
XAPP197 (v1.0) November 1, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary Triple Module Redundancy (TMR) combined with Single Event Upset (SEU) correction through
partial reconfiguration is a powerful and effective SEU mitigation strategy. This method is only
supported for the VirtexTM series of Xilinx FPGAs. Xilinx Application Note, XAPP216, describes
the use of Readback and Partial Configuration for SEU detection and correction. This
application note outlines the recommended design methodology for constructing and
implementing TMR logic within the Virtex architecture.

TMR in FPGAs Introduction
Space applications must consider the effect energetic particles (radiation) can have on
electronic components. In particular, SEUs may alter the logic-state of any static memory
element (latch, flip flop, or RAM cell) or cause transient pulses in combinatorial logic paths.
Since the user-programmed functionality of an FPGA depends on the data stored in millions of
configuration latches within the device, an SEU in the configuration memory array might have
adverse effects on the expected functionality of the user implemented design. Similarly, Single
Event Transients (SETs) have a high probability for recognition at flip flop inputs where, if
registered, causes a soft-error in the user data.

Static upsets in the configuration memory are not necessarily synonymous with a functional
error; however, soft-errors are by definition a functional error. Upsets might or might not have an
effect on functionality. However, an accumulation of upsets in the configuration memory is
eventually certain to lead to a functional failure. Design mitigation techniques, such as triple
module redundancy, can harden functionality against SEUs and SETs, while the SEUs are
corrected so that static-errors do not accumulate and soft-errors do not propagate.

Implementing triple redundant circuits in other technologies, such as ASICs, is traditionally
limited to protecting only the flip flops of the user’s design from SEU, because logic paths in
between the flop-flops are typically hard-wired, non-reconfigurable gates. For such fixed logic
technologies, this is adequate protection from SEUs, but can still leave the circuitry vulnerable
to SETs. For a technology that is vulnerable to SETs, further protection can be achieved
through full module redundancy.

Full module redundancy is the required implementation of TMR in FPGAs, because all the logic
paths, not just the flip flops, are susceptible to SEUs. This means that three full copies of the
base design will be implemented to protect circuit functionality from SEUs, as well as SETs.
However, the method for constructing TMR circuitry for Virtex FPGAs provides the additional
advantages of complete data retention and autonomous recovery.

The correct implementation of TMR circuitry within the Virtex architecture depends on the type
of data structure to be mitigated. These data structures can be grouped into four different types:
throughput logic, state-machine logic, I/O logic, and special features (block RAM, Delay-Locked
Loops (DLLs), etc.).

Throughput Logic
Throughput logic is a logic module of any size or functionality, synchronous or asynchronous,
where all the logic paths within travel from the inputs to the outputs of the module without ever
forming a logic loop. In other words, the logic states within a throughput logic structure are
never dependent on their previous states. For example, an ADDER, of any size, is a throughput

Application Note: Virtex Series

XAPP197 (v1.0) November 1, 2001

Triple Module Redundancy Design
Techniques for Virtex FPGAs
Author: Carl Carmichael

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

logic structure. Regardless of how many clock stages may, or may not, lie between the inputs
and outputs of the adder, the output is always a function of the inputs only. An accumulator,
however, is not a throughput logic structure because the output is fed back into the inputs of the
embedded adder. An accumulator is an example of a state-machine logic structure.

State-Machine Logic
State-machine logic is any structure where a registered output (at any register stage within the
module) is fed back into any prior stage within the module forming a registered logic loop. This
structure is used in accumulators, counters, or any custom state-machines or state-
sequencers, where the given state of the internal registers are dependent on their own previous
state. For example, a counter is really an accumulator that accumulates by one on every valid
clock edge, but it can also be seen as a state-machine. If its current state is one, then its next
state will be two (i.e., if it is a binary counter as opposed to a grey-code or one-hot style). Thus,
if its current state is incorrect, then its next state is likely to be incorrect also.

I/O Logic
In this context, I/O logic refers to the inputs and outputs of the FPGA design. The scope of this
application note is currently restricted to standard discrete low voltage TTL (LVTTL) and low
voltage CMOS (LVCMOS) type individual inputs and outputs. The current techniques do not
incorporate the use of bidirectional or differential Input Output Block (IOB) circuits.

Special Features
The Virtex architecture provides a number of special features, such as block RAM, Look-Up
Table (LUT)-shift-registers, LUT-RAM, and Delay-Locked Loops (DLLs), which require
specialized methods for implementing effective redundancy. This application note currently
covers techniques for the block RAM and DLLs. It should be noted that LUT-RAM and shift-
register LUTs (SRL16) currently cannot be supported for Virtex and Virtex-E designs in
applications that employ the use of Readback. See Distributed RAM and Shift-Register
LUTs, page 21.

Triple
Redundancy
and Voting

Majority Voters
The basic concept of triple redundancy is that a sensitive circuit can be hardened to SEUs by
implementing three copies of the same circuit and performing a bit-wise “majority vote” on the
output of the triplicate circuit. See Figure 1.

The circuit in question can be a mere flip flop or an entire logic design. The function of the
majority voter is to output the logic value (“1” or “0”) that corresponds to at least two of its inputs.
For example, if two or more of the voter’s three inputs are a “1,” then the output of the voter is a
“1.” If the inputs of the voter are labeled A, B, and C, and the output V, respectively, then the
boolean equation for the voter is: V= AB + AC + BC. The Truth-Table is shown in Table 1.

