
by Bhanu Kapoor
Technology Director
Atrenta Inc.
bkapoor@atrenta.com

Decisions made early in the design process
affect the entire chip design process. Thus,

to manage designs effectively, the
tools you use for RTL (register

transfer level/language) design
must enable a stepwise refine-
ment of the code by predicting
likely downstream problems.
For example, to achieve high

performance, the guidelines for
synchronous design must be

met, as they play an important role
toward meeting timing objectives.

Recognizing the importance of adher-
ence to appropriate guidelines during the
RTL coding process, Xilinx recommends a
set of coding guidelines for designs target-
ing the various Xilinx device families. Most
designers currently follow a manual
method of design reviews to check to see if
coding guidelines have been met. This
manual method is both prone to error and
time consuming. Automating adherence to

Technology Focus Predictive Analysis

Use SpyGlass Predictive
Analysis for Effective
RTL Coding

00 Xcell Journal Spring 2003

Use SpyGlass Predictive
Analysis for Effective
RTL Coding

Atrenta Inc.’s SpyGlass software uses a
“look-ahead” engine based on fast-synthesis
technology to help you identify potential problems –
and fix them – early in the design process.

Atrenta Inc.’s SpyGlass software uses a
“look-ahead” engine based on fast-synthesis
technology to help you identify potential problems –
and fix them – early in the design process.

Technology Focus Predictive Analysis

RTL coding guidelines, therefore, would
greatly increase the timely success of proj-
ects targeting high-performance designs on
Xilinx device families, such as the
Virtex™-II series of platform FPGAs.

The SpyGlass™ Predictive Analyzer
tool from Atrenta Inc. automates the
process of meeting design guidelines
through the use of an underlying predic-
tive analysis technology. This approach
performs detailed structural analysis on
RTL aspects to check for
coding styles, RTL-handoff,
design reuse, clock/reset
requirements, verification,
timing guidelines, and
much more. The SpyGlass
tool employs a “look-
ahead” engine based on
fast-synthesis technology
and a fast, built-in, cycle-
based simulator to carry out
such analyses. Such a look-
ahead methodology only
uses RTL code as input to
the SpyGlass tool and does
not require any vectors or
assertions. It is therefore
very easy to set up and run.

Policy-Based RTL Coding
The SpyGlass™ Predictive
Analyzer is a comprehensive,
policy-based system that
defines, in a succinct and
organized way, design poli-
cies that automatically point
out time-consuming downstream issues.
The SpyGlass tool then offers suggestions
on ways to overcome these downstream
issues during the RTL code development
process. This helps you to meet your time-
to-market target.

Policy
A policy is a collection of rules for a specif-
ic purpose, such as rules associated with a
standard, a silicon vendor, or a specific
design tool. Policies enhance user extensi-
bility, allowing you to develop and manage
customized groupings of rules more easily.
The design methodology includes a set of
policies that you can select during the

Policy Engine
The policy engine accelerates electronic
product development by enabling develop-
ment teams to capture, aggregate, distrib-
ute, and apply constraints and requirements
early in the development cycle. The fast
synthesis engine internally creates a struc-
tural view of the design and foresees down-
stream issues early in the development
cycle, thereby eliminating errors at the ear-
liest possible stage.

Although you can
check many complex rules
statically on the internal
synthesized structural
view, other rules require
some understanding of the
logic function of the
design. This is particularly
true for testability-related
checks. In order to per-
form a testability check,
you must use an evaluator.
The evaluator in the poli-
cy engine is effectively a
zero-delay, cycle-based
simulator you can use to
resolve functional design
constraints, as well as carry
out a simulation required
to set up the design for
testability analysis.

Policy implementa-
tion requires a traversal
engine that works on the
RTL netlist produced by
fast synthesis. The

SpyGlass engine generates basic primitives
for rules that cover design traversal. The
connectivity information, coupled with
the traversal primitives, enable you to cre-
ate rules that look for violations across the
design hierarchy.

By applying a policy over a given RTL
design code, you can obtain a wealth of
information about the design – as well as
any of violations of the defined rules. The
SpyGlass interface highlights rule viola-
tions on the specific lines of RTL code.
Not only does the SpyGlass predictive
analysis tool offer an extensive help func-
tion to assist you in understanding the
nature of the violation, but also, where

process of RTL code development.
Examples of such policies include lint,
reuse, verification, timing, and testability.

