
Summary This application note describes how to program XC9500™/XL/XV devices in-system, using
standard Serial Vector Format (SVF) stimulus files.

Introduction XC9500/XL/XV devices use a standard 4-wire Test Access Port (TAP) for both In-System
Programming (ISP) and IEEE 1149.1 boundary scan (JTAG) testing. Therefore, manufacturers
can reduce their overall system cost and reduce device damage due to unnecessary handling
by using automatic test equipment (ATE) or Boundary Scan based tools development to both
program and test these devices. The XC9500/XL/XV Boundary Scan architecture is shown in
Figure 1.

The Xilinx iMPACT software helps make this possible by automatically generating a Serial
Vector Format (SVF) file describing the programming and test algorithms required by the
XC9500/XL/XV devices. Most ATE platforms and Boundary Scan based development tools
accept SVF as a test vector input format. This application note describes the steps required to
generate an SVF file and how to use this file to program and test a device.

SVF Overview The original Serial Vector Format was developed jointly by Texas Instruments and Teradyne in
response to a need for the exchange of Boundary Scan test vectors between such tools as test
generation software and ATE. At that time, usage of the IEEE standard 1149.1 was increasing
but no common format or language existed to satisfy the need for a common data exchange.

Application Note: XC9500/XL/XV Family

XAPP067 (v2.0) May 13, 2002

Using Serial Vector Format Files to
Program XC9500/XL/XV Devices In-
System

R

Figure 1: XC9500/XL/XV Boundary Scan Architecture

TMS
TCK

.

TDI

Instruction Register

Data Registers

I/O Pins

>

State Machine
JTAG

Boundary Scan Register

TCK

TDO

mux

. . .

.

.

.

.

.

.

Device

Test
Access

Port

Programming
and

Device

x067_01_041102

XC9500/XL/XV System Logic
XAPP067 (v2.0) May 13, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Using Serial Vector Format Files to Program XC9500/XL/XV Devices In-System
R

The developers of SVF chose a format that did not use test vectors solely to provide TCK
(clock) and TMS (mode control) signals to the IEEE 1149.1 TAP. Instead, the underlying models
of the SVF format assume that all operations begin and end in stable states. This results in a
much simpler and more concise description of the stimulus vectors.

Between mid-1991 and the autumn of 1994 three revisions of SVF were developed, with the
goal of creating a format that was independent of the test application vehicle. By late 1994 over
100 companies had developed SVF-based tools and at least ten vendors of CAE tools and ATE
were supporting SVF. The SVF was revised twice by 1999. However, the Xilinx iMPACT
software does not take advantage of SVF enhancements since the 1994 Revision C.

SVF has proven itself to be a useful and reliable format for exchanging data between the
Boundary Scan TAP and the software that drives it.

SVF
Specification

For the purposes of XC9500/XL/XV ISP, only seven records of the thirteen SVF records that
describe the standard are needed. Those seven records are discussed in this section.

An SVF file contains a set of ASCII statements. The maximum number of characters allowed on
a line is 256, however one SVF statement can span more than one line. Each statement
consists of a command and its associated parameters, terminated by a semicolon. SVF is not
case sensitive and comments are indicated by an exclamation point (!) or a pair of slashes (//)
at the beginning of a line, terminated by a carriage return.

Scan data within a statement is expressed in hexadecimal and is always enclosed in
parenthesis. The scan data cannot specify a data string that is larger than the specified bit
length; the Most Significant Bit (MSB) zeros in the hex string are not considered when
determining the string length. The bit order for scan data defines the LSB (rightmost bit) as the
first bit scanned into the device for scan data specified by the TDI and SMASK keywords, and
is the first bit scanned out for data specified by the TDO and MASK keywords.

The following SVF Commands are supported by the XC9500/XL/XV iMPACT software:

• SDR (Scan Data Register).

• SIR (Scan Instruction Register).

• RUNTEST.

• HDR

• TDR

• HIR

• TIR

In each of the following command descriptions the parameters are mandatory. Optional
parameters are enclosed in brackets ([]). Variables are shown in italics. Parenthesis
“()”are used to indicate hexadecimal values.

A scan operation is defined as the execution of an SIR or SDR command and any associated
header or trailer commands.