Figure 1: Triple Redundancy with Majority Vote

Redundant logic 0

Redundant logic 1

Redundant logic 2

Voter
Majority
Voter

XAPP197_01_030801

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 3
1-800-255-7778

R

The logic gate representation of the majority voter is shown in Figure 2.

Implementing Voters with 3-State Buffers
For designs constrained by available logic resources, the majority voters can be implemented
using the Virtex internal 3-state buffers instead of Look-Up Tables (LUTs), which are used to
implement all boolean functions in the user’s design. The construction of a majority vote circuit
using the Virtex library primitive BUFT is shown in Figure 3.

The BUFT library primitive functions as an active low enabled 3-state buffer. In functional
simulation, the circuit shown in Figure 3 drives an active Low on its output when all three of the
inputs (A, B, and C) are Low. When all three of the inputs are High, the three BUFTs are
disabled allowing the output to pull High. However, when only two inputs are Low, then a
contentious and unknown state occurs in the simulator. See Figure 4. This means that the full
functionality of a majority voter built this way cannot be simulated. However, a simulation of a

Table 1: Majority Vote Truth-Table

A B C V

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Figure 2: Majority Voter Circuit

Figure 3: BUFT Style Majority Vote Circuit

V

A

B

C
XAPP197_02_030801

V

A

B

C

BUFT

BUFT

BUFT
XAPP197_03_030801

http://www.xilinx.com

4 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

user’s design should be free from SEUs. Therefore, all inputs to the voter should be the same
allowing the data to pass through the voter. See Figure 5.

However, the hardware implementation takes on a very different form in the Virtex device. The
contentious state described above does not exist and the voter actually works with the correct
majority voting algorithm. See Figure 6. This is due to the way in which the Virtex bussing logic
is designed. Figure 7 shows a representation of the horizontal bus logic in the Virtex
architecture. This representation shows that there are two BUFTs per Configuration Logic
Block (CLB) and four bus channels per row that are buffered through a junction every four
columns. This structure allows segments of up to four BUFTs to be grouped into larger
structures, while each BUFT can choose between two different segments. These selections are
made by the Place And Route (PAR) software tools when implementing a user’s design.

Figure 4: Functional Simulation of BUFT Voter

Figure 5: Proper Use of Voter in Functional Simulation

Figure 6: Actual Hardware Functionality of BUFT Voter

A

B

C

V

High

High

High

Low

Low

Low

Low

Low

Low

XAPP197_04_030801

A

B

C

V
XAPP197_05_030801

A

B

C

V
XAPP197_06_030801

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 5
1-800-255-7778

R

The ability of these bus structures to implement majority vote circuits is because this
architectural representation is merely a functional abstraction for the user. The actual circuit
implementation is an entirely different form. Each junction actually represents a 4-bit look-
ahead-carry bus segment shown in Figure 7. The four OR-gates with T and I inputs represent
the inputs of four BUFTs, one per CLB. The junction has a bidirectional interface to other
segment junctions to implement wider functions. In a majority voter, however, only three of the
four inputs are needed. The fourth can be used by another junction. This allows all BUFTs in
the device to be used without wasting any resources. From the circuit shown in Figure 7, the
connections are made as described in Figure 3, resulting in the circuit shown in Figure 8. If
distribution is applied to the equation in Table 1, the result is

.

Therefore, Figure 8 is the same boolean function as the majority voter circuit shown in Figure 2.

Figure 7: Virtex Horizontal Bus Logic

Figure 8: Virtex Bus Logic

CLB CLB CLB CLB

XAPP197_07_030801

AB AC BC+ + A B+() A C+() B C+()=

T I T I T TI I
XAPP197_08_030801

http://www.xilinx.com

6 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

Implementing Voters in Look-Up Tables
For FPGA designs that are not limited by available logic resources, but do require the fastest
possible timing performance, building majority voters in the LUTs can provide a faster circuit
implementation. The CLB LUTs are generally used to implement all combinatorial logic in the
user’s design. Therefore, using LUTs to implement the voters allows the voter logic to be
dissolved into general combinatorial logic with less propagation delay.

The type of voter used does not have any effect on the overall dynamic SEU cross-section, and
both types can be used in the following examples. Therefore, from this point forward a majority
voter is referred to as a TRV, and the type of voter (BUFT or LUT) intended for use is arbitrary.

Implementing
TMR for
Throughput
Logic
Structures

Logic Replication and Voting
To implement TMR for a throughput logic structure (see Throughput Logic, page 1), simply
create three copies of the base module. This will also create three versions of each input and
output. This will also be true for any logic structure, because the TMR methodology for FPGAs
requires that the logic paths carry triple redundancy throughout the design to avoid a single
point of failure.

Throughput logic does not typically represent an entire module by itself. A logic module most
often contains various state-machines with combinatorial logic paths in between. However,
implementing TMR can be simplified by creating hierarchical boundaries around individual
state-machine logic structures, so that the TMR of one state-machine can be implemented as
one module and the combinatorial logic that connects it to the next state-machine or I/O
structure can be simply replicated.

Figure 10 shows a portion of an arbitrary base design where the output of a counter is decoded
to trigger an event for another state-machine. The dashed-line boxes represent how the design
should be broken into separate hierarchical modules.

Figure 9: Majority Voter Circuit

V

A

B

C

XAPP197_09_030801

Figure 10: Arbitrary Logic Path

Counter

State-Machine

Decoder

XAPP197_10_030801

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 7
1-800-255-7778

R

In Figure 11 the TMR versions of the state-machines were created at a lower hierarchical level,
while the combinatorial logic paths in between are simply replicated. No “voting” is required on
these paths because they are voted inside the state-machines.

