
by Krista M. Marks
Engineering Manager, IP Solutions Division, Xilinx Inc.
krista.marks@xilinx.com

The Virtex-II architecture offers exciting
new design possibilities because it includes
numerous high-performance embedded
memories and multipliers. These
two components form the basis
for many applications, appearing
in a wide range of functions
including digital filters, FFTs,
FIFOs, serializers, encoders, and
analyzers. Because memories and
multipliers typically appear in the
critical processing functions of an
application, it is essential that they
be optimized for resource utiliza-
tion and performance. Because of
their ubiquity, it is equally essen-
tial that they can be implemented
repeatedly without significant
design overhead.

Xilinx provides flexible core gener-
ation software that produces
ready-to-use high-performance
design solutions for the embedded
memories and multipliers of the
Virtex-II family. The Xilinx
CORE Generator enables you to easily cre-
ate optimal solutions that are specifically
tailored for your specific application. 

Using the CORE Generator

When you select the dual port block mem-
ory LogiCORE in CORE Generator, the
interface shown in Figure 1 appears. This
interface allows you to customize the

Virtex-II Block SelectRAM on your target-
ed device and to create the required mem-
ory array. You may select memory depths

as large as 1M words and word widths up
to 256 bits. The initial content of the
memory can be specified by a file or by a
global value.

You can configure the ports to have differ-
ent views of the memory space
and to independently obey one
of the three write modes support-
ed by the Virtex-II architecture.
The Read-Before-Write mode
offers the flexibility of using the
output data bus during a write
operation, which can increase the
effective bandwidth of the block
memory. 

By selecting the Design Options
button, another window is
opened enabling further configu-
ration choices including pipeline
control and optional pins (syn-
chronous initialization of the
outputs, a clock enable, and var-
ious handshaking signals).

A similar user interface exists for
multipliers, allowing you to gen-
erate a parallel or sequential mul-
tiplier implemented in either the

dedicated Virtex-II multiplier fabric or in
the general-purpose FPGA fabric. (A
sequential or serial multiplier time-multi-

Applications CORE Generator

It is easy to create efficient, high-performance designs 
using the Xilinx CORE Generator™.

Designing High-Performance
Memories and Multipliers

Summer 2001 Xcell Journal 45

Figure 1: Parameterization window for the 
Dual Port Block Memory LogiCORE

It is easy to create efficient, high-performance designs 
using the Xilinx CORE Generator™.

Designing High-Performance
Memories and Multipliers



Applications CORE Generator

plexes the calculation over several clock
cycles, thereby reducing the required
FPGA resources in exchange for band-
width.) The input data widths of the mul-
tiplier can be configured independently
from 1 to 64 bits in width and can be
signed, unsigned, or dynamically typed. 

You can also create constant coefficient
multipliers that can be statically or dynam-
ically reloaded. If the constant input is
dynamic, you are given the option to halt
the multiplier’s operation while a new con-
stant is loaded. Options are also available to
create pipelining, to vary the output width,
and to include a clock enable pin. 

Design Examples

To illustrate the power that lies behind
the convenient interface of the Xilinx

width, instantiate six 8Kx2 primitives, and
to concatenate their output busses.

For both these solutions the memory
requirement is 66Kb, but the implementa-
tion requires six SelectRAM blocks and
represents a utilization of only 61%
(66Kb/108Kb=61%). 

CORE Generator,
it is useful to look
at the designs it
produces. 

Consider creating a
66Kb memory con-
figured as a 6Kx11
array using the 
dedicated Block
SelectRAM resources.
The most straightfor-
ward solution would
be to divide the array in depth and to use
six 1Kx18 primitives, as illustrated in
Figure 2. For this solution you would need
to add logic to multiplex the output of
these primitives. To avoid creating this
multiplexing logic, a second solution
would be to partition the data bus in

46 Xcell Journal      Summer 2001

Figure 2 - Three 6Kx11 Block Memory solutions

Figure 3 - Implementation produced by the Multiply Generator LogiCORE



Applications CORE Generator

The optimal solution, and the one imple-
mented by the Xilinx LogiCORE, uses three
2Kx9 primitives combined with one 8Kx2
primitive. It uses four Block SelectRAMs
and represents a resource utilization of 92%.
In addition, the multiplexing logic is includ-
ed with the generated core.

