
New Technology Software

Architectural Synthesis
Unleashing the Power of
FPGA System-Level Design

30 Xcell Journal Winter 2002

Architectural synthesis shifts complex system design to a higher level.

Architectural Synthesis
Unleashing the Power of
FPGA System-Level Design
Architectural synthesis shifts complex system design to a higher level.

New Technology Software

by Don Davis
Manager, High Level Language Tools
Xilinx, Inc
don.davis@xilinx.com

When you combine the capabilities of pow-
erful Virtex-II™ Pro FPGAs with the wide
range of hardware cores now available (from
soft processors such as MicroBlaze™ to bus
interfaces such as PCI), you’ve got all you
need to develop complete systems on a sin-
gle device. However, with all of this capa-
bility comes added design complexity. How
do you take advantage of these vast
resources and deal effectively with the
added system complexity?

FPGAs have evolved beyond glue logic into
fundamental system elements. To remain rel-
evant, development methodologies must
respond to this changing role by providing
the appropriate abstraction levels and tools
needed to manage this complexity. You need:

• High-level languages to support the cap-
ture of complex design functionality in
an abstract manner

• Profiling and characterization to explore
solution space tradeoffs

• Debugging and verification tools to
ensure design integrity

• Compilers and optimizers to produce
high quality implementations.

A New Approach

A compelling design methodology based on
Architectural Synthesis (AS) offers a com-
prehensive strategy for managing all of these
issues. AS streamlines design, verification,
and implementation of complex systems by
leveraging powerful development tools and
advanced FPGA devices. AS enables you to
define system functionality at a high level of
abstraction (using a software-based design
entry point) and then debug, synthesize,
and verify a range of architecture imple-
mentations that meet the system specifica-
tion. What makes AS so exciting is that it is
based on a single system specification, so
you can easily explore a variety of hardware
implementations to achieve the optimal
cost/performance point for your application
– and even change the hardware/software

affect the answer to the others. A local opti-
mization, for example, may not be a system
optimization. You must be able to explore
these interactions quickly and cover the
entire solution space with minimal effort if
you’re to have any hope of achieving an
optimal solution.

By contrast, the current process is a lot
like throwing darts blindfolded. Your
designer intuition will usually get you
facing the dartboard, but hitting the
bulls-eye is mostly a matter of luck. You
pick a hardware/software partition based
on your experience and some limited
modeling or profiling, and hand it off to
the rest of the design team. Barring cata-
strophic circumstances, the partition is
fixed at that point; it is simply too diffi-
cult to go back and rework all the hard-
ware implementations and interfaces
because they’re all products of manual
translations of the specification.

partitioning – without having to modify the
source specification.

The System Design Challenge

Effective system design in the era of plat-
form FPGAs requires a holistic approach.
No longer is FPGA design simply about
mapping your algorithm to LUTs. In the
first place, today’s design complexity has
grown to such an extent that you need
higher-level methods of algorithm specifi-
cation and design capture. What’s more,
with embedded processors of both the hard
and soft varieties, your implementation
options are vastly expanded: Should I
implement this piece of functionality in the
FPGA fabric or on the embedded proces-
sor? What is the impact on the system with
respect to performance? How should the
various processing elements communicate?

Complicating matters still further, the
answer to any one of these questions can

Winter 2002 Xcell Journal 31

Synopsys Provides the Multiple Levels of Abstraction Necessary for AS
“Higher levels of abstraction are crucial for exploring system specifications, for
reaching hardware/software architecture closure early in the design cycle, and for
decreasing implementation cycles,” reports Joachim Kunkel, vice president of IP
and systems marketing, Synopsys.

Synopsys’ CoCentric System Studio application, for example, gives you the multiple
levels of abstraction needed to accomplish a range of tasks: Untimed Functional for
data exchange; Timed Functional for computational and communicational delay;

and Transaction Level, the natural meeting point
for hardware and software designers to achieve
cycle-true platform performance analysis.

These abstraction levels offer verification speeds
that are higher than those offered by RTL, by orders of magnitude – and yet they
give you sufficient detail to do platform analysis and come to closure on the hard-
ware/software architecture early. (Although high-level abstraction offers an effective
way to deal with today’s increasingly complex designs, and definitely offers design-
cycle time benefits, it does not replace the pin-accurate models necessary for an
automated path to hardware implementation.)

Because this methodology consists of design, debug, verification, and implementation
in hardware and software, the company calls it “SystemC Design and Verification.”
But the CoCentric solution also gives you the option to use RTL, giving you
complete design control, especially in cases where the required hardware architecture
is very well understood.

