
by George Mekhtarian
Technical Marketing Manager
Synopsys, Inc.
georgem@synopsys.com

Today’s large, complex Platform
FPGAs, such as the Xilinx Virtex™-II
and Virtex-II Pro™ series, can exceed
10 million system gates and operate
at speeds of 300 MHz or more. SoC
(system-on-chip) designs targeting
Xilinx Platform FPGAs are now sub-
ject to the same functional verifica-
tion delays as large ASIC designs.
Just as with ASICs, you must now
employ a type of static verification
technology known as equivalence
checking (EC) to verify FPGA design
logic and functionality.

Using the Formality® equivalence
checker from Synopsys in a Xilinx
Platform FPGA design flow allows you
to verify equivalence quickly between
RTL (Register Transfer Language) and
the synthesized gate-level netlist – and
between RTL and a post-Xilinx place-
and-route (PAR) netlist as well.
Formality EC increases confidence in
functional integrity during design
implementation, giving you the free-
dom to focus on debugging actual
design problems.

Product Focus Static Verification Flow

Learn how to use Synopsys
Formality Equivalence Checker
with Xilinx ISE tools to verify
complicated designs for Xilinx
Platform FPGAs.

00 Xcell Journal Fall 2002

Learn how to use Synopsys
Formality Equivalence Checker
with Xilinx ISE tools to verify
complicated designs for Xilinx
Platform FPGAs.

Increase Your Design Confidence
with Formality
Equivalence Checker

Increase Your Design Confidence
with Formality
Equivalence Checker

Product Focus Static Verification Flow

How Equivalence Checking Works

EC is a branch of static verification that
employs formal mathematical techniques to
prove that two versions of a design are func-
tionally equivalent. In the first stage of the
process, both versions of the design are read
into the equivalence-checking tool. During
the read process, each design is automatical-
ly segmented into manageable sections
called “logic cones.” Logic cones (Figure 1)
are groups of logic bordered by registers,
ports, or black boxes (BB). The output bor-
der of a logic cone is referred
to as a “compare point.”

Next, the tool attempts to
match, or “map,” logic
cones from the reference
design to the corresponding
logic cones within the
implementation design.
This is called “matching”
(Figure 2). Both non-
function (name-based) and
function-based matching
methods are deployed to
map compare points.

Once the logic cones have
been matched, the next step is to verify
that the functionality of each matching
cone is equivalent. Many solver (algo-
rithm) technologies are available to prove
the equivalence of logic cones: Formality
EC uses SAT, BDD, Isomorphism, ATPG,
and Arithmetic, among others. Once the
verification step is completed, the tool
produces a list of any compare points
(logic cones) that are not equivalent.
Formality EC also provides various debug
and isolation capabilities to help isolate the
implementation error.

Equivalence Checking in FPGAs

In an FPGA flow, verification challenges
result from transformations during design
implementation. Synthesis, place-and-route,
and other tools in the design flow can cause
many types of design transformations, such
as combinatorial reductions, sequential opti-
mizations (retiming), FSM re-encoding, reg-
ister merging, or duplication, as well as other
place-and-route optimizations.

• FPGA Express and FPGA Compiler II
(FCII) from Synopsys

• SynplifyPro from Synplicity

• LeonardoSpectrum from Exemplar

• XST (Xilinx Synthesis Technology)
from Xilinx.

Each synthesis tool employs its own combi-
natorial and sequential optimization, as well
as retiming (if available) algorithms.
Although the Xilinx/Formality flow as

depicted in our model was val-
idated using Synopsys FCII,
the flow should work similarly
with other synthesis tools.

Creating the Post-Synthesis
Gate-Level Netlist

The Synopsys FCII post-
synthesis gate-level netlist
contains UNISIMS compo-
nents and is in EDIF
(Electronic Design Interchange
Format). The EDIF netlist is
fed into Xilinx ISE for mapping
and PAR. The UNISIMS com-
ponents are LUTs, flip-flops,

I/O buffers, and other available resources in
the targeted Xilinx architecture. Xilinx ISE
provides the capability to generate a
Verilog™ netlist at any stage in the imple-
mentation process.

We chose the Verilog post-synthesis netlist
because Verilog netlists are commonplace
and are easily read into Formality EC. We
then created a Formality-compatible netlist
using the following methodology:

• Read the design and the CORE
Generator’s™ EDIF netlists into ISE
using NGDBUILD. This step transforms
the EDIF netlist(s) into the Xilinx data-
base format. The CORE Generator block
will be covered in a later section.