SDR, SIR
SDR length [TDI (tdi)] [TDO (TDO)] [MASK (msk)] [SMASK (smask)][PIO (pio)];

SIR length [TDI (tdi)] [TDO (TDO)] [MASK (msk)] [SMASK (smask)][PIO (pio)];

These commands specify a scan pattern to be applied to the target scan registers. The SDR
command (Scan Data Register) specifies a data pattern to be scanned into the target device
Data Register. The SIR command (Scan Instruction Register) specifies a data pattern to be
scanned into the target device Instruction Register.

Parameters:

length — A 32-bit decimal integer specifying the number of bits to be scanned.
2 www.xilinx.com XAPP067 (v2.0) May 13, 2002
1-800-255-7778

http://www.xilinx.com

Using Serial Vector Format Files to Program XC9500/XL/XV Devices In-System
R

[TDI (tdi)] — (optional) This specifies the value to be scanned into the target, expressed as
a hex value. If this parameter is not present, the value of TDI to be scanned into the target
device will be the TDI value specified in the previous SDR/SIR statement. If a new scan
command is specified, which changes the length of the data pattern with respect to a
previous scan, the TDI parameter must be specified, otherwise the default TDI pattern is
undetermined and is an error.

[TDO (tdo)] — (optional) This specifies the test values to be compared against the actual
values scanned out of the target device, expressed as a hex string. If this parameter is not
present, no comparison will be performed. If no TDO parameter is present, the MASK will
not be used.

[MASK (mask)] — (optional) This specifies the mask to be used when comparing TDO
values against the actual values scanned out of the target device, expressed as a hex
string. A “0” in a specific bit position indicates a “don’t care” for that position. If this
parameter is not present, the mask will equal the previously specified MASK value
specified for the SIR/SDR statement. If a new scan command is specified which changes
the length of the data pattern with respect to a previous scan, the MASK parameter must be
specified, otherwise the default MASK pattern is undefined and is an error. If no TDO
parameter is present, the MASK will not be used.

[SMASK (smask)] — (optional) This specifies which TDI data is “don’t care”, expressed as
a hex string. A “0” in a specific bit position indicates that the TDI data in that bit position is
a “don’t care”. If this parameter is not present, the mask will equal the previously specified
SMASK value specified for the SDR/SIR statement. If a new scan command is specified
which changes the length of the data pattern with respect to a previous scan, the SMASK
parameter must be specified, otherwise the default SMASK pattern used is undefined and
is an error. The SMASK will be used even if the TDI parameter is not present.

Example:

SDR 24 TDI (000010) SMASK (0) TDO (818181) MASK (FFFFFF);

SIR 16 TDO (ABCD);

RUNTEST
RUNTEST run_count TCK;

This command forces the target IEEE 1149.1 bus to the Run- Test/Idle state for a specific
number of TCK clock periods. This can be used to specify latency periods when operating the
TAP.

Parameters:

run_count — The number of TCK clock periods that the 1149.1 bus will remain in the Run
Test/Idle state, expressed as a 32 bit unsigned number.

Header and trailer bits for the scan operations are pre-defined with the HDR, TDR, HIR,
and TIR commands. The HDR (header data register) command specifies the bit pattern to
shift prior to the SDR-specified bit pattern. The TDR (trailer data register) command
specifies the bit pattern to shift after the SDR-specified bit pattern. The HIR (header
instruction register) command specifies the bit pattern to shift prior to the SIR-specified bit
pattern. The parameters for the HDR, TDR, HIR, and TIR commands are the same as for
the SDR and SIR commands.

Example:

RUNTEST 1000 TCK;

A Sample SVF File is shown in Figure 2.
XAPP067 (v2.0) May 13, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Using Serial Vector Format Files to Program XC9500/XL/XV Devices In-System
R

Using Xilinx
iMPACT
Software to
Generate an
SVF File

The Xilinx Foundation ISE, Alliance, and WebPACK software packages include the iMPACT
download software. The iMPACT software can create SVF files to program Xilinx
XC9500/XL/XV devices in a JTAG scan chain. See the iMPACT User Guide for instructions on
creating SVF files. For the XC9500/XL/XV devices, the SVF must be created with the erase,
program, and, optionally, verify operations.

SVF
Interpretation

The simplicity of SVF is also one of its major weaknesses. Much of the behavior of SVF, while
running, is left unspecified by the standard. In order to optimize SVF stimulus for an application,
the interpretations of some operations must be defined more precisely.

SDR and SIR Bit Patterns
In the iMPACT SVF, the SDR and SIR commands specify data and instruction bit patterns for
only the target device(s) in the JTAG scan chain. That is, SDR and SIR specify data and
instructions for only the device(s) targeted for programming.

HDR, TDR, HIR, and TIR Bit Patterns
In the iMPACT SVF, the HIR and TIR commands specify BYPASS (or HIGHZ) instruction bits for
the non-target device(s). The HDR and TDR commands specify bits to shift through the
BYPASS registers of non-target devices.

RUNTEST TCK
For the XC9500/XL/XV devices, the RUNTEST command specifies a time to wait in the JTAG
Run-Test/Idle state while an ISP operation is performed inside the device.

Many ATE Boundary Scan tool manufacturers prefer not to generate bursts of TCK activity
because this results in significantly increased test vector file sizes. This increases the overall
test cost and can cause the vector set to run inefficiently.

Because the iMPACT SVF is based on Revision C of the SVF specification, the RUNTEST
command specifies a number of TCK cycles to execute. However, only the amount of time
spent in the Run-Test/Idle state is important to the XC9500/XL/XV devices. The XC9500/XL/XV
devices ignore the actual TCK clock pulses while in the Run-Test/Idle state. For the
XC9500/XL/XV devices, the specified number of TCK cycles in the RUNTEST command must
be interpreted as a wait time in microseconds.

SDR Predicted TDO Values
The SVF specification describes a method for specifying predicted TDO values. It does not,
however, specify actions to be taken when the predicted TDO value does not equal the
expected values.

Figure 2: Sample SVF File

! Begin Test Program

HIR 0;
TIR 0;
HDR 0;
TDR 0;
SIR 8 TDI (FE) MASK (FF)
SDR 14 TDI (3afe) MASK (3ff) TDO (0003)

SMASK (3ff)
RUNTEST 100 TCK
!End test program
4 www.xilinx.com XAPP067 (v2.0) May 13, 2002
1-800-255-7778

http://www.xilinx.com

Using Serial Vector Format Files to Program XC9500/XL/XV Devices In-System
R

When using Xilinx XC9500/XL/XV parts, the TDO values predicted reflect the status of the just
completed operation (which could be an erase or a program operation). If the status is not the
success status (which is the value predicted as the TDO value in the generated SVF file), then
the following 1149.1 TAP controller state transition sequence must be followed to correctly
erase and program the XC9500/XL/XV device (assuming the TDO validation failure is detected
in the EXIT1-DR state):

1. EXIT1-DR

2. PAUSE-DR

3. EXIT2-DR

4. SHIFT-DR

5. EXIT1-DR

6. UPDATE-DR

7. RUN-TEST/IDLE

The above state transition sequence is illustrated in the 1149.1 TAP state diagram in Figure 3.

The net effect of the state transition sequence is to nullify the just-shifted-in programming or
erase data and re-apply the previous program or erase data. Note that the application
interpreting the SVF must acknowledge this by not advancing beyond the current SVF record.

Figure 3: Test Access Port State Diagram

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Test-Logic-Reset

Run-Test/Idle

1

0

1

0

1

0

1

1

1

0

0

1

0

1

0

1 0

1

1

1

0

0

0

1 0

0

0

0

1

0

1

1

Exception
Handling
Loop

x067_02_041102
XAPP067 (v2.0) May 13, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Using Serial Vector Format Files to Program XC9500/XL/XV Devices In-System
R

Figure 4 shows an SVF file fragment illustrating ATE flow.

Using the SVF file as an example, as shown in Figure 4, the required operation should then be
as follows:

1. When reading an SDR instruction with a TDO specified (like the second one in Figure 4),
the predicted TDO value must match the value output from the device on the tester. If it
does not match, then the failure recovery loop is executed. In the RUN-TEST/IDLE state a
pause is inserted for the amount of time specified in the previously applied RUNTEST
instruction.

2. On exit from the RUNTEST instruction, re-apply that same SDR record (in this case the
second one in the file) and test the TDO value again.

3. If the TDO matches the expected value, the TAP state machine is transitioned back to
RUN-TEST/IDLE the normal way (via EXIT1-DR and UPDATE-DR) and is applied to the
next SDR record.

