

Overview

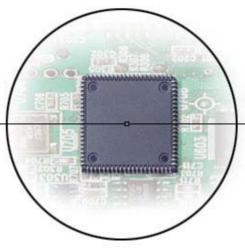
- PLDs in the Automotive sector
- How PLDs fits in Telematics & Infotainment
- Multimedia Platforms
- Applications Overview
- Reliability Verification
- Summary

Telematics - A New Platform for Service Delivery

- Perfect application for programmable logic solutions
- Benefits from re-programmable platform
 - New applications/services, user interface, look & feel, etc.

- ► System Technology: 2G or 3G mobile, satellites, RDS, Bluetooth, WAP, DAB, DVD, etc.
- ▶ Mobile Multimedia: traffic information, internet access, electronic games, pay-TV, advertising, MPEG music downloads, digital radio broadcasting and mobile commerce services

MultiMedia Products


Infotainment System Stand alone Merging of Car Audio and Products Navigation Functionality Communication Navigation Radio Entertainment Navigation Internet Navigation PDA Radio Scalable DESCRIPTION OF and Scaleable upgradable SW System systems MS-MH in terms of Reconfigurable HW functionality HW and performance Past Today **Future**

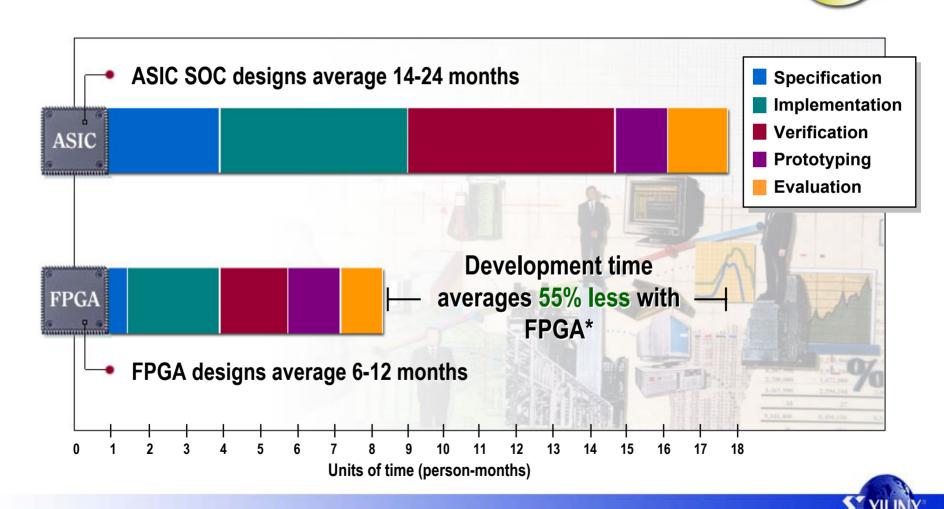
From the Lab to the Road - Multimedia Platform Design

Prototype

Production

- Develop system
- Integrate functionality / new standards
- Evaluate operation

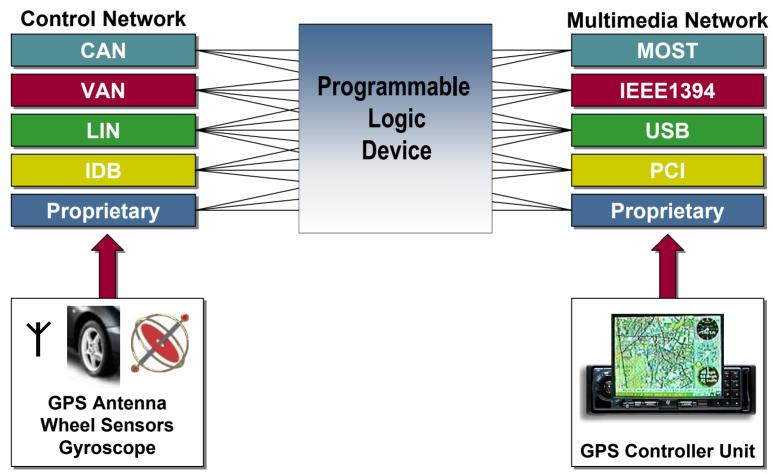
Large FPGAs


- Flexible and field upgradeable
- Single platform, multiple manufacturing variations
- Customized look & feel
- New features, functions
- Requires extended temperature operation