As a second scenario consider the imple-
mentation of a multiplier which has a 25-
bit signed number on one input and a 35-
bit unsigned number on the second input,
and uses the Virtex-II multiplier fabric. The
solution requires splitting the operands into
slices that are no larger than the input width
of the Virtex-II multiplier primitive (18-
bits). The width of B is 35-bits, and an
additional bit is needed to treat B as signed;
the full precision product will be 61-bits. 

The implementation produced by the
Multiply Generator LogiCORE is shown in
Figure 3. The six boxes on the left hand of
the diagram represent individual 18-bit
multiplier primitives, and the final output is
shown as P[60:0]. Not only is this imple-
mentation the optimal solution, it automat-
ically provides you with all the additional
logic and adders trees required to imple-
ment the multiplier. Pipelining the calcula-
tion can dramatically increase multiplier
throughput (pipelining registers are shown
as dashed boxes in Figure 3); The core
allows you to minimize or maximize the
amount of pipelining. As with all
LogiCORE implementations, the generated
design is fully tested and verified.

Conclusion

These examples illustrate both the complex-
ity and utility that underlie designs generat-
ed via the Xilinx CORE Generator. It pro-
vides full support for the wealth of architec-
tural features of the Virtex-II family and
provides you with the ability to quickly cre-
ate solutions with fundamental building
blocks. By simply invoking the CORE
Generator and entering the required config-
uration, an optimized and verified design is
created using SmartIP technology. The
combination of powerful core generation
technology and the new Virtex-II device
features guarantees you a fast and painless
time-to-market.

Summer 2001 Xcell Journal 47

Virtex-II Building Blocks

Each embedded Virtex-II block
SelectRAM is 18Kb of True Dual-Port
RAM with two fully independent access
ports as illustrated in Figure 4. Each port
behaves synchronously relative to its own
clock input. There are two separate data
out busses, one for accessing data and the
other for accessing dedicated parity bits.
Table 1 lists the aspect ratio of the ports
available in the 18-Kbit Block
SelectRAM primitives. For applications
that do not require parity information,
the two busses can be combined to yield
larger memory widths.

Each embedded multiplier block is
an 18x18 2’s complement signed
multiplier. The MULT18X18
primitive, illustrated in Figure 5,
has two 18 bit inputs and a 36-bit
product. These blocks are opti-
mized for performance and low
power consumption, and can vastly
outperform an 18x18 multiplier
implemented in general logic
resources. These multipliers can be coupled with the block RAMs and use
dedicated high-speed interconnects between the multiplier and RAM blocks,
allowing for efficient multiply-accumulate filter constructs. 

DOPA

DIPA
ADDRA

WEA
ENA
SSRA

CLKA

DIPB
ADDRB
WEB
ENB
SSRB

CLKB

18-Kbit Block SelectRAM

DOPB
DOB

DOA

DIA

DIB

18 Kb
Memory

Array

Port A

Port B

WIDTH DEPTH ADDRESS BUS DATA BUS PARITY BUS

1 16,384 ADDR[13:0] DATA[0] N/A

2 8,192 ADDR[12:0] DATA[1:0] N/A

4 4,096 ADDR[11:0] DATA[3:0] N/A

9 2,048 ADDR[10:0] DATA[7:0] Parity[0]

18 1,024 ADDR[9:0] DATA[15:0] Parity[1:0]

36 512 ADDR[8:0] DATA[31:0] Parity[3:0]

A

MULT18X18

B

18

  18

36

Figure 4 - True Dual-Port RAM

Figure 5 - MULT18X18 primitive

Table 1 - Port configuration