4. This “recovery loop” is to be attempted no more than 32 times. If the TDO value does not
match after 32 times, the part is considered defective and the process should abort with
some failure indication supplied to the user.

Normally, less than 1% of the addresses fail the TDO check and require the additional erase or
program time associated with execution of the failure recovery loop.

Pseudo-Code Algorithm for SVF-Based ISP
The following pseudo-code describes the sequence of operations that should be used in
interpreting the SVF file on a generic SVF processor (ATE or Boundary Scan development
tool).

1. Go to Test-Logic-Reset state

2. Go to Run-Test Idle state

3. Read SVF record

4. if SIR record then
go to Shift-IR state
Scan in <TDI value>

5. else if SDR record then
set <repeat count> to 0
store <TDI value> as <current TDI value>
store <TDO value> as <current TDO value>

Figure 4: SVF File Fragment Illustrating ATE Flow

// First SDR record
SDR 27 TDI (000003fe) SMASK (07ffffff); // Just apply the value - no test for
TDO
RUNTEST 160000 TCK; // Wait for 160 msec.
// Second SDR record
SDR 27 TDI (008003fe) SMASK (07ffffff) TDO (00000003) MASK (00000003);
// Apply value to TDI read TDO test for concurrence
// if not as expected do “failure recovery loop” - hold
// at this SDR instruction.
RUNTEST 160000 TCK; // Wait for 160 msec
// Third SDR record
SDR 27 TDI (010003fe) SMASK (07ffffff) TDO (00000003) MASK (00000003);
RUNTEST 160000 TCK; // Wait for 160 msec
// Fourth SDR record
SDR 27 TDI (018003fe) SMASK (07ffffff) TDO (00000003) MASK (00000003);
RUNTEST 160000 TCK; // Wait for 160 msec
6 www.xilinx.com XAPP067 (v2.0) May 13, 2002
1-800-255-7778

http://www.xilinx.com

Using Serial Vector Format Files to Program XC9500/XL/XV Devices In-System
R

6. go to Shift-DR state
scan in <current TDI value>
if <current TDO value> is specified then

if <current TDO value> does not equal <actual TDO value> then

if <repeat count> > 32 then

LOG ERROR

go to Run-Test Idle state

go to Step 3

end if

go to Pause-DR

go to Exit2-DR

go to Shift-DR

go to Exit1-DR

go to Update-DR

go to Run-Test/Idle

increment <repeat count> by 1

pause <current pause time> microseconds

go to Step 6)

end if

else
go to Run-Test Idle state

go to Step 3

endif

7. else if RUNTEST record then
pause tester for <TCK value> microseconds
store <TCK value> as <current pause time>
end if

Conclusion By using the iMPACT-generated SVF files it is possible to streamline manufacturing flows by
programming XC9500/XL/XV parts on automatic test equipment and third party Boundary
Scan tools. This allows integration of the program and test steps of the system manufacturing
process. This integration will result in higher system yields, better manufacturability, and
simpler part inventory management.

Xilinx and/or its automatic test equipment partners provide support utilities to implement this
SVF solution on the test equipment.

References Serial Vector Format Specification, Rev E., Texas Instruments and Asset-Intertech.
(http://www.asset-intertech.com/support/svf.pdf)

The Boundary Scan Handbook, Kenneth Parker, Klewer Academic Publishers, 1994.

IEEE Standard Test Access Port and Boundary Scan Architecture, IEEE Std 1149.1-1990
(including IEEE Std 1149.1a-1993)
XAPP067 (v2.0) May 13, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com
http://www.asset-intertech.com/support/svf.pdf

Using Serial Vector Format Files to Program XC9500/XL/XV Devices In-System
R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

07/01/97 1.0 Initial Xilinx release.

05/13/02 2.0 Revised.
8 www.xilinx.com XAPP067 (v2.0) May 13, 2002
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	SVF Overview
	SVF Specification
	SDR, SIR
	RUNTEST

	Using Xilinx iMPACT Software to Generate an SVF File
	SVF Interpretation
	SDR and SIR Bit Patterns
	HDR, TDR, HIR, and TIR Bit Patterns
	RUNTEST TCK
	SDR Predicted TDO Values
	Pseudo-Code Algorithm for SVF-Based ISP

	Conclusion
	References
	Revision History

