
by Aki Niimura
Consultant
Ponderosa Design
ponderosa_design@pacbell.net

As the complexity of FPGA-based systems
grows every year, we are asked to imple-
ment larger, more complex functionality
within tighter schedules. Furthermore, the
type of design has changed rapidly in
recent years. People used to design an
FPGA taking an existing board design,
often containing asynchronous clocks.
Those days are over. You can not design
today’s Platform FPGA just by extending
yesterday’s design practices. New designs
often require the implementation of com-
plex sequences or communication proto-
cols. The finite state machine (FSM) is a
well-known design methodology to imple-
ment such sequences. FSM is very effective
when the sequence is not very complex.

However, implementing a
complex sequence using

an FSM is not prac-
tical and is often

difficult to
maintain.

Microcontrollers are commonly used to
implement complex protocols. However,
they require substantial resources (mem-
ory, cost, pins, ...), which can be difficult
to justify in real-life situations. On the
other hand, software implementations
allow designers to cope with mounting
logic complexity. They are easy and quick
to implement and easier to maintain.

There is a gap, however, between the
range of design complexity that FSM
methodology can handle and what
microcontroller-based methodology is
good for, as shown in Figure 1. As micro-
controllers become more powerful, the
gap is widening.

The scc-II is not just another set of
microcontrollers. We specifically con-
structed the microsequencer to fill the
gap between low-level FSM solutions
and high-level microcontroller designs.

scc-II – A Configurable Microsequencer

Sequencers have been used in many LSI
projects to implement functions. For
example, instructions in a CISC
(Complex Instruction Set Computer)
CPU were often implemented in this way
(called microcode, which is written in a
proprietary assembly language). By allow-
ing users to write programs in a high-level
language, the scc-II can accommodate a
wider range of FPGA applications.

The key architectural benefits of the
scc-II are:

• Small footprint

• High-level language support

• Small code size

• Configurable and customizable

• Capable of handling 16-bit and 32-bit
data types

• Timer (integrated into the core
architecture)

• Support of interrupt handling

• Developing and debugging tools

• Utilization of Xilinx Spartan™-II and
Virtex™-II devices.

A block diagram of the scc-II is shown in
Figure 2. The core itself requires 400 to 600
LUTs, depending on the configuration and
synthesis constraints.

How the scc-II Works

The scc-II employs a stack-based architec-
ture. Stack computers use data stacks to
evaluate given operations (Figure 3). The
benefits of stack-based architecture are:

• High-level language ready – can execute
syntax tree directly

• Simple hardware – easy to understand,
easy to customize

• Small instruction code – most scc-II
instructions are one byte long.

Technology Focus IP

When your project design is too big for a finite state machine, but a microcontroller would be overkill,
try Ponderosa Design’s scc-II microsequencer.

scc-II Microsequencer –
A New Solution for Platform FPGA Designs

00 Xcell Journal Spring 2002

Microcontroller

FSM

Performance

Complexity

Microsequencer

Figure 1 - Performance versus
functional complexity

Technology Focus IP

Another unique aspect of the scc-II architec-
ture is the use of register windows. Register
windows are used to pass arguments to a
function being called. Because the scc-II
does not use a stack frame in memory to
pass arguments, the scc-II does not require
data memory to run a high-level language
program, thus making the scc-II more
attractive for Platform FPGA applications.

Programs for the scc-II are almost entirely
written in the high-level language SC.

The Language SC

The scc-II assumes the use of a high-level
language. However, existing high-level lan-
guages are not designed for microsequencer
applications. Therefore, we developed a
stripped-down version of C language – SC.
SC programs do not support “struct” and
other complex data types, but SC has sever-
al enhancements to describe control appli-
cations efficiently. Timer, I/O, and debug
features are natively supported in SC.

The following is a code fragment from a
project that controls an SDRAM memory.

In the above code fragment, eval_cond(n),
wait(n), and outp(port) are not function calls,
but they are natively supported by SC. Note
that the loop counter of the repeat state-
ment is placed in the data stack and not in
the register file.

scc-II Target Applications

The scc-II can be used in designing func-
tional blocks to perform procedural con-
trol. For example, flow charts or simple

• Larger Block RAM allows larger program
sizes (up to 8 KW).

• Native multiply operators are supported.

Case Study – Web on FPGA

To demonstrate the effectiveness of the
scc-II solution, we have developed a Web
server that uses less than 25% of the
resources of a Spartan-II FPGA
(XC2S150). The only additional hardware
required beside the FPGA are an Ethernet
PHY device and a signature ROM (option-
al). We found that the Spartan-II VoIP
Development Kit from Insight Electronics
(www.insight-electronics.com) included all

the hardware components we needed. Thus,
we decided to use this off-the-shelf board to
create our Web server design. Figure 4
shows a screenshot from a Web server proj-

arithmetic functions (such as averaging)
are good candidates for implementation
by the scc-II.