In Figure 11, the decoder logic is an arbitrary choice for a throughput logic structure. The
decoder could have been absorbed into one of the two state-machines. However, the logic
structure chosen for this example could just as well have been a large adder or multiplexer, or
pipelined with hundreds or even thousands of register stages, anything large enough to make
the necessity for hierarchical partitioning more obvious.

The point to this example is that the logic paths between the two state-machines are not state
dependent. Any soft errors within the logic paths simply propagate through and do not get
caught in any logic loops. The only purpose for the redundant logic paths is to carry the triple
redundant output of the previous module to the triple redundant inputs of the next module
without creating a single-point-of-failure. Since the three replicant modules do not need to be
voted, there is no need for any interconnection between the three redundant legs. However, the
exact opposite is true for state-machine logic.

Figure 11: TMR Logic Path

TMR Counter TMR State-Machine

Decoder

Decoder

Decoder

XAPP197_11_030801

http://www.xilinx.com

8 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

Implementing
TMR for State-
Machines

The Simple State-Machine
Since state-machine logic is by definition state dependent, it is imperative that the TMR voting
is performed internally rather than externally to such a logic module. A very simple, yet perfect
example of this is a one-bit counter shown in Figure 12.

The one-bit counter will load the opposite value of its previous state on every rising clock edge.
Though the output is merely an alternating “1”and “0,” it is likely that there are other circuits that
rely on a correct synchronization of the one-bit counter. Figure 13 shows the results an SEU
can have on that synchronization.

The counter is now locked in an erroneous state because it is out of sequence and will remain
that way until a master or host system resets the counter. If this circuit is replicated with three
redundant versions and is vote on its output, as shown in Figure 14, then the voted output will
mask out the erroneous redundant leg.

This circuit generates a correct output in spite of an SEU. However, one logic leg continues to
be out of sequence with the others. If another redundant leg is affected by an SEU, then the
voted output also becomes permanently incorrect, as shown in Figure 15. With two logic legs
incorrect, the voted value is also incorrect and will not recover until the entire circuit is reset.

In order for the circuit to recover autonomously, i.e., without a host reset, each logic leg needs
to incorporate the voted value into its logic feedback path. Figure 16 shows this same circuit but
using triple redundant voters in each of the feedback paths.

Figure 12: One-Bit Counter

Figure 13: One-Bit Counter Output with SEU

CLK

D Q Q(0)

XAPP197_12_030801

Expected

Actual

SEU

HIGH

XAPP197_13_030801

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 9
1-800-255-7778

R

Figure 14: TMR One-Bit Counter

Figure 15: Single Voter TMR Counter with Sequential SEUs

D Q

CLK0

D Q

CLK1

D Q

CLK2

A

B

C
TRV Q(0)

XAPP197_14_030801

A

B

C

Q(0)

Expected

1clock n clocks

incorrect

SEU 1

SEU 2

XAPP197_15_030801

http://www.xilinx.com

10 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

As shown in Figure 17, soft errors get filtered out of the circuit on each clock step, allowing the
circuit to recover before another SEU strikes.

Therefore, the basic concept of constructing the TMR version of a state-machine is to triple all
circuits and insert a majority voter into every registered loop or feed-back path. The use of three
redundant majority voters eliminates these as single points of failure and provides the triple
logic path outputs which get connected to the triple redundant inputs of the next module.

Figure 16: Triple Voted Path TMR One-Bit Counter

Figure 17: Triple Voted Path TMR Counter with Sequential SEUs

D Q

CLK0

D Q

CLK1

D Q

CLK2

TRV

TRV

TRV
TR0_Q(0)

TR1_Q(0)

TR2_Q(0)

A

B

C

x197_16_031201

A

B

C

TR0_Q(0)

Expected

1clock n clocks

SEU 1

SEU 2

XAPP197_17_031201

Corrected

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 11
1-800-255-7778

R

Since the redundant legs of the state-machine logic require cross-communications between
the embedded voters, the TMR construction is best accomplished within a single module rather
than separated into three. This is why the design is simplified by sinking state-machines into a
sub-hierarchical boundary and excluding excessive throughput logic from being included within
the boundary.

Ultimately, these triple redundant logic paths must be brought back together to form a single
mitigated path which does not generate a single point of failure. This is accomplished within the
TMR I/O circuitry.

Implementing
TMR for I/O
Logic

TMR Inputs
The primary purpose for using a TMR design methodology is to remove all single points of
failure from the design. This begins with the FPGA inputs. If a single input was connected to all
three redundant logic legs within the FPGA, then a failure at that input would cause these errors
to propagate through all the redundancies, and thus the error would not be mitigated.
Therefore, each redundant leg of the design that uses FPGA inputs should have its own set of
inputs (Figure 18). Thus, if one input suffers a failure, it will only affect one redundancy.

This does, however, place limitations on certain resources. Tripling inputs and outputs causes
a severe reduction in available I/O. This method should be used whenever there are enough
resources to realize all the inputs and outputs of the design in triplicate. However, if the basic
design requires more than one third the total available I/O on the device, then the user needs to
consider the trade-offs of either not tripling all I/Os or partitioning the design into multiple
devices.

TMR Outputs
The outputs are the key to the overall TMR strategy. Since the full triple module redundancy
generates every logic path in triplicate, there must ultimately be a method for bringing these
triple logic paths back to a single path that does not create a single point of failure. This can be
accomplished with TMR outputs.