Using the appropriate level of abstraction and automation for your analysis and
implementation – and combining that with a unified hardware/software methodology
and the unique dual programmability of Platform FPGAs – enables you to create
differentiated products cost-effectively.

New Technology Software

Your team may never know if your choice
was a good one, or whether this was an
optimal partition. You just have to make it
work, so you spend lots and lots of time
optimizing and tweaking code (hardware
or software) in a struggle to make sure your
design meets the system specification.

This is a major weakness in the flow. On
the software side, the translation from the
software specification (usually written in
C) into the C implementation for the
embedded processor is straightforward. But
translating the software specification into
hardware implementations (usually
Verilog, VHDL, or RTL hardware descrip-
tion languages) is another matter entirely.

Typically, you or your team interpret the
specification and tediously convert it into a
hardware implementation that (you hope)
will meet the system specifications. Here
again, this approach gives you another
chance at “blindfolded darts.” The level of
resource sharing, number of pipeline

stages, and amount of loop unrolling are
just a few examples of the many decisions
that are difficult to change at the RTL –
and which you have to make up front.

All of these decisions affect the perform-
ance and area of the final implementation,
and all of these issues offer a range of
options for a given algorithm. Your ability
to explore the solution space is severely
limited if you have to re-code the HDL by
hand because you know that each re-code
takes time, both in terms of the design
itself and the subsequent verification of
the new implementation.

Architectural Synthesis to the Rescue

AS comprises a suite of technologies
designed to meet the challenges associat-
ed with system-level design – and help
you realize its benefits. (See the sidebar
stories for an overview of the different
ways our partners are incorporating AS
into their design flows.) AS offers an

32 Xcell Journal Winter 2002

Savvy Design Teams
Are Re-Evaluating Their

Design Practices

Using programmable SOCs
(system-on-chips) in combination
with higher-level building blocks,
design teams can now optimize an
entire system’s performance through-
out the development process –
eliminating the performance issues
that cause costly delays. Mentor
Graphics and Xilinx have teamed
up to provide an advanced EDA
(electronic design automation) and
silicon solution, setting the stage
for true platform-based design.

Multimillion-gate FPGAs with
embedded processors and high-speed
interfaces require architectural solu-
tions tailored to specific design needs.
Issues such as hardware/software par-
titioning and validation, board inter-
connect, and system-level verification
can all lengthen your time to market.
The key to efficient and effective
design is to employ an integrated flow
that brings together hardware, soft-
ware, and board and layout engineers
early in the design process.

Mentor’s comprehensive, system-level
FPGA design solution, including
design creation and management,
hardware/software co-verification,
simulation, synthesis, and PCB
(printed circuit board) analysis and
layout, empowers the complete design
team. All team members can take
advantage of the advanced building
blocks found in today’s FPGAs and
avoid costly delays. At Mentor
Graphics we are committed to deliv-
ering complete and integrated solu-
tions that support AS. Our goal is to
help you eliminate performance issues
and shorten your time to market.

Using Forte’s Cynthesizer and AS to Improve Process and Outcome
Architecture modeling and synthesis allows groups to produce better designs
faster. Combining the power of AS with C++ design, verification, and software

development marks a significant step forward in the
design process.

With AS methodology and appropriate constraints and
directives, you can create multiple RTL implementations
from one C++ model in minutes, each implementation

representing a unique tradeoff between performance, area, and power. Forte’s
Cynthesizer customers have found that designs created and verified in C++ typically
yield a 20x to 30x reduction in lines of code, simulate faster by orders of magnitude,
and reduce the design schedule by 50% or more.

Imagine your group is creating a cellular phone chipset. Among the design
elements you’ll want to consider are the tradeoffs between performance and
die size, and between hardware and software implementations of a JPEG
algorithm. To get an accurate hardware estimate, you’ll first need to produce RTL
code, and then apply RTL estimation tools or logic synthesis. Using traditional
methods, that process would take your team several calendar months – 50 to 100
engineering months – to create one RTL implementation.

With AS, on the other hand, you can automatically create a range of RTL
implementations from high-level C++. Armed with this data, you can trade
off hardware and software implementations with confidence.

The exploration capability of AS, coupled with the sheer productivity gain in
moving to behavioral C++, makes the AS/C++ combination the designer’s
power tool for the complex systems of tomorrow.

New Technology Software

impressive array of tools that address
design, partitioning and optimization,
debugging and verification, and reuse.
Let’s look at each one in turn.