Other target applications include:

• Read/write flash,
EEPROM, 1-Wire™
devices

• Interface to I2C,
RS-232, Ethernet,
USB1.1, IrDA

• Command interpreter
(a block is controlled
through commands)

• User interface (such
as keypad, LCD,
touch panel)

• Servo controller (some
arithmetic operations
required)

• Design that requires many variants.

The scc-II and Virtex FPGAs

The Virtex family of FPGAs are true “sys-
tem on a chip” platforms. The advanced
technology available in Virtex-II devices
provides further attractive features to the
scc-II, including:

• The scc-II can run at 70 MHz or faster.

Spring 2002 Xcell Journal 00

Program
ROM

Instruction
decoder

IP

Interrupt
logic

Return
stack

Data stack
ALU

Work
RAM

I/O

Timer

push a push b add

a + ba
b

ALU

a

y = a + b

pop y

void
init_sdram()
{

while(!eval_cond(DLL_RDY)) { } // wait for DLL is ready

wait(14); // 286 uS
outp(SDCMD, SD_PRE);
repeat(8) {
outp(SDCMD, SD_AREF); // looping takes 7 cycles

} // tRC = 84nS; 20nS * 5
outp(SDCMD, SD_MODE);

}

Figure 2 - scc-II block diagram

Figure 3 - How stack computers operate

Figure 4 - WebThermo demo application

Technology Focus IP

ect called WebThermo. The screen displays
the current temperature every minute.
Table 1 shows utilization statistics from a
Synplify analysis of the XC2S150 device.

The 2 KB WebThermo program imple-
ments all Ethernet, TCP/IP, and Web
(HTTP) protocols, as well as Celsius-to-
Fahrenheit conversion. At start up, the pro-
gram retrieves a unique 48-bit ID code
from a Dallas 1-Wire device (DS18S20),
which is used as an Ethernet MAC address.
For further details on the WebThermo proj-
ect, please visit home.pacbell.net/akineko/.

Program Development

One challenge of the scc-II solution is in
providing reasonable program development
and debugging tools. Figure 5 illustrates a
typical program development flow. In addi-
tion to key software tools, we wrote many
scripts and templates to automate the
design process. While creating several proj-
ects with the scc-II, we refined the RTL
design, as well as the development software
and scripts. As a result, they have become
mature and stable.

Currently the development environment is
supported under Unix. It is also possible to
port some of the tools to Windows platform
using Cygwin from Cygnus (RedHat). The
tools are developed assuming that the user’s
RTL design is in Verilog HDL.

Debugging, Then Debugging Again

Debugging is the biggest challenge in devel-
oping an scc-II based design. We are pro-
viding several debugging aids:

1. Debugging starts with simulation:

– Three debug instructions (print, $dump,
$stop)

– Self-checking embedded in the code

– Execution trace log generation

– Dis-assembler to display current con-
text (on-the-fly/offline)

2. Ready to try on the board:

– JTAG debugger to download program
without backend (synthesis + PAR)

– UART customized for debugging (one
can use printf())

– “xdl” script to replace ROM contents
without backend.

Lessons learned:

1. Logic simulation is always the best tool
for debugging.

2. printf() is a primitive but very powerful
means for debugging.

3. Use #ifdef ... #else ... #endif to switch
between debug and release.

4. A bigger vehicle is needed for debug-
ging (you may need 2 KB to develop a
1 KB program).

JTAG debugger

The JTAG debugger (jtagdbg) has proved
to be a powerful tool to facilitate the debug-
ging process. The JTAG debugger uses the
Virtex USER1 JTAG command to commu-

nicate with a Virtex FPGA. By substituting
the instruction ROM block in the scc-II
design with a JTAG embedded ROM
block, you can perform several debug com-
mands, such as downloading a program
without going through the FPGA backend
design process. No signal change is
required, as JTAG signals are hidden from
your RTL code.

Conclusion

We have presented a microsequencer, the
scc-II, which is new to conventional FPGA
design practices. Unlike other IP cores, the
potential of the scc-II is not limited to its
original form. Rather, the scc-II can evolve
to meet each application challenge. One
avenue we plan to explore is adding Galois
instructions to the original scc-II core. This
enhancement can help in error correction
or security applications.

Another avenue we plan to pursue is project
automation, such as a wizard script that sets
up project directories and tools – and then
creates a skeleton version of RTL code, as
well as skeleton SC program and header files.

The complete scc-II design solution
is offered by Ponderosa Design
in Sunnyvale, California Please write
ponderosa_design@pacbell.net or visit
http://home.pacbell.net/akineko/.

00 Xcell Journal Spring 2002

WebThermo Usage of XC2S150 Note

LUTs 828 (23%) Synplify 7.0

Block RAM 8 of 12
3 for TX, RX buffer,

5 for Program

BUFTs 320 (18%)

Table 1 - WebThermo logic size

Figure 5 - The scc-II program development flow