A TMR output is constructed using the OBUFT library primitives as shown in Figure 19. Each
redundant logic path exiting the FPGA on an output does so through an OBUFT. The “enable”
(T pin) of each OBUFT is controlled by a “minority voter” circuit. The minority voter indicates
whether the path in question (primary path) agrees with either of the two redundant paths. If the
primary path agrees with at least one of the redundant paths, then the primary path is
considered to be part of the majority. If the primary path disagrees with both redundant paths,
then the primary path is in the minority.

Figure 18: Triple Redundant FPGA Inputs

Redundant
Logic

TR0
IBUF

Redundant
Logic

TR1
IBUF

Redundant
Logic

TR2
IBUF

FPGAPCB

TRACE

Package Pin x197_18_031201

http://www.xilinx.com

12 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

The minority voter is shown in Figure 20. If the primary path is part of the majority, then the
minority voter will enable the corresponding (active Low) OBUFT allowing the data on its
primary path to be driven out through the OBUFT and onto the Pad-Pin. If the primary path is
not a part of the majority, then the OBUFT is disabled placing its output in a high-impedance
state allowing the redundant outputs to drive the correct data.

Externally from the FPGA, the three outputs are hardwired together on the circuit board. This
structure does not cause any contentious states because only paths that agree with each other
are actively driven. This method also has the added benefit of doubling and/or tripling the sink
and source current capabilities of the output from the perspective of other components on the
board that are connected to this board trace. But the primary advantage to this method is that
no external devices are needed to complete the triple redundant voting, as would be the case
when using triple redundant FPGAs instead of internal redundancy within a single FPGA.

IOB Registers
The IOBs in the Virtex architecture also contain dedicated separate input and output flip flops.
While there are no restrictions for using the input registers, the use of output registers (OFD) in
conjunction with the TMR output method, shown in Figure 19, should be avoided. The minority
voters can only sample signals before they pass to the IOBs. Since the IOB registers exist
inside the IOB, their usage would have to bypass the voters (Figure 21).

Figure 19: Minority Voted TMR FPGA Outputs

Figure 20: Minority Voter Circuit

Minority
Voter

Minority
Voter

Minority
Voter

P
R1
R2

P
R1
R2

P
R1
R2

TR0

TR1

TR2

OBUFT

OBUFT

OBUFT

FPGA PCBPIN

TRACE

XAPP197_19_031201

Y

P

R1
R2

XAPP197_20_031201

P R1R2 Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 13
1-800-255-7778

R

If this output structure is used, then an SEU to one of these registers could place the outputs in
contention. The circuit shown in Figure 21 is illegal because the signals are registered after
they are voted. Optimization software, such as the Xilinx Map tool, as well as synthesis tools,
can be selected to “pack registers” into IOBs when possible. However, as long as the last
register in the path comes before the minority voters, then the voters (which are implemented
in CLB logic) will keep the registers from being mapped into the IOB.

Inter-FPGA Communications
For TMR output signals that simply pass from one FPGA to an adjacent FPGA, the TMR output
voting structure, shown in Figure 19, can be omitted and the three redundant outputs can be
separately traced to the adjacent FPGA. One advantage for this would be no restrictions on the
use of IOB output registers, thus, allowing better clock-to-output performance. Another
advantage is that other I/O standards, such as GTL or LVDS can more easily be used for high-
speed chip-to-chip communication.

Figure 21: Incorrect TMR FPGA Outputs

XAPP197_21_031201

P
R1
R1

Minority
Voter

P
R1
R1

Minority
Voter

P
R1
R1

Minority
Voter

OFD

OFD

OFDTR0

TR1

TR2

OBUFT

OBUFT

OBUFT

PCBFPGA

TRACE

PIN

http://www.xilinx.com

14 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

Special
Architecture
Features

While the majority of any logic design can be realized in Look-Up Tables, flip flops, and routing,
there are other special features specific to the Virtex architecture that allow for more efficient
and higher performance implementations. These features include block RAM, LUT RAM, Shift-
registers, Arithmetics, and clock DLLs. While SEU mitigation methods are still being developed
and tested, the following are recommendations for some of these features.

Block RAM
The Virtex block RAMs are large blocks of static memory (4K bits each) that are true dual port
and fully synchronous. True dual port means that both ports have read and write capability. The
data content of the block RAM can be accessed through the configuration (SelectMAP) port,
but this is an inadvisable method for Error Detection and Correction (EDAC).

When the block RAM content is accessed through the configuration port, this process disables
access to the block RAM from the user logic, thus disrupting the user’s design operation.
Therefore, it is recommended that any necessary EDAC for the block RAM content should be
incorporated into the user specified design.

Simple Redundancy

One method is to not include any error detection and correction, but instead use triple
redundant block RAMs and majority voters on the outputs.This will be sufficient for an
application that is likely to write new data to all memory addresses within the time that upsets
could be expected in similar addresses in the redundant blocks.

This method relies on the statistical upset rate and is not the most safe and secure. However,
it does allow for maximum feature usability, because no additional overhead is introduced to
refresh the memory blocks.

Redundancy and Refresh

A more reliable method is to constantly refresh the block RAM contents. Since these are dual
port memories, one of the ports can be dedicated to error detection and correction. But this
also means that the block RAMs can only be used as single port memories by the rest of the
user logic.

To refresh the memory contents, a counter can be used to cycle through the memory
addresses incrementing the address once every four clock cycles. See Figure 22. The Bit[0]
index of the counter output drives the CLK of port B. Bit[1] and Bit[2] indices drive the WEN and
EN, respectively. For each address, the data content is voted and the majority vote value written
back into the cells.

In this example, the data width of port B is set to its maximum value of 16. This reduces the
address width, and thus the counter size as well, to its minimum value of 8. However, the data
width of Port A can be set independently of Port B and used in the application design.

