal can be provided by one of the following:

- IBUF Input buffer
- IBUFG Global clock input buffer
- BUFGMUX Internal global clock buffer

Feedback Clock Input — CLKFB

A DCM requires a reference or feedback signal to provide delay-compensated output. Connect only the CLK0 or CLK2X DCM outputs to the feedback clock input (CLKFB) pin to provide the necessary feedback to the DCM. The feedback clock input signal can be driven by an internal global clock buffer (BUFGMUX), one of the global clock input buffers (IBUFG) on the same edge of the device (top or bottom), or IBUF (the input buffer.)

If an IBUFG sources the CLKFB pin, the following special rules apply:

- 1. An external input port must source the signal that drives the IBUFG input pin.
- 2. That signal must directly drive only OBUFs and nothing else.

Phase Shift Clock - PSCLK

The PSCLK input can be sourced by the CLKIN signal to the DCM, or it can be a lower or higher frequency signal provided from any clock source (external or internal). The frequency range of PSCLK is defined by PSCLK_FREQ_LF/HF (see the <u>Virtex-II Data</u> <u>Sheet</u>). This input has to be tied to ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED.

Phase Shift Increment/Decrement - PSINCDEC

The PSINCDEC signal is synchronous to PSCLK and is used to increment or decrement the phase shift factor. In order to increment or decrement the phase shift by 1/256 of clock period, the PSINCDEC signal must be High for increment or Low for decrement. This input has to be tied to ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED.

Phase Shift Enable - PSEN

To initiate a variable phase-shift operation, the PSEN input must be activated for one period of PSCLK. The phase change becomes effective after up to 100 CLKIN pulse cycles plus three PSCLK cycles, and is indicated by a High pulse on PSDONE. During the phase transition there are no sporadic changes or glitches on any output. PSEN must be tied to ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED.

Reset Input - RST

When the reset pin is activated, the LOCKED signal deactivates within four source clock cycles. After reset, the phase shift value is set to its value at configuration in both the fixed and variable modes. The RST pin, active High, must either connect to a dynamic signal or be tied to ground. Activation of the RST pin can also severely affect the duty cycle of the clock output pins. For this reason, activate the reset pin only when reconfiguring the device or changing the input frequency. The reset input signal is asynchronous and should be held High for at least 2 ns.

Locked Output - LOCKED

The LOCKED signal activates after the DCM has achieved lock. To guarantee that the system clock is established prior to the device "waking up," the DCM can delay the completion of the device configuration process until after the DCM locks. The STARTUP_WAIT attribute activates this feature. Until the LOCKED signal activates, the DCM output clocks are not valid and can exhibit glitches, spikes, or other spurious movement. For details, refer to Chapter 3: Configuration.

Phase Shift DONE - PSDONE

The PSDONE signal is synchronous to PSCLK and it indicates, by pulsing High for one period of PSCLK, that the requested phase shift was achieved. This signal also indicates to the user that a new change to the phase shift numerator can be made. This output signal is not valid if the phase shift feature is not being used or is in FIXED mode.

Status - STATUS

STATUS[0] indicates the overflow of the phase shift numerator and that the absolute delay range of the phase shift delay line is exceeded.

Attributes

The following attributes provide access to the Virtex-II fine-phase adjustment capability.

Clock Out Phase Shift

The CLKOUT_PHASE_SHIFT attribute controls the use of the PHASE_SHIFT value. It can be set to NONE, FIXED, or VARIABLE. By default, this attribute is set to NONE, indicating that the phase shift feature is not being used. When this attribute is set to NONE, the PHASE_SHIFT value has no effect on the DCM outputs. If the CLKOUT_PHASE_SHIFT attribute is set to FIXED or NONE, then the PSEN, PSINCDEC, and the PSCLK inputs must be tied to ground. The effects of the CLKOUT_PHASE_SHIFT attribute are shown in Figure 2-32.

PHASE_SHIFT

This attribute specifies the phase shift numerator as any value from -255 to 255.

Submodules

ioUG002_C2_076_112900

Figure 2-34: BUFG_PHASE_CLKFX_FB_SUBM

2

Figure 2-36: BUFG_PHASE_CLK2X_SUBM

www.xilinx.com

1-800-255-7778

UG002 (v1.3) 3 December 2001 Virtex-II Platform FPGA Handbook

VHDL and Verilog Instantiation

VHDL and Verilog instantiation templates are available as examples (see "VHDL and Verilog Templates" on page 191) for all submodules.