Design

AS improves up-front design decisions
because it’s based on a high-level language
specification. It’s a lot easier to manage
your design functionality when you don’t
have to worry about register and interface
timing. AS works to capture the function-
ality and get it verified quickly, and then
automatically compiles to an implementa-
tion that meets your system specifications.
AS also makes it easier to trade off design
constraints against performance goals. For
example, if you run a compilation and the
resulting implementation doesn’t meet
your performance criteria, you simply
rerun the compiler and ask it to improve
the performance by using more hardware
resources – it’s simple and painless.

Partitioning and Optimization

Improved partitioning and optimization
are core benefits of an AS flow. AS
enables you to define hardware/software
partitions easily, push a button, and have
the tools automatically generate the soft-
ware-executable and hardware bitstream,
as well as all of the routing required to
enable the hardware and software compo-
nents to communicate effectively. This
includes the synthesis of buses and bus

interfaces, as appropriate, as well as the
software drivers necessary to support them.

The ability of AS to accomplish this auto-
matically, with minimal user interaction, is
key. The more you have to do by hand, the
less you’re going to iterate to find the opti-
mal solution. The power of AS is that these
automatic tools make it easy to explore the
entire solution space quickly, enabling you
to find the best solution for your applica-
tion. To evaluate potential candidates in
the solution space effectively, the tool must
be able to profile the candidates with
respect to such design considerations as
throughput, memory usage, and FPGA
area. You’ll also appreciate being able to
evaluate design bottlenecks. You can easily
answer questions such as: “Is the system
constrained because there is too much traf-
fic over the system bus, or because the
memory accesses are taking too long?”

On the hardware side of the partition,
selection is even more complex. In other
words, a typical software implementation
most often involves a single performance
point. If you want better performance, you
need a faster processor. Code-tuning can
provide improvements at the cost of mem-
ory, but overall the range of implementa-
tions is limited. An FPGA implementation,
on the other hand, can involve a wide range
of performance points based on varying the
hardware architecture. More gates typically
(but not always!) equals better perform-

ance. An example of a classic hardware
tradeoff is adding pipeline stages to dra-
matically improve throughput at the
expense of latency and area.

Here again, your ability to explore poten-
tial hardware architectures thoroughly is
directly related to making the optimal
design choices. AS enables you to do this
automatically, simply by rerunning the
compiler with different preferences. You
don’t have to rewrite specification code,
which saves both design and verification
time. Perhaps even more important, AS
prevents you from introducing errors into
this verified design.

Pipelining

It is in this area that high-level language-
based methodologies truly shine. For
example, changing the level of pipelining
later in the traditional design flow is such a
huge undertaking it’s usually not even
considered. If a design doesn’t meet specifi-
cations, the entire design team typically
spends significant time and energy trying
to tweak the design to achieve the specifi-
cation performance.

In an AS flow, you don’t need to decide in
the beginning about what level of pipelin-
ing is appropriate – you can make your
decision at compile time. The resulting
implementation is far more likely to con-
verge on the optimal architecture for your
system specifications.

Winter 2002 Xcell Journal 33

Celoxica Offers AS Functionality
The key to unlocking the potential of programmable platforms
and their advanced system architectures – and opening them up
to a wider application base and design
audience – is an idea-to-implementa-
tion design flow and methodology that
deals effectively with design complexity,
manages implementation efficiency, and provides distinction of
processing fabric at the correct level of abstraction.

The DK design suite from Celoxica is just such a solution, meeting
the challenge of co-design at the system level. The product of
R&D investment and collaboration with Xilinx and other industry
partners, our comprehensive design flow and methodology directly
addresses the needs of the system designer.

Celoxica’s software-compiled system design methodology delivers
enhanced capability – through its ability to express complex algo-
rithms with cycle-accurate efficiency – and interoperability, with
mixed language descriptions and third-party tools, where sub-cycle

nanosecond timing control is required.

Looking to prototype or design a system? Need a
slick, optimized route from idea to implementa-

tion? With iterative partitioning capabilities that lead more
quickly to an optimal solution, the Celoxica co-design method-
ology fits right in with AS.

At Celoxica, we are committed and delighted to be working
with Xilinx to deliver an efficient, software-compiled system
design methodology that leverages AS. System design is being
reconfigured – and we’re right there.

Debug and Verification

The AS approach likewise expands your
options for system debugging and verifica-
tion. Traditional approaches to design
verification rely exclusively on RTL
simulation, which, while accurate, is unac-
ceptably slow for large system designs. In
addition, the interfaces to software code
and ISS (Instruction Set Simulators) are
clumsy and inelegant.