One should also realize that the outputs of Port A do not need to pass through majority voters
because they are already triple redundant. Voting occurs at the next state-machine or I/O stage
in the design.

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 15
1-800-255-7778

R

Data Encryption

Another method is to encode the data before writing it to memory and then decode that data
when reading it from memory. EDAC algorithms, such as “Hamming,” have been used in space
applications that utilize on-board memories.

Data is encrypted before it is written to memory and then decoded after a memory read. The
encoding algorithm allows the correct data to be extracted from partially corrupted data.

Figure 22: TMR Block RAM with Refresh
XAPP197_22_031201

Data A
CLK A
WEN A
EN A
ADDR A

Data A
CLK b
WEN B
EN B
ADDR B

Out A

Out B

RAMB4 S# S16

TR0
TR1
TR2 TRV 16

Data A
CLK A
WEN A
EN A
ADDR A

Data A
CLK b
WEN B
EN B
ADDR B

Out A

Out B

RAMB4 S# S16

TR0
TR1
TR2 TRV 16

Data A
CLK A
WEN A
EN A
ADDR A

Data A
CLK b
WEN B
EN B
ADDR B

Out A

Out B

RAMB4 S# S16

TR0
TR1
TR2 TRV 16

15:0

15:0

15:0

010:0
1
2
10.3

0
1
2
10.3

0
1
2
10.3

10:0

10:0

TMR
COUNTER

http://www.xilinx.com

16 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

Clock Management
The Virtex architecture has four clock buffers and four DLLs for implementing clock resources
within the design. This is somewhat limiting for a TMR design because this will only allow for a
single TMR clock domain. However, high-fanout low-skew clock trees can easily be
implemented in the Virtex routing without using these special clock resources. In fact, any I/O
can serve as a secondary clock input allowing for multiple TMR clock domains.

Clock Buffers

A design that only uses a single system clock can use the primary clock buffers (BUFGP) to
make a single TMR clock domain. This is in fact three clock domains that are externally driven
by the same clock. Each of the three BUFGP global clock buffers fanout to one complete
redundant leg of the whole FPGA design that may exist in this domain. Additional clock
domains have to use other resources.

Clock DLLs

The DLLs can be used in conjunction with the BUFGPs to resynchronize the clock signal to its
own path skew or an external reference to decrease clock-to-output delays. However, an SEU
in the DLL circuitry can have the effect of unsynchronizing the DLL. This can result in jitter or
complete loss of the output clock signal.

Though the DLLs have an output signal “LOCKED” that is used to display the status of the DLL
synchronization during normal operation, this output cannot be used as a reliable SEU
detection. When a DLL is upset, it must be reset in order to resynchronize. This can be
accomplished with a small SEU detection circuit shown in Figure 23.

Figure 23: TMR Clock DLLs with Self-Test

CLK TR0

CLK TR1

CLK TR2

CLKIN

CLKFB

RST

CLK0

LOCKED
BUFGP D

EN
CLK

RST

Q P
R1
R2

Minority
Voter

CLKIN

CLKFB

RST

CLK0

LOCKED
BUFGP D

EN
CLK

RST

Q

CLKIN

CLKFB

RST

CLK0

LOCKED
BUFGP D

EN
CLK

RST

Q P
R1
R2

Minority
Voter

P
R1
R2

Minority
Voter

XAPP197_23_031201

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 17
1-800-255-7778

R

Three one-bit counters are used to demonstrate that all three clocks are running and
synchronized. Each counter is clocked from one of the redundant clock outputs. The Enable to
the counters is not asserted until all three DLLs are synchronized and have asserted their
LOCKED outputs. When one of the three register outputs is not in agreement with the majority,
its associated minority voter resets the proper DLL, as well as the three registers. The three
registers will not begin clocking again until all three DLLs are in lock.

Each DLL requires a clock input on the CLKIN pin. This input can only come from a dedicated
clock input pad (GCLK) through an input clock buffer (IBUFG: not shown). The clock outputs
are CLK_TR0, CLK_TR1, and CLK_TR2. These represent the internal TMR clock domains.
The DLL also has other simultaneous outputs that provide a 90, 180, and 270 phase shift, a 2x
clock multiplication, and a user specified clock division output.

Arithmetic Carry Chains
Arithmetics, such as counters and adders, are most efficiently implemented using the carry-
chains imbedded within the CLBs. The typical user is not likely to build carry-chain structures at
the primitive level, but will likely instantiate library macros that utilize these features or infer their
usage when synthesizing an HDL-based design. However, neither the standard Xilinx library
nor synthesis libraries take TMR design methods into account.

Schematic Designs

The schematic designer can copy and modify a Xilinx macro from the EDA specific schematic
library to make a custom TMR version of it. The carry-chain implementation for a basic counter
is shown in Figure 24. The first stage (bottom) initializes the carry chain. The final stage (top)
uses a MUXCY instead of a MUXCY_L, so that the carry-out signal can leave the carry-chain
logic and exit the CLB to be used as a terminal count (TC). Any number of identical stages can
be placed in the middle to create any counter size (limited by the number of CLBs per column
for a particular FPGA family member).

http://www.xilinx.com

18 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

Figure 24: Standard Carry Chain Counter

TC

CEO

MUXCY

MUXCY_L

MUXCY_L

XORCY

XORCY

XORCY

FDCE

(n)

(n-1)

(0)

(n)

FDCE
(n-1)D Q

CE

CLR
C

FDCE
(0) Q(n:0)D Q

CE

CLR
C

CE
C
CLR

CCnCE

Symbol

CE

Q(n:0)

CLR
C

D Q
CE

CLR
C

x197_24_031901

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 19
1-800-255-7778

R

The schematic in Figure 24 has an obvious registered loop. To create a TMR version of this, the
internal loop must be broken so that majority voters can be inserted. This is shown in Figure 25.