• Create a Verilog netlist containing
SIMPRIMS components using the
NGD2VER program in ISE.

• Process this netlist using the xilinx2formal-
ity.pl Perl script to generate a Formality-
compatible netlist.

If your EC tools are not set up to account
for these transformations, verification
becomes cumbersome. Formality EC
accounts for the transformations per-
formed by synthesis and Xilinx ISE
(Integrated Software Environment) tools
(Map and PAR) through use of the follow-
ing files and utilities:

• Verification libraries: Formality-specific
models for Unified Simulation
(UNISIMS) components and post-PAR
Simulation components (SIMPRIMS)

• Constraint file(s): to inform Formality
EC of the synthesis tool’s register-
merging (if enabled) and Mapper
optimizations relating to:

– registers that turned to constant

– ports that were optimized away

– ports whose direction changed

• Netlist: a Formality-compatible, gate-
level netlist.

In traditional FPGA design flows, simula-
tion is used to validate the functionality
of the gate-level netlist produced by syn-
thesis and PAR tools. In modern flows,
simulation is replaced by equivalence
checking (Figure 3).

RTL to Post-Synthesis Verification

You can use a number of synthesis tools to
optimize designs during RTL operations.
Xilinx supports the following synthesis
tools for its Virtex and Spartan™ FPGAs:

Fall 2002 Xcell Journal 00

Logic
Cone

BB

BB

Figure 1 - Logic cone

Product Focus Static Verification Flow

The post-NGDBUILD netlist represents
the result of two transformations: synthesis
and NGDBUILD. Because the netlist con-
tains non-synthesizable constructs and
“defparam” statements that cannot be read
directly into Formality EC, Xilinx and
Synopsys developed the xilinx2formality.pl
Perl script to process the post-
NGDBUILD netlist into a usable format
(Figure 3). Future improvements will
enable Formality EC to
read the Verilog netlist
generated from the ISE
environment directly.

UNISIMS and
SIMPRIMS Libraries
for Formality EC

Two special Xilinx verifica-
tion libraries are needed for
use with Formality EC:

• UNISIMS: The UNISIMS
library contains the Xilinx
primitives in RTL format.
This library is required
when the design contains
Xilinx primitives, such as
an instantiation of a DCM
or block RAM.

• SIMPRIMS: The SIMPRIMS library
contains the Xilinx primitives for back-
annotated verification (Post-NGDBUILD,
Post-MAP, Post-PAR).

These libraries must be read into their
respective RTL and post-NGD containers
within Formality EC during the design
read stage. Xilinx provides specific
unisims.fms and simprims.fms scripts to read
the necessary models into Formality EC.
Currently, the scripts read in the entire
libraries. Synopsys is working with Xilinx
to utilize Formality’s read-library-on-
demand feature – which will eliminate the
need to read the entire UNISIMS and
SIMPRIMS libraries and read only the
components actually used in the design.

Reading CORGEN Models

Xilinx provides a comprehensive set of IP
(intellectual property) blocks through the
CORE Generator tool. These blocks,

which range from simple shift registers and
memories to complex Reed-Solomon
encoder/decoder blocks, can be cus-
tomized. The CORE Generator software
generates all the necessary models for the
customized IP blocks, including a behav-
ioral model for simulation and an EDIF
structural netlist with UNISIMS compo-
nents. Together, these elements represent
the optimum implementation of the IP

block using the available resources on the
targeted Xilinx FPGA architecture. You can
instantiate these IP blocks as black boxes in
your RTL code.

FCII generates an EDIF netlist containing
the black boxes. NGDBUILD then uses
the optimized structural EDIF representa-
tion of the blocks to fill the black boxes in
the post-FCII EDIF netlist. The post-
NGBUILD Verilog netlist, created using
SIMPRIMS, contains the complete struc-
tural representation of the design, includ-
ing the content of CORE Generator
blocks. During RTL to post-NGDBUILD
verification, Formality EC needs the func-
tional model for a given IP block in the
RTL to match it with the post-
NGDBUILD netlist. For this, Xilinx pro-
vides core2formal, a Perl script that reads in
the UNISIMS-based EDIF structural
netlist for the IP block. This creates a
Formality-compatible SIMPRIMS-based

Verilog netlist. The SIMPRIMS-based
netlist is the functional model that
Formality EC uses to verify the CORE
Generator blocks (Figure 3).