Rule Groups
A collection of rules within a policy is
termed a group. Typically, groups consist
of rules addressing a particular area of
interest in the RTL code. Groups are hier-
archical, meaning that a group can contain
other lower-level rule groups as well as

individual rules. A group provides an addi-
tional level of modularity in applying poli-
cies to a given RTL design.

Rules
A rule is the most fundamental element in
the policy-based management system. It
describes a set of conditions that – when
checked by the policy engine – result in an
indication of a specific problem with the
RTL code. Rules allow standard analysis
of the RTL code. An example of a policy,
rule groups, and rules in the SpyGlass sys-
tem is shown in Figure 1. With this sys-
tem, you can selectively turn on specific
groups or specific rules within a group.

Spring 2003 Xcell Journal 00

Figure 1 - Example of policy consisting of rule groups and rules

Technology Focus Predictive Analysis

appropriate, it makes suggestions for
resolving the problem.

Moreover, each violation is highlighted
on a structural view of the design, which
can give you additional debugging infor-
mation for complex problems. And, as
shown in Figure 2, cross-probing between
the code and structural views reveals an
example of a clock domain synchronization
problem. Additionally, a comprehensive set
of reporting mechanisms and violation
management utilities – such as waiver to
allow a specific rule violation in a given
point in the design – further facilitate the
RTL coding and assessment process.

Coding for Xilinx Devices
Xilinx recommends a set of coding guide-
lines for designs targeting the various
Xilinx device families. These include gener-
al coding guidelines, as well as synthesiz-
able HDL guidelines. Furthermore, syn-
chronous design guidelines help you meet
timing objectives in high-performance
designs such as those targeting the Virtex-
II FPGAs, which can accommodate as
many as 8 million gates and operate at fre-
quencies as high as 400 MHz.

Clock distribution also requires specific
design code guidelines for successful imple-

mentation. For this reason, it is important
to identify the clocks and resets in the
design, as well as the clock-tree network,
early in the code development process.

Many designs, especially in the net-
working domain, typically use multiple
clock domains, a situation that presents
challenging integration and verification
issues. Signals that originate in one clock
domain may be used in other clock
domains. Correct chip operation can only
be ensured if rules governing correct use of
signals across asynchronous clock bound-
aries are followed.

The routability of design is another
aspect that can benefit greatly by follow-
ing appropriate coding guidelines. The
number of I/Os, fanout of intermediate
nodes, and widths of internal buses must
meet specified limits for various parts of a
given design.

Using the SpyGlass predictive analysis
system, you can check for all of the above
violations, problems, and issues during
the RTL coding process itself. This saves
many design iterations that might other-
wise be needed to fix errors later in the
design cycle.

Specifically, you can use the SpyGlass
tool to check the following issues relevant

to Xilinx FPGA designs:

• Single clock edge is used in the design
to clock the data.

• Internally derived or generated clocks and
set/resets are not used in the design.

• Appropriate synchronizers are used as sig-
nals cross clock-domain boundaries.

• The number of levels of logic between
registers is less than a specified value.

• The fanout of any design node does not
exceed a specified number.

• Unintended latch inferences are avoided
in the code.

• If-then-else or case statements are not
nested deeper than three levels.

• Naming conventions are followed while
coding pipeline logic.

• Assess memory requirements and find out
feasibility of conversion into regular flops,
distributed memory, and block memory.

• For state machines, separate the next-state
decoding and output decoding into two
discrete processes or always blocks.

• Outputs from design units are registered.

• Identify dead code and floating nodes
in the design.

Several of these checks are critical for
meeting timing objectives in high perform-
ance designs.

Conclusion
We have described the elements of policy-
based design methodology, enabled
through SpyGlass predictive analysis, for
effective RTL coding leading to efficient
implementation of designs on Xilinx-based
platforms. This approach performs detailed
structural analysis on RTL code to check
for coding styles, design reuse, clock/reset
requirements, verification, timing guide-
lines, and more. SpyGlass software includes
the most comprehensive coverage of
Xilinx-recommended coding guidelines
that are essential for reuse and efficient
design implementation.

To learn more about SpyGlass predic-
tive analysis, go to www.atrenta.com.

00 Xcell Journal Spring 2003

Figure 2 - Example of rule violation and associated debug windows