As we see in Figure 25, the feedback path has been severed and a new input (QIN(n:0)) has
been added to the symbol. Now three of these modified counters can be used to construct a
TMR counter, shown in Figure 26.

Notes:
1. The work here is not yet complete. There is also an additional issue with regards to the use of VCC

and GNDs, such as those shown in Figure 24 and Figure 25. See "VCC and GND Extraction" on page
21.

Figure 25: Carry Chain Counter Modified for TMR

TC

CEO

MUXCY

MUXCY_L

MUXCY_L

XORCY

XORCY

XORCY

FDCE

(n)

(n-1)

(0)

(n)

FDCE
(n-1)D Q

CE

CLR
C

FDCE
(0) Q(n:0)D Q

CE

CLR
C

CE
C
CLR

Symbol

CE

Q(n:0)

CLR
C

D Q
CE

CLR
C

x197_25_031901

CCnCE_tr0

QIN(n:0)

QIN(n:0)

http://www.xilinx.com

20 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

As shown in Figure 26, three instances of the new macro can be combined with the majority
voters to create a TMR counter macro. The clock enable (CE), clock (C), and clear (CLR) are
triple redundant and separate for each redundant leg. However, the separate redundant
outputs are each a majority vote of all three counters, each providing a separate feedback path
for the counters. Therefore, if one counter falls out of step as a result of an SEU, it corrects itself
on the first clock cycle after the SEU is fixed (assuming that the likeliest place for an SEU is in
the configuration memory. An SEU in one of the flip flops is immediately corrected by virtue of
the TMR circuitry).

Designs in VHDL

The HDL designer typically infers a counter function similar to the following VHDL example.:

Counter: process(CLK, CLR)
Begin
If (RST=’1’) Then
Q <= null; (others => 0);

Elsif CLK’event and CLK=’1’ then
if (CE=’1’) then
Q <= Q + 1;

end if;
End If;

End Counter;

Figure 26: TMR Counter: CCnCE_TMR

[0]

[0]

[0]

[1]

[1]

[1]

[2]

[2]

[2]

TR0

TR1

TR2

TR1

TR2

TR0

TR2

TR0

TR1

Q_TRO(n:0)

Q_TR1(n:0)

Q_TR2(n:0)

CCnCE_tr0

CCnCE_tr0

CCnCE_tr0

CE(2:0)

C(2:0)

CLR(2:0)

TRV n

TRV n

TRV n

QIN(n:0) Q(n:0)

CE

C
CLR

QIN(n:0) Q(n:0)

CE

C
CLR

QIN(n:0) Q(n:0)

CE

C
CLR

XAPP197_26_031201

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 21
1-800-255-7778

R

Although this coding style can easily be adapted to infer a similar function as that demonstrated
in Figure 26, this would leave an unresolved issue concerning the use of VCC and GND
components in the design. See "VCC and GND Extraction" on page 21.

The preferred method of implementing any carry-chain logic structures is to instantiate a macro
from the XQVR_SYN library. See "Other Examples in VHDL" on page 34.

Distributed RAM and Shift-Register LUTs
LUTs may be used as small blocks of distributed RAM elements (e.g., RAMS16x1) or as
dynamically addressable shift registers (e.g., SRL16) in the user’s design. When a LUT is used
for this type of operation, the user’s data content is dynamically stored and manipulated in
configuration memory cells. This poses a problem for an application that intends to use
Readback and/or partial reconfiguration.

Since space applications depend on the use of readback and partial reconfiguration for SEU
detection and correction in the configuration memory, it is highly recommended that users do
not use LUTs in this way, as it can cause data corruption in the configuration memory.

It is recommended to use the block RAM memories for all RAM functions and flip flops for shift-
registers.

VCC and GND
Extraction

Persistent Errors
A typical FPGA design is implemented with signals that were resolved to a logic constant (VCC
or GND), but which could not be entirely optimized out of the design. When VCCs and/or GNDs
are implemented by the PAR tools, they are implemented in a way that maximizes device
resource utilization. This is accomplished by utilizing “Keeper” circuits that exist at the input
pins of all CLBs and IOBs.

Keepers lie in series with routing channels and logic block input pins. When the routing channel
carries an active signal, the keeper is transparent. But when the channel is unused, the keeper
keeps its last known value, which was determined when the device was initially powered-up or
re-initialized by activating the FPGA input PROG.

When a logic element (e.g., flip flop) inside a logic block (CLB or IOB) requires a logical
constant, such as a VCC or GND, this logical constant can be obtained from the keeper circuit
of an unused pin of the logic block. Its polarity can be selected by programmable inversion
within the logic block.

An SEU can upset or alter the state of a keeper circuit either by direct ionization, or indirectly by
momentarily connecting an active routing channel to the input of the keeper. In either case, the
result is a functional disturbance that cannot be detected by readback nor corrected by partial
reconfiguration. Therefore, this type of error is known as a “Persistent Error,” and it can only be
corrected by completely re-initializing the FPGA.

This sensitivity can be eliminated by removing the functional dependencies on VCCs and GNDs
from the user’s design.

Where to Find VCC and GND
VCC and GND exist in the Xilinx library for all product families as primitive elements. These
should not be used in designs that are concerned with SEU mitigation. The HDL designer may
inadvertently cause their usage by assigning a constant value to a signal or port, by not defining
a clear usage for inputs of a primitive element, or by inferring arithmetics that are ultimately
implemented in carry-chain logic. But VCC and GND also exist within Xilinx specific schematic
and synthesis library macros.

Flip Flops

The primitive Virtex CLB flip flop has a Clock Enable (CE), as well as INIT and REV inputs (an
IOB register has a CE and INIT, but not a REV). The INIT and REV are used to implement
synchronous and/or asynchronous SET and RESET functions for the register. The CE and the

http://www.xilinx.com

22 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

INIT must be driven for the register to operate, even if this connection is not specified in the
user’s design.

For example, if the schematic user instantiates an FD (D-type flip flop) in their design, they have
in fact instantiated a library macro that implements an FDCE with its CE pin tied to VCC and its
CLR pin tied to GND (the CLR eventually becomes the INIT).

Schematic designers should be careful to examine the primitive implementation of all library
macros that are likely to contain registers, before using them in their design. Even if the macro
provides clock enable and reset pins at the top level, the primitive implementation might be
different than expected.

Similarly, if a VHDL user describes a synchronous process without specifying a clock-enable or
initialization function, the synthesis tool implements this function by using primitives and tieing
all unused pins to the correct logical constant, thus, creating VCCs and GNDs. The following
VHDL example creates the same problem as that shown in Figure 27.

register: process(CLK)
Begin
If CLK’event and CLK=’1’ then
Q <= D;

End If;
End register;

Synthesis designers should always include synchronous clock enables and either synchronous
and/or asynchronous initialization conditions for all synchronous processes and component
instantiations:

register: process(CLK, CLR)
Begin
If (CLR=’1’) Then
Q <= 0;

Elsif CLK’event and CLK=’1’ then
if (CE=’1’) then
Q <= D;

end if;
End If;

End register;

Figure 27: Primitive Implementation of a D-type Flip Flop

Symbol

Schematic ImplementationFD

D Q

C FDCE
D D Q Q

C

CE
C

CLR

CLB (amplified)

DFF

D Q

CE

CK
INIT REV

Keeper=1

Keeper=0

unused routing

unused routing

x197_27_031901

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 23
1-800-255-7778

R

Arithmetic Carry Chains

Looking again at Figure 25, notice that the carry-chain is initialized with a VCC and GND. One
simple method for the schematic designer to remove these is shown in Figure 28. Since the CE
signal must be asserted High for the counter to increment, the VCC can be replaced with a
connection to this signal. Similarly, since the CLR signal must be asserted Low for the counter
to increment, the GND can be replaced with a connection to the CLR signal.

The only way for the synthesis designer to accomplish the same implementation is to literally
instantiate their own primitive representation of the carry-chain logic or to use one of the
provided macros in the XVRWARE library. See "Other Examples in VHDL" on page 34.
Inferring arithmetic functions through behavioral coding always generates implicit VCC and
GND usage in synthesis. While this might be a little bit inconvenient, it also has a significant
impact on the expected SEU error rates for your design.

Power Tie Downs
Now all the VCC and GNDs have been replaced with signal connections. If the users design did
not already have an available Global Clock Enable or Global Reset signal, or cannot be
adapted to create one, then a new active and routable signal must be created in the design to
provide a connection point for the needed logical constants.

Figure 28: Carry Chain Counter Modified for TMR with Power-Tie Downs

TC

CEO

MUXCY

MUXCY_L

MUXCY_L

XORCY

XORCY

XORCY

FDCE

(n)

(n-1)

(0)

(n)

FDCE
(n-1)D Q

CE

CLR
C

FDCE
(0) Q(n:0)D Q

CE

CLR
C

CE
C
CLR

Symbol

CE

Q(n:0)

CLR
C

D Q
CE

CLR
C

x197_28_031901

CCnCE_tr0

QIN(n:0)

QIN(n:0)

http://www.xilinx.com

24 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

If any of these signals are left unconnected in the design, the optimization either leads to
excessive logic deletion, or the re-insertion of VCC and GNDs. One simple method to provide a
unilateral VCC and GND function is to dedicate an I/O pin (three for triple redundancy) to import
an actual ground connection from the circuit board. This is demonstrated in Figure 29.

XVRWARE
Macro
Synthesis
Library

Library Macros
The XVRWARE Synthesis library provides macros and synthesis examples for constructing
TMR circuits in VHDL for the Virtex architecture. The XVRWARE library can be downloaded
from the Xilinx FTP site: xapp197.zip and should be extracted in a user’s area or directory
separate from the Xilinx installation area. The first release of this library provides macros
specifically designed for use with Synplicity’s Synplify and Synplify Pro.

The XVRWARE macros are in the xvrware/Synplicity/src subdirectory. The Synplicity/examples
subdirectory provides usage examples for the library macros, as well as general TMR methods
for state-machines and power-ties. The following section lists the ports and function of each
library macro.

Voters

TRV_LUT and TRV_BUFT

The TRV_LUT and TRV_BUFT macros are triple redundant voter implemented in either LUT or
3-state buffers (BUFT).