Performing the Verification

The RTL2postNGDBUILD equivalence-
checking flow is easiest when FCII
synthesizes the design without using
the following optimization options:

register-merging, max fanout
control (register duplication),
and register retiming.
However, without these
optimizations, QoR (Quality
of Results) may be compro-
mised. Therefore, handling
these transformations in
an equivalence-checking flow
requires some additional
consideration.

For the register-merging
option (on by default),
Synopsys developed the
makeconstraints.sh script. The
script reads the FCII-generated
report, which details the list of
merged registers, and then
produces a Formality set_con-
straint command file. This

command file is then read into Formality
EC prior to verification.

Formality EC offers a special feature for
handling max fanout control using the reg-
ister duplication option (off by default): To
handle the transformation automatically,
enable the verification_merged_duplicated_
registers variable in Formality EC prior to
verification.

When a design is synthesized with
retiming, verification becomes more diffi-
cult. Formality EC supports sequential
optimizations (such as retiming) when
localized or limited to a block, but FCII
generally performs retiming on an entire
design. To perform a successful verification
with such optimizations, the command
set_parameter–retimed must be used on all
blocks that have undergone retiming. If
you’re planning to use Formality EC, use
retiming sparingly in FCII.

00 Xcell Journal Fall 2002

Reference Implementation

Formality Matched Cone

User-Specified Matched Cone

Unmatched Cone

Figure 2 - Formality matches the
cones from the reference design to
their corresponding cones within
the implementation design.

Product Focus Static Verification Flow

RTL to Post-PAR Verification

Figure 3 illustrates the transformations that
ISE applies to a synthesized netlist:

• NGDBUILD: Transforms the EDIF
netlist(s) into Xilinx database format.

• Map: Packages the LUTs, flip-flops,
SelectRAM, and other resources in the
design into CLBs (configurable logic
blocks), IOBs (input/output blocks), and
so forth. Using the state-of-the-art Xilinx
Mapper, you can apply certain transforma-
tions to the design, such as optimizing
away constant registers, optimizing away
ports that are no longer needed, and
changing the direction of ports from bi-
directional to output if warranted.

• Place-and-Route (PAR): PAR is the last
step in implementing the design before
creating the bitstream to program the
Xilinx FPGA.

Creating the
Post-PAR Netlist

After PAR, a SIMPRIMS-
based Verilog simulation
netlist is created using
NGD2VER, as shown in
Figure 3. In the Xilinx
design flow, this netlist,
along with its accompa-
nying SDF file, is used
in functional and tim-
ing simulation to veri-
fy design integrity
after Map and PAR.
The same netlist,
processed with the
xi l inx2formal i ty.p l
script, is read
into Formality EC
for functional
verification.

Performing the
Verification

Before the RTL
to post-PAR ver-
ification with
Formality EC
can be complet-
ed successfully,

you must examine the Mapper’s optimiza-
tion of constant registers and some ports.
Depending upon the target FPGA archi-
tecture and design constraints, the Xilinx
Mapper uses special algorithms to identify:

• Registers that can be changed to a
constant

• Ports that can be optimized away

• Bidirectional ports that can be changed
to output only.

The Mapper performs these optimizations
and records the result in the Mapper report.

These transformations must be accounted
for during verification. The xilinx2for-
mality.pl script reads the information
relating to these optimizations from the
placed-and-routed design database to pro-
duce a Formality constraint file. Reading
this constraint file prior to verification

enables Formality EC to account for these
transformations.

Conclusion

Effective verification of today’s large,
complex FPGAs requires a static verifica-
tion flow. Xilinx and Synopsys have creat-
ed a solution that uses the Formality
equivalence checker to provide a fast,
thorough functional verification method-
ology. You can benefit from this flow
today using existing implementation tech-
nology. Synopsys is currently developing
an improved, streamlined verification flow
to handle next-generation FPGA imple-
mentation technologies.

Xilinx provides a comprehensive FAQ,
application notes, and updated information
for the Xilinx/Formality EC flow. Go to
http://support.xilinx.com/company/search.htm
and search for “Formality.”

Fall 2002 Xcell Journal 00

Figure 3 - Xilinx/Formality equivalence checking flow