With AS, the system specification is auto-
matically synthesized to implementations,
so functional verification of the system
specification is equivalent to functional ver-
ification of the implementation. By con-
trast, traditional methods of implementa-
tion involve a manual translation step, so
verification of the system specification tells
you little about the functional correctness of
the ultimate implementation.

In addition, an AS debugging and verifica-
tion toolset provides multiple layers of fideli-
ty. The first level is the software paradigm.
Here you can use traditional software debug-
ging techniques, setting breakpoints and
stepping to code, to chase down bugs. The
next level creates a co-simulation environ-
ment, integrating simulation tools and ISS
to delve into the details of how the hardware
interacts with the software. Finally, you can
even implement your design on a target
FPGA and use tools, such as ChipScope™,
to explore the details of the actual imple-
mentation running on real hardware.

Another key benefit of the AS approach is
that it enables you to work at a level of
abstraction appropriate for the level of
design you’re working on. For example,
working at the clock cycle level, when your
goal is simply to verify that the algorithm
functions correctly, provides too much detail
and will actually get in the way of under-
standing the algorithm’s performance.
Moreover, working at higher levels of
abstraction is typically many times faster
than working at the lower levels, enabling
faster iteration time in the code-compile-
debug cycle. Of course, for those times when
you need to figure out how to remove “just
one more” clock cycle to meet your through-
put specification, working at the cycle-

accurate simulation level, even though it is
slower, will give you the detail you need.

Reuse

AS also facilitates efficient design reuse.
A powerful tool in any designer’s toolbox is
the large set of IP you can use for standard sys-
tem functions. Xilinx and its partners provide
a wide range of IP products. These products
plug directly into any design flow. However,
designs that are functionally validated and
implemented at higher levels of abstraction
are more suitable for an AS flow because they
can be reused in many future products – even
where design constraints and performance
goals are quite different. Because, with AS, a
single source specification can provide multi-
ple implementations simply by rerunning the
compiler with different constraints, a single
piece of IP can provide a variety of imple-
mentations addressing high throughput, small
area, or some optimal combination of the
two. Furthermore, the optimal combination
can be determined expressly within the con-
text of your specific design.

In addition, the AS flow facilitates develop-
ment and verification of IP because the IP
designer can work at the functional level.
And because a single specification can be
targeted to a wider range of implementa-
tions, IP developed using AS is likely to
find broader application.

Conclusion

Architectural synthesis is both a powerful
new tool in your quest for the optimal
system design solution, and a mighty
weapon in the fight against design com-
plexity. AS requires a new way of thinking
about systems – not as separate hardware
and software domains – but as an inte-
grated whole, the boundary of which is
extremely fluid. FPGAs, with the flexibili-
ty of embedded processors and the ability
to transmit data at Gigabit rates, provide
the power to drive new classes of systems.
Architectural synthesis provides a way to
harness that power and develop your
designs in record time.

System-Level Architectural Decisions Accelerate Silicon Success
FPGAs, the early drivers of nanometer tech-
nology, are typically one of the first com-
mercially available products for a foundry’s
new process node. With each process step

forward, FPGAs handle increasingly complex, high-performance designs. As a result,
the FPGA design process has been forced to move from ad-hoc design and verifica-
tion techniques to a highly disciplined SoC-like solution.

The Cadence® Design Systems/Xilinx alliance delivers on that disciplined solution –
an FPGA solution from system-level design to implementation. In fact, the partnership
delivers a proven solution that integrates the Cadence SPW (Signal Processing
Worksystem) and the Xilinx CORE Generator™ tool with the complete Cadence
NC-Sim verification suite.

Cadence SPW enables you to make architectural decisions for signal processing
systems with confidence. Importing RTL IP from the Xilinx CORE Generator tool
into the SPW Hardware Design System (HDS) provides access to an extensive library
of Xilinx DSP IP cores. This library, optimized for the Xilinx FPGA, is critical in
evaluating architectural choices.

What’s more, you can combine this signal processing implementation developed
in SPW with the control-logic implementation in the NC-Sim verification suite.
The suite enables transaction-level debug of the complete system – regardless of the
combination of SystemC, Verilog, and VHDL design blocks. This provides a smooth
transition from system-level design to implementation as well as the most efficient
means to complete your complex FPGA design.

New Technology Software

34 Xcell Journal Winter 2002