In VHDL, each template has a component declaration section and an architecture section. Each part of the template should be inserted within the VHDL design file. The port map of the architecture section should include the design signal names.

VHDL and Verilog Templates

The following submodules described in this section are available:

- BUFG_CLK0_SUBM
- BUFG_CLK2X_SUBM
- BUFG_CLK0_FB_SUBM
- BUFG_CLK2X_FB_SUBM
- BUFG_CLKDV_SUBM
- BUFG_DFS_SUBM
- BUFG_DFS_FB_SUBM
- BUFG_PHASE_CLKFX_FB_SUBM
- BUFG_PHASE_CLK0_SUBM
- BUFG_PHASE_CLK2X_SUBM
- BUFG_PHASE_CLKDV_SUBM

The corresponding submodules must be synthesized with the design. The BUFG_CLK0_SUBM submodule is provided in VHDL and Verilog as an example.

VHDL Template

```
-- Module: BUFG_CLK0_SUBM
-- Description: VHDL submodule
-- DCM with CLK0 deskew
-- Device: Virtex-II Family
_____
library IEEE;
use IEEE.std logic 1164.all;
- -
-- pragma translate off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
_ -
entity BUFG_CLK0_SUBM is
 port (
       CLK IN : in std logic;
       RST : in std_logic;
       CLK1X : out std_logic;
       LOCK : out std_logic
      );
end BUFG CLK0 SUBM;
architecture BUFG CLK0 SUBM arch of BUFG CLK0 SUBM is
-- Components Declarations:
component BUFG
 port (
       I : in std logic;
       0 : out std logic
      );
end component;
component DCM
```

www.xilinx.com 1-800-255-7778

```
-- pragma translate_off
   generic (
            DLL FREQUENCY MODE : string := "LOW";
            DUTY CYCLE CORRECTION : boolean := TRUE;
            STARTUP WAIT : boolean := FALSE
           );
-- pragma translate on
   port ( CLKIN : in std_logic;
                   : in std logic;
          CLKFB
          DSSEN : in std_logic;
          PSINCDEC : in std logic;
          PSEN
                 : in std logic;
                   : in std logic;
          PSCLK
                    : in std_logic;
          RST
          CLK0
                   : out std logic;
          CLK90
                   : out std_logic;
          CLK180 : out std_logic;
          CLK270 : out std_logic;
          CLK2X
                   : out std logic;
          CLK2X180 : out std_logic;
          CLKDV : out std logic;
          CLKFX : out std logic;
          CLKFX180 : out std logic;
          LOCKED : out std_logic;
          PSDONE : out std_logic;
          STATUS : out std_logic_vector(7 downto 0)
         );
end component;
-- Attributes
attribute DLL FREQUENCY_MODE : string;
attribute DUTY CYCLE CORRECTION : string;
attribute STARTUP_WAIT : string;
attribute DLL FREQUENCY MODE of U DCM: label is "LOW";
attribute DUTY CYCLE CORRECTION of U DCM: label is "TRUE";
attribute STARTUP_WAIT of U_DCM: label is "FALSE";
-- Signal Declarations:
signal GND : std_logic;
signal CLK0_W: std_logic;
signal CLK1X W: std logic;
beqin
GND <= '0';
CLK1X <= CLK1X_W;
-- DCM Instantiation
U DCM: DCM
 port map (
                     CLK IN,
           CLKIN =>
           CLKFB =>
                     CLK1X_W,
           DSSEN =>
                       GND,
           PSINCDEC => GND,
           PSEN =>
                       GND,
           PSCLK =>
                       GND,
           RST =>
                       RST,
           CLK0 =>
                       CLK0_W,
           LOCKED =>
                       LOCK
    );
-- BUFG Instantiation
U BUFG: BUFG
 port map (
      I => CLK0_W,
      O => CLK1X W
           );
end BUFG_CLK0_SUBM_arch;
```

Verilog Template

```
// Module:
               BUFG_CLK0_SUBM
// Description: Verilog Submodule
// DCM with CLK0 deskew
11
// Device: Virtex-II Family
//-----
module BUFG CKL0 SUBM (
                      CLK IN,
                      RST,
                      CLK1X,
                      LOCK
                     );
    input CLK_IN;
    input RST;
    output CLK1X;
    output LOCK;
   wire CLK0_W;
    wire GND;
    assign GND = 1'b0;
//BUFG Instantiation
11
BUFG U_BUFG
           (.I(CLK0 W),
            .O(CLK1X)
           );
// Attributes for functional simulation//
// synopsys translate_off
      defparam U_DCM.DLL_FREQUENCY_MODE = "LOW";
      defparam U DCM.DUTY CYCLE CORRECTION = "TRUE";
      defparam U_DCM.STARTUP_WAIT = "FALSE";
// synopsys translate_on
// Instantiate the DCM primitive//
 DCM U_DCM (
                  .CLKFB(CLK1X),
                  .CLKIN(CLK IN),
                  .DSSEN(GND),
                  .PSCLK(GND),
      .PSEN(GND),
                  .PSINCDEC(GND),
                  .RST(RST),
                  .CLK0(CLK0 W),
      .LOCKED (LOCK)
                 );
// synthesis attribute declarations
  /* synopsys attribute
 DLL_FREQUENCY_MODE "LOW"
 DUTY CYCLE CORRECTION "TRUE"
 STARTUP_WAIT "FALSE"
  */
endmodule
```

www.xilinx.com 1-800-255-7778

DCM Waveforms

The DCM waveforms shown below are the results of functional simulation using Model Technology's ModelSim EE/Plus 5.3a_p1 simulator. Note that the time scale for these simulations were set to 1ns/1ps. It is important to set the unused inputs of the DCM to logic 0 and to set the attribute values to the correct data types. For example, the PHASE_SHIFT, CLKFX_DIVIDE, and CLKFX_MULTIPLY attributes are integers and should be set to values as shown.

defparam U_DCM.DFS_FREQUENCY_MODE = "LOW"; defparam U_DCM.CLKFX_DIVIDE = 1; (this value's range is specified under Frequency Synthesis in the Virtex-II Data Sheet) defparam U_DCM.CLKFX_MULTIPLY = 4; (this value's range is specified under Frequency Synthesis in the Virtex-II Data Sheet) defparam U_DCM.CLKOUT_PHASE_SHIFT = "FIXED"; defparam U_DCM.PHASE_SHIFT = 150; (Any value from 1 to 255) defparam U_DCM.STARTUP_WAIT = "FALSE";

The input clock, 'clk_in' (CLKIN input of DCM) in all these waveforms is 50 MHz. The DCM_DLL waveforms in Figure 2-38 shows four DCM outputs, namely, clk1x (CLK0 output of DCM), clk2x (CLK2X output of DCM), clk90 (CLK90 output of DCM), and clk180 (CLK180 output of DCM).

ug002_c2_095_113000

Figure 2-38: DCM_DLL Waveforms

The DCM_DFS Waveforms in Figure 2-39 shows four DCM outputs namely, clk1x (CLK0 output of DCM), clk2x (CLK2X output of DCM), clkfx (CLKFX output of DCM), and clkfx180 (CLKFX180 output of DCM). In this case the attributes, CLKFX_DIVIDE = 1, and the CLKFX_MULTIPLY = 3.

Figure 2-39: DCM_DFS Waveforms

The DCM_DPS waveforms in Figure 2-40 shows four DCM outputs, namely, clk1x (CLK0 output of DCM), clk2x (CLK2X output of DCM), clk90 (CLK90 output of DCM), and clk180 (CLK180 output of DCM). In this case, the attribute PHASE_SHIFT = 150 which translates to a phase shift of $(150 \times 20 \text{ ns})/256 = 11.719 \text{ ns}$, where 20 ns is the clock period.

The DCM_DPS_DFS waveforms in Figure 2-41 shows four DCM outputs namely, clk1x (CLK0 output of DCM), clk90 (CLK90 output of DCM), clkfx (CLKFX output of DCM), and clkfx180 (CLKFX180 output of DCM). In this case, the attributes, CLKFX_DIVIDE = 1, and the CLKFX_MULTIPLY = 4. The attribute, PHASE_SHIFT = 150 which translates to a phase shift of (150 x 20 ns)/256 = 11.719 ns, where 20 ns is the clock period.

Figure 2-41: DCM_DPS_DFS Waveforms