Figure 29: Triple Redundant Power Tie Downs

TRACE

Package Pin

IBUF

IBUF

IBUF

FPGAPCB

Redundant
Logic

Redundant
Logic

Redundant
Logic

user_vcc_tr0

user_gnd_tr0

user_vcc_tr1

user_gnd_tr1

user_vcc_tr2

user_gnd_tr2

INV

INV

INV

XAPP197_29_031201

Table 2: TRV (LUT/BUFT) Port Definitions

Port Name Direction Type Width

TR0 IN Std_Logic 1

TR1 IN Std_Logic 1

TR2 IN Std_Logic 1

V OUT Std_Logic 1

Table 3: TRV Function Table

TR0 TR1 TR2 V

0 0 0 0

0 0 1 0

0 1 0 0

ftp://ftp.xilinx.com/pub/applications/xapp/xapp197.zip
http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 25
1-800-255-7778

R

OUTPUT_TMR

The OUTPUT_TMR macro is for triple redundant LVCMOS outputs with path voting. Three
separate OBUFT output drivers each are enabled by a separate minority vote. The triple
outputs are designed to be connected together externally from the FPGA to a single board
trace. Properly connected, this macro provides a three input, one output majority vote function
for the purpose of combining three internal redundant signals to form a single voted external
signal.

Counters
The TMR Counter macros are similar to the circuits shown in Figure 26 and Figure 28. The
counter macros have the majority voting built into the carry-chain logic, thus making use of
otherwise inaccessible LUTs. Additionally, the necessary VCC and GND connections for carry-
chain initialization are ported to USERVCC and USERGND, respectively. These can either be
connected to the CLR and CE lines, as shown in Figure 28, or should be connected to global
USERVCC and USERGND signals. Depending on which macro is used, this can also either be
the PRE, R, or S port. The user must make this connection at the instantiation point in their
design to activate indissoluble signals, such as an FPGA input.

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 4: OUTPUT_TMR Port Definitions

Port Name Direction Type Width

TR0 IN Std_Logic 1

TR1 IN Std_Logic 1

TR2 IN Std_Logic 1

V0 OUT Std_Logic 1

V1 OUT Std_Logic 1

V2 OUT Std_Logic 1

Table 5: OUTPUT_TMR Function Table

TR0 TR1 TR2 V0 V1 V2 Wired

0 0 0 0 0 0 0

0 0 1 0 0 Z 0

0 1 0 0 Z 0 0

0 1 1 Z 1 1 1

1 0 0 Z 0 0 0

1 0 1 1 Z 1 1

1 1 0 1 1 Z 1

1 1 1 1 1 1 1

Table 3: TRV Function Table (Continued)

TR0 TR1 TR2 V

http://www.xilinx.com

26 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

CCwCE_TMR

The CCwCE_TMR macro is a parameterized triple redundant up counter with asynchronous
clear and clock enable. It is functionally equivalent to the CC16CE Virtex library macro. The
generic map property Width specifies the data width of the counter’s output.

CCwPE_TMR

The CCwPE_TMR macro is a parameterized triple redundant up counter with asynchronous
set and clock enable. It is functionally equivalent to the CC16PE Virtex library macro. The
generic map property Width specifies the data width of the counter’s output.

CCwRE_TMR

The CCwRE_TMR macro is a parameterized triple redundant up counter with synchronous
clear and clock enable. It is functionally equivalent to the CC16RE Virtex library macro. The
generic map property Width specifies the data width of the counter’s output.

Table 6: CCwCE_TMR Port Definitions

Port Name Direction Type Width

CLK IN Std_Logic_Vector 3

CLR IN Std_Logic_Vector 3

CE IN Std_Logic_Vector 3

USERGND IN Std_Logic_Vector 3

TC OUT Std_Logic_Vector 3

CEO OUT Std_Logic_Vector 3

Q_TR0 OUT Std_Logic_Vector WIDTH

Q_TR1 OUT Std_Logic_Vector WIDTH

Q_TR2 OUT Std_Logic_Vector WIDTH

Table 7: CCwPE_TMR Port Definitions

Port Name Direction Type Width

CLK IN Std_Logic_Vector 3

PRE IN Std_Logic_Vector 3

CE IN Std_Logic_Vector 3

USERGND IN Std_Logic_Vector 3

TC OUT Std_Logic_Vector 3

CEO OUT Std_Logic_Vector 3

Q_TR0 OUT Std_Logic_Vector WIDTH

Q_TR1 OUT Std_Logic_Vector WIDTH

Q_TR2 OUT Std_Logic_Vector WIDTH

Table 8: CCwRE_TMR Port Definitions

Port Name Direction Type Width

CLK IN Std_Logic_Vector 3

R IN Std_Logic_Vector 3

CE IN Std_Logic_Vector 3

USERGND IN Std_Logic_Vector 3

TC OUT Std_Logic_Vector 3

CEO OUT Std_Logic_Vector 3

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 27
1-800-255-7778

R

CCwSE_TMR

The CCwSE_TMR macro is a parameterized triple redundant up counter with synchronous set
and clock enable. It is functionally equivalent to the CC16SE Virtex library macro. The generic
map property Width specifies the data width of the counter’s output.

CCwLCPE_TMR

The CCwLCPE_TMR macro is a parameterized triple redundant UP/DOWN counter with
asynchronous reset, preset, load, and synchronous clock enable. The generic map property
Width specifies the data width of the counter’s output. The input VALUE specifies an
asynchronous initialization. If VALUE is connected to a signal or is left unconnected the counter
will have an all zero default initialization. If VALUE is connected to a constant, then the default
initialization of the counter will be the value of VALUE. When INIT is asserted High, all three
redundant counters are asynchronously initialized to VALUE. An up-counter is specified by
asserting UP_DN Low, similarly a down-counter is specified by asserting UP_DN High.
USERVCC must be connected to a LOGIC 1 for normal operation (See "VCC and GND
Extraction" on page 21.)

Q_TR0 OUT Std_Logic_Vