
by Kevin Heawood
Vice President, Strategic Marketing
Intrinsyc Software, Inc.
kheawood@intrinsyc.com

Typically, embedded systems are designed
around a specific CPU architecture that
comprises a 32-bit high-performance
processor unit, volatile and non-volatile
memory, and a set of peripherals and inter-
faces specific to that system or to a particu-
lar application. With on-chip clock speeds
reaching 400 MHz to 700 MHz and
board-level clock speeds as fast as 133
MHz, system design has become increas-
ingly time-consuming, complex, and risky.

Using a single-board computer (SBC)
or companion chips and interface logic to
reduce risk can be difficult, however, as it is
not always possible to find an SBC with the

correct peripheral mix and the interfaces
that go with a particular CPU. Even if you
do find the right SBC, the peripherals may
be too expensive for your application, or
otherwise inappropriate.

NMI Electronics Ltd. has developed an
SBC, or more specifically, a deployment
module, that greatly simplifies system
design. The module contains all the main
components of a 32-bit CPU system,
including volatile and non-volatile memo-
ry, but it uses either a Xilinx Spartan™-II
or Virtex™-II FPGA to provide a com-
pletely programmable peripheral set and
an interface that can be specifically tailored
to any application (Figure 1).

Programmable Interface and Companion Chip
Most SBCs have a predefined interface and
set of functions. The interface is usually

based on an industry standard, such as
PC/104, or on a combination of a standard
interface and a custom interface defined by
the board manufacturer.

Peripheral functionality is normally pro-
vided by standard chipsets and is deter-
mined according to whatever the device or
CPU manufacturer considers the most
commonly requested functions. Beyond a
few basics (for example, baud rates on
UARTs or display resolutions), the mix of
peripheral functions is neither flexible nor
programmable, and so may be inconven-
ient or inappropriate for your application.

Using an FPGA effectively eliminates
these restrictions. The FPGA can be placed
onto the CPU local bus and closely cou-
pled with the memory subsystem, thereby
creating a highly programmable compan-
ion and interface chip.

NMI Electronics’ CPU deployment module
uses Xilinx Spartan-II and Virtex-II FPGAs
to achieve high levels of customization.

Versatile MicroEngine
Simplifies Embedded
System Designs

00 Xcell Journal Spring 2003

Versatile MicroEngine
Simplifies Embedded
System Designs
NMI Electronics’ CPU deployment module
uses Xilinx Spartan-II and Virtex-II FPGAs
to achieve high levels of customization.

Interfaces
This FPGA system architecture allows you
to implement the interface you require to
the rest of the product hardware in a way
that provides the optimum solution for your
application. NMI supplies a number of
standard interfaces, including the following:

• PCI
• ISA
• PCMCIA.

It is also possible to support the CPU
local bus or a custom-designed interface.

Peripherals
Because almost every application has a
unique set of requirements, the peripherals
required for each specific system are as
diverse as the applications themselves.
Using the FPGA as the companion chip to
fulfill these requirements, it is now relative-
ly simple to mix and match a range of
peripherals in a way that meets the exact
needs of your application.

Examples of peripherals that can be
included in the FPGA are:

• UARTs
• SPI, I2C, and AC97 serial interfaces
• Display controller (LCD or CRT)
• Stepper motor controller
• Camera frame grabber
• PCI slave and host interfaces
• PC/104 interface.

Accelerators
You can also place application-specific
accelerators (co-processors) into the FPGA.
These accelerators assist the CPU in the

to a mobile phone and one for diagnostics.
It may not be possible to find a CPU and
companion chip with that particular
peripheral mix.

By using an FPGA-based companion
chip, however, you can implement a PCI
host bridge as an interface to a high-
performance standard graphics chip, plus a
CAN controller, and two UARTs, all with-
in the FPGA. You could even implement a
DMA controller to feed the graphics chip
and service the CAN controller and
UARTs, which frees up the CPU to per-
form more compute-intensive tasks.

NMI MicroEngine
Using the FPGA as the basis for the system
interface and peripheral companion chip also
makes it possible to isolate the CPU/memo-
ry/FPGA subsystem and mount this onto a
small printed circuit board.

In fact, this is what we at NMI have
done with our MicroEngine (µEngine).
The µEngine is a small form factor deploy-
ment module that contains all the key ele-
ments of a high-performance, processor-
based system (CPU, flash memory,

performance of specific functions.
Examples of such accelerators include:

• 2D display assistance
• Hardware cursor support
• DSPs.

Companion Chip Application Example
Imagine you are working on an automobile
navigation system that requires high-
performance graphics, an interface to CAN
bus, and two serial ports – one for interface

Spring 2003 Xcell Journal 00

JTAG, Debug and
Test Connector

Local Power
Supplies

SODIMM 144 Expansion Bus Connector

CPU

FPGA

Flash EPROM SDRAM

12 CPU
Specific pins

88 general purpose,
FPGA I/O pins

CPU local
bus (on the

MicroEngine)

External
Interfaces
(from the

MicroEngine)

PC/XT Interface bus
to PC/104

External interrupt
sources

CRT or LCD displayNMI SDRAM
Controller IP

NMI Distributed
DMA Controller

IP Core

NMI Color
Space Converter

IP Core

CPU Interface
Logic (CPU type
set at synthesis

time)

NMI ISA Bus
Interface IP Core

NMI Interrupt
Controller

IP Core

NMI Display
Controller

IP Core

NMI 2D Graphics
Accelerator

IP Core

Figure 1 - µEngine general architecture

Figure 2 - Example µEngine FPGA design

SDRAM), but which uses a Xilinx Spartan-
II or Virtex-II FPGA to provide the system
interface and peripheral functions. This
arrangement provides a totally flexible core
module, and it enables you to include pre-
cisely the peripherals and interfaces you
need for your system. It also means that
you can use the same basic board in a wide
range of equipment.

In addition, the µEngine addresses the
conceptually simple, yet practically more
difficult, problem of designing microproces-
sor systems with high-speed external clocks
and buses. The µEngine is, in its
own right, a self-contained, pre-
tested, high-performance micro-
processor subsystem. All it needs
to “run” is power.

In other words, all you need
to implement your application is
a baseboard containing a power
supply and the specific interface
logic to suit your application. In
many cases, the baseboard can be
relatively straightforward, and
use lower technology design and
less stringent manufacturing
rules than the high-speed µEngine design.

The connection between the µEngine
and the baseboard is made via an industry-
standard, 144-pin, SODIMM connector
that carries both power and logic signals.
Eighty-eight pins of the interface are con-
nected to the FPGA and are completely
user-programmable. Twelve CPU-specific
pins carry such dedicated functions as
serial ports, ADCs, DACs, or USB,
depending on the CPU deployed on the
µEngine (Figure 2).

The image for the FPGA is held in the
µEngine’s flash memory and is completely
reprogrammable. You can even place more
than one FPGA image on a µEngine,
enabling it to support multiple baseboards.
It does this by means of a mechanism that
identifies the type of baseboard it is plugged
into at power-up and automatically loads
the correct FPGA for the application.

In addition, the ability to isolate the
CPU from the baseboard allows you to
plug different CPU-based µEngines into
the same baseboard. This is one of the
µEngine architecture’s greatest advan-

tages. It enables upgrades of CPUs as well
as the use of CPUs of varying perform-
ance levels, such as an application that
requires modest graphics performance in
an entry-level product and high perform-
ance in another, high-end product. For
instance, the entry-level product might be
based on a Hitachi SH3 (without FPU)
100 MHz µEngine (Figure 3) – and the
high-end product might be based on a
Hitachi SH4 (with FPU) 200 MHz
µEngine (Figure 4). Both units would use
the same baseboard.

FPGA Intellectual Property
FPGA IP cores for the µEngine are avail-
able from many sources:

• NMI provides a wide range of proven
IP (for example, PCI host bridge, dis-
play controllers, UART, frame grabber,
2D graphics accelerator).

• Xilinx LogiCORE™ IP
• Third-party IP
• Your own IP
• Custom-developed IP.

These elements can be freely mixed in
the µEngine to produce the unique func-
tionality required for any application. The
NMI deployment module has many fea-
tures that simplify integration into the
final system. For instance, because most
systems using high-performance CPUs are
running an embedded operating system,
such as Windows® CE.NET, we have pro-

vided Windows CE software
drivers for all of our FPGA IP on
the full range of µEngines.

What’s more, you can popu-
late a µEngine with various
FPGA densities: 50K to 200K
gates on Spartan-II FPGAs, 50K
to 300K gates on Virtex-E
FPGAs, and 250K to 1M gates
on Virtex-II FPGAs. This vari-
able gate population makes the
µEngine the most cost-effective
solution for almost any applica-
tion, interface, peripheral, or

accelerator mix.
Lastly, to ease portability from one

FPGA device to another, our FPGA designs
use only high-level description languages.

Conclusion
NMI developed the µEngine deployment
module through imaginative use of FPGAs
in CPU-based systems, creating a high-
performance module that provides
extraordinary hardware flexibility and
upgradeability. The availability of FPGA
IP and reference designs facilitates rapid
and low-risk development of new products
and applications, allowing companies to
focus on adding value, rather than having
to reinvent the core technology.

NMI offers several development plat-
forms, enabling you to easily evaluate the
µEngine and its associated IP.

Editor’s note: Since this article was written,
NMI Electronics was purchased by Intrinsyc
Software Inc. For more information on the inno-
vative use of Xilinx FPGAs in µEngines, visit
www.intrinsyc.com/products/microengine/.

00 Xcell Journal Spring 2003

Figure 4 - Virtex XC2V1000 implemented
on Hitachi SH4 µEngine

Figure 3 - Hitachi SH3 µEngine with Virtex XCV100