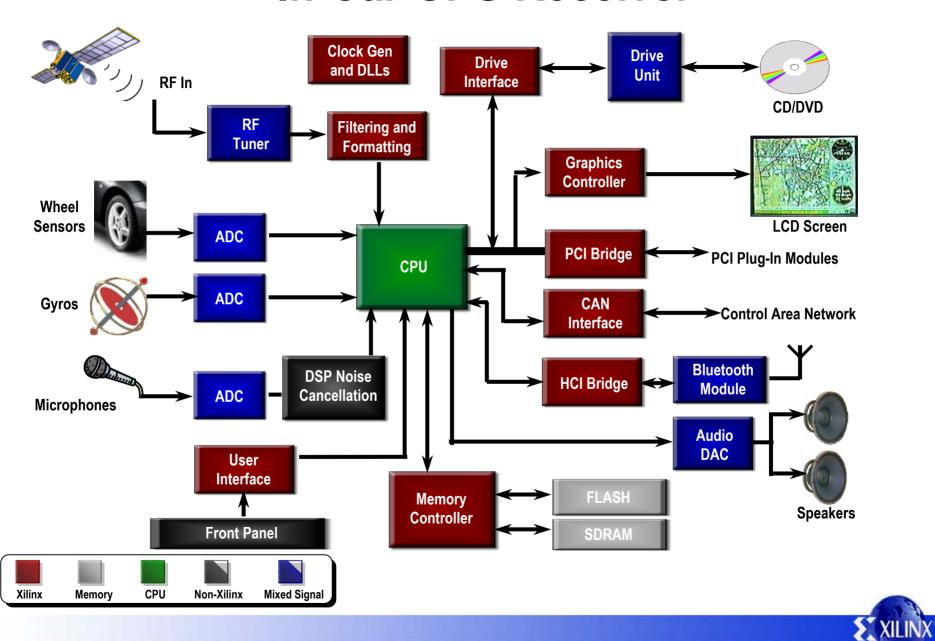
Smaller Low Cost FPGAs for Production



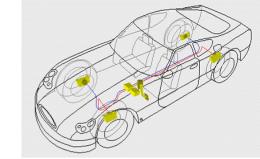
Shorter Development Cycles Increase Revenue Potential


In-Car Digital Convergence

- Technologies are based on multiple, new and changing standards
 - Bluetooth, WAP, GPS, MOST, CAN, etc.
- Integration of multiple complex technologies in auto environment
 - Display, computing, audio, RF, etc.
- Requires flexible solution
- Time-to-market pressures as automotive is shrinking from 6 to 2 years
- Traditional solution challenges
 - Microcontroller insufficient compute capability
 - ASIC design cycle flexibility, upgradeability



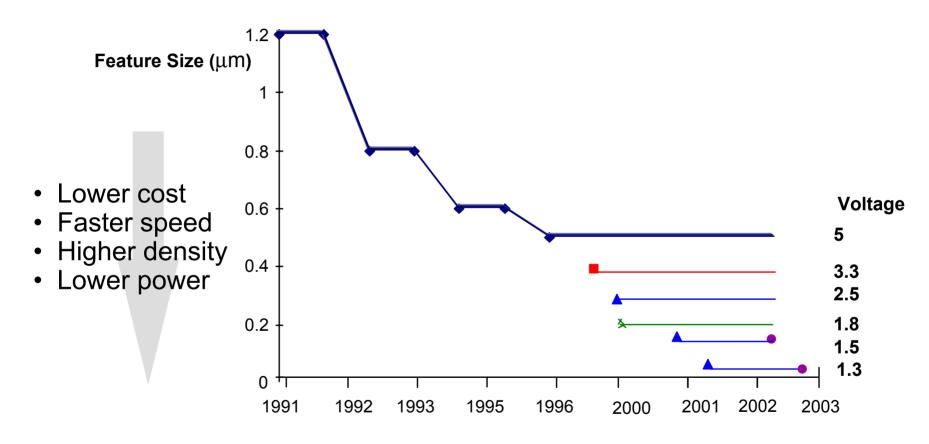
Bridging Automotive Networks



In-Car GPS Receiver

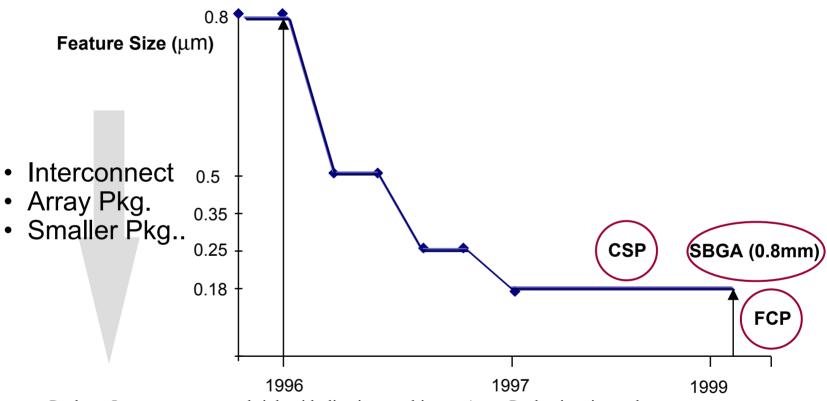
X-by-Wire

- Replacing mechanical and hydraulic systems with communications busses to control:
 - Throttle, Steering, Braking, traction control etc
- Real-time response needed (paralleling the CPU? DSP Coprocessing?)
- Special interrupt/safety/task structure needed
- Hardware based designs are less prone to software based `bugs`
- New way of designing with FPGA based reconfigurable hardware:
 - Prototype and testing with FPGAs concept proving/quick changes
 - Pre-production with low cost FPGAs (shrink/optimise designs)
 - Production move to ASIC? (Depending on NRE charges and risk)
- Field/customer feedback on additional functionalities required can be added during development and/or production



Safety and Security

- Utilizing the power of IRL units that are stolen can be deactivated remotely over any network
- Functions implemented in Hardware (programmable logic) can be fully tested vs. software in embedded microprocessors
 - 200MHz + in PLDs vs. 20MHz in Microcontrollers
 - PLDs can be used as a system co-processors for fast operations and interfaces
 - Coding in hours vs. days
 - Functions can be re-used and created as a 'standard' application 'core' or 'macro' to be shared by engineers


Process Technology and Supply Voltage Roadmap

Xilinx fab partners use FPGAs to drive their process

Package Density Drivers (Lead Pitch)

- Package Interconnect must shrink with die-size resulting to Array Packaging instead of Perimeter
- Aimed at smaller size packages
- High Performance / Frequency / Density Designs
- Efficient Cost

Xilinx Quality Standard Roadmap

former

ISO9000/QML/PURE

- ISO-9000:1994 meet minimum requirements
- QML, PURE Certified
- ISO-14000 (Q4CY2001)
- Quality systems
 - focus on re-estabilization
 - Meet customer rgts.
- Wim's Quality Initiatives
 - Internalize worldwide
 - WW training
 - Continuous drive needed

TODAY

ISO9000/QML/PURE

ISO-9000:2000

- Emphasis on continuous improvement
- Customer input is significant
- Top management quality review
- Analysis & Use of Data (FOL --> EOL, SPC. Metrics)
- Completed in July 02

Q4' CY03

ISO9000/QML/PURE/TL9000

TL9000 (Telec. Stds.)

- **Telecom Industry Standards** Design Control, NPI, Traceability/ Prod. I.D., Product Lifecycle. PCN/PDN)
- Significant Involvement and Participation of Top Mgmt (Software, Hardware)
- Emphasis on continuous improvement and customer satisfaction
- High on balanced metrics and communication systems, tracking results
 - Supplier customer relationship
 - performance feedback
 - problem escalation & resolution

Q1' CY05

ISO9000/QML/PURE/ TL9000/QS9000

QS9000 or TS16949

- Systems Expectations for **Automotive Industry**
- **Customer and Supplier** relationship
- Top Mgmt Involvement
- **Design Process Control**
 - Design Control, NPI, Traceability/ Prod. I.D., Product Lifecycle, PCN/PDN)
- Specific Emphasis on statistical tools & techniques continuous improvement
 - ➤ Gauge R&R; SPC Charts, FMEA

System Reliability

 For system failure rates, the relationship is quite simple (i.e the sum of the failure rates of all the individual components)

$$h_{\scriptscriptstyle S}(t) = \sum_{i=1}^n h_i(t)$$

- PLD's reduce the number of components in a system (fewer solder connections, fewer devices)
- Increasing levels of integration in automotive
 - e.g car radio is now integrated into dashboard system

Process Qualification Tests

2.1 New Wafer Process Qualification

Reliability Test	Condition	<u>Duration</u>	Lot Qty	SS/lot ^A	Acceptance
High Temperature Operating Life (HTOL)	$Ta >= 125$ °C, $V_{DD Max}$	1,000 hours	3	76	0 fail
Temperature Humidity Bias (THB)	85°C, 85% R.H., V _{DD}	1,000 hours	2	76	0 fail
Temperature Cycling (TC)	-65°C/+150°C or -55°C/+125°C ^B	500 cycles or 1,000 cycles	1	76	0 fail
High Temperature Storage (HTS) ^C	Ta = 150°C	1,000 hours	1	76	0 fail
Data Retention ^D	Ta = 150°C	1,000 hours	1	76	0 fail
Program Erase ^{C,D}	Ta = 75°C	10,000 cycles	1	76	0 fail

Note: A. The sample size listed is based on the die size </= 237 mm². For bigger die size, the sample size may be reduced.

- B. For plastic flat pack packages use conditions of -65°C/+150°C, the duration is 500 cycles. For ball grid array packages use conditions of -55°C/+125°C, the duration is 1000 cycles.
 - C. This is not a mandatory test.
- D. For CPLD and Eprom products only
- E. Package precondition is performed prior to THB & TC tests.

Package Qualification Tests

TABLE I Continued

2.2 New Non-Hermetic Package/Assembly Qualification:

Reliability Test	Condition	Duration	Lot Qty	SS/lot ^A	Acceptance
Temperature Humidity	85°C, 85% R.H.,	1,000	1	76	0 fail
Bias (THB) or	V _{DD} or	hours			
High Accelerated stress	130°C, 85% R.H.,				
Test (HAST)	$V_{ m DD}$				
Temperature Cycling	-65°C/+150°C,	500 cycles	1	76	0 fail
$(TC)^B$	-55°C/+125°C,	or			
	-40°C/+125°C or	1,000			
	-0°C/+100°C	cycles			
Autoclave or	121°C, 100% R.H.or	96 hours	1	76	0 fail
Moisture Resistance	85°C, 85% R.H	1,000			
	·	hours			
Resistance to Solvent			1	3	0 fail
Solderability			1	3	0 fail
Lead Fatigue		_	1	3	0 fail
Ball Shear			1	5(40) ^C	0 fail
Bond Pull		_	1	5 (40) ^C	0 fail

Note:

- A. The sample size listed is based on the die size \le 237 mm². For bigger die size, the sample size may be reduced.
- B. For plastic flat pack packages use conditions -65°C/+150°C, the duration is 500 cycles. For ball grid array packages use conditions -55°C/+125°C, the duration is 1,000 cycles. For Flip chip packages use conditions -40°C/+125°C, the duration is 500 cycles and conditions -040°C/+100°C, the duration is 1,000 cycles.
- C. Five units w/ a total of 40 balls or bonding wires.

Device Qualification & Rel Monitor

2.3 New Device Qualification:

For a new device from a previously qualified process, the requirements are as follows:

Reliability Test	<u>Condition</u>	Lot Qty	SS/lot ^A	Acceptance
ESD	HBM	1	3	>=2000V
Latch up	Current injection Ta =25°C	1	4	>=200mA

2.4 Hermetic Packages: The hermetic package qualification requires a full group D test per MIL-STD-883, Method 5005.

2.5 Reliability Monitor

2.5.1 Wafer Process

Reliability Test	<u>Condition</u>	<u>Duration</u>	Lot Qty	SS/ process family/quarte r	<u>Acceptance</u>
High Temperature	$Ta >= 125$ °C $V_{DD Max}$	1,000	1	45	0 fail
Operating Life (HTOL)		hours			
Data Retention ^A	Ta=150C	1,000	1	45	0 fail
		hours			
Extended Static Life Test	$Ta >= 125$ °C $V_{DD Max}$	2,000	1 ^B	45	0 fail
		hours			

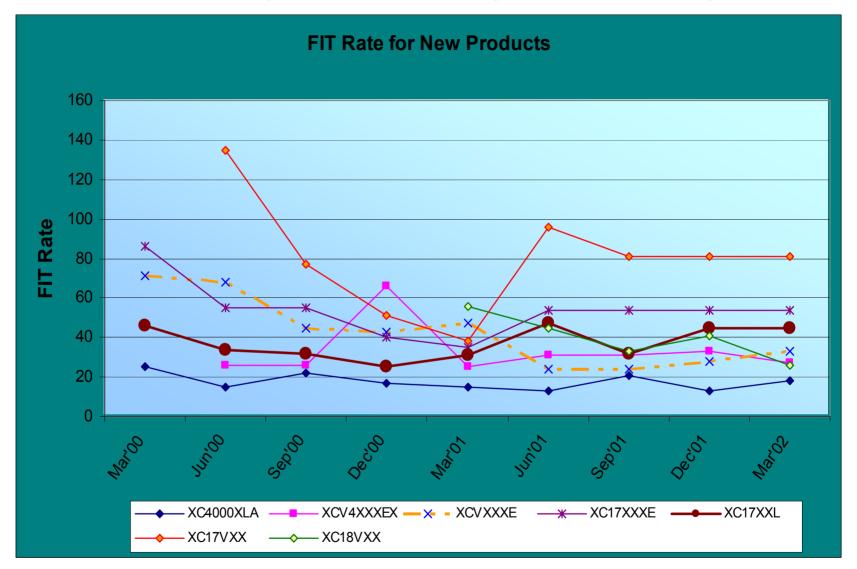
A- For CPLD and Eprom products only.

B. 1 of the lot that is pulled per quarter is extended to 2,000 hours.

Package Rel Monitor

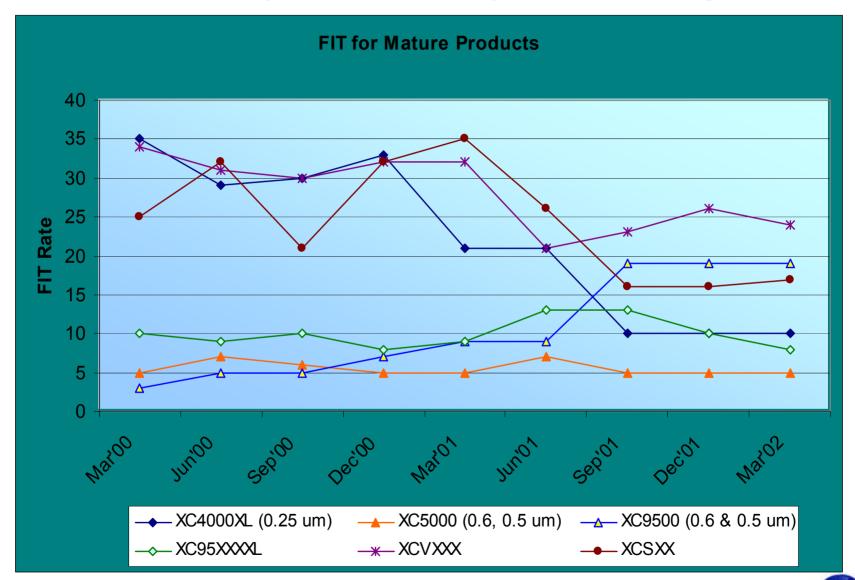
2.5 Reliability Monitor (cont'd)

2.5.2 Package/ Assembly (Monitor)

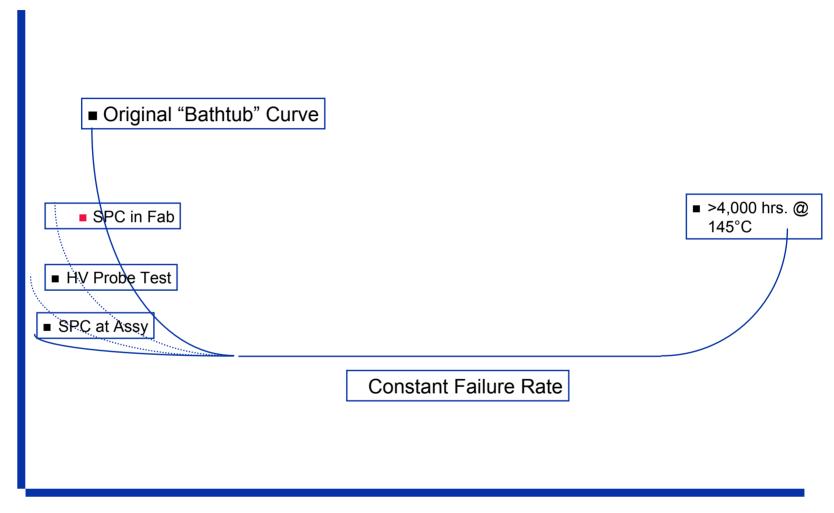

Reliability Test	<u>Condition</u>	<u>Duration</u>	Lot Qty	SS/ site /pkg family/quarter	<u>Acceptance</u>
Temperature	85°C, 85% R.H.,	1,000 hours	1	45	0 fail
Humidity Bias	$V_{ m DD}$				
(THB) or					
High Accelerated	130°C, 85% R.H.,	100 hours	1	22	0 fail
stress Test (HAST)	$V_{ m DD}$				
Temperature	-65°C/+150°C,	500 cycles or	1	45	0 fail
Cycling (TC) ^B	-55°C/+125°C,	1,000 cycles			
	-40°C/+125°C or				
	-0°C/+100°C				
Autoclave or	121°C, 100% R.H.	96 hours	1	45	0 fail
Moisture Resistance	or				
Solderability			1	3	0 fail
Mark Permanency			1	3	0 fail
Lead Fatigue			1	3	0 fail
Physical Dimension		_	1	5	0 fail

Note:

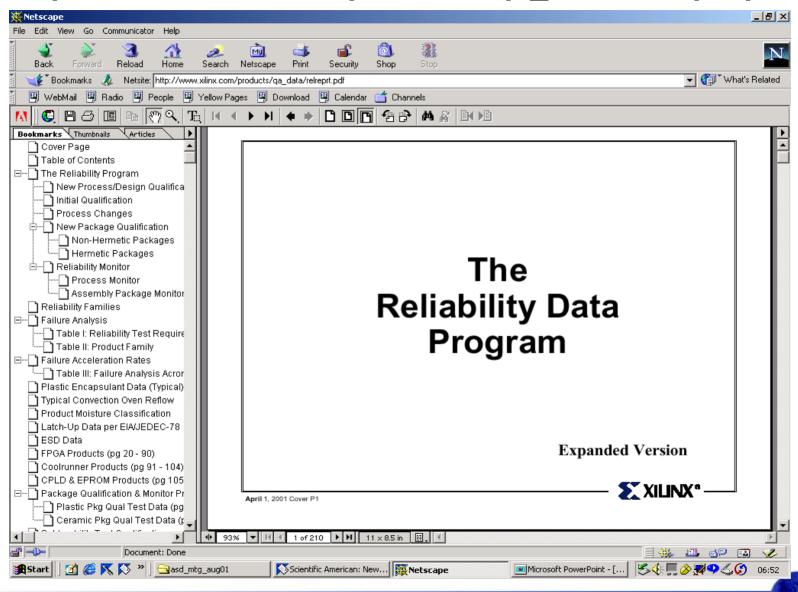
- A. The sample size listed is based on the die size </= 237 mm². For bigger die size, the sample size may be reduced.
- B. For plastic flat pack packages use conditions -65°C/+150°C, the duration is 500 cycles. For ball grid array packages use conditions -55°C/+125°C, the duration is 1,000 cycles. For Flip chip packages use conditions -40°C/+125°C, the duration is 500 cycles and conditions -040°C/+100°C, the duration is 1,000 cycles.



Reliability Fit Rate: 2 years Rolling



Reliability Fit Rate: 2 years Rolling


Failure Rate Curve

■In Time

http://www.xilinx.com/products/qa_data/relreprt.pdf

Introducing IQ Products

- Why IQ?
 - New range of devices with an extended Industrial Temperature option
 - Consists of CPLD and FPGA families already available in I Grade - and the addition of selected devices with an extended temperature 'Q' grade option
 - IQ it's the intelligent choice for Automotive designers!!
- For FPGAs Q grade means:
 - -40°C to +125°C <u>Junction</u> Temperature
- For CPLDs Q Grade means:
 - -40°C to +125°C <u>Ambient</u> Temperature

Ambient = the temperature of the air surrounding the device Junction = is the temperature of the die in the package

Automotive SSB Solutions

Divio

- Digital video decoder & CODEC
 - Based on Xilinx Spartan-II FPGA
 - Single chip DV codec
 - Separate 1394 link layer & PHY

ACUNIA

- CarCube[™]: prototype design for in-vehicle telematics terminal, based on XINGU[®] 8000 series processing platform, featuring:
 - Intel[®] Xscale[™] micro-architecture
 - Xilinx Spartan-II FPGA companion chip

Xilinx in Infotainment Systems Today

- Siemens VDO Dayton MP3 car radio CD
 - Spartan-II FPGAs
 - Perform peripheral interfacing and audio control
 - Selected for
 - Ability to upgrade via reprogrammability to accomodate changing standards
 - Ease-of-use
 - Low cost
- Siemens VDO has been using Xilinx FPGAs for its advance in-car systems since 1997

Summary

- The fastest growing area for semiconductors in the automotive sector today is in-car applications
- Different mobile technologies are merging and will be combined in new car solutions - consumer product business models plus wireless communication challenges must be met
- Multimedia platforms are being developed to provide bespoke in-car infotainment using one common reconfigurable platform
- Reconfigurable logic devices
 - shorten time to market
 - lengthen time in market
 - allow for for changing standards and protocols
 - provide lower total solution costs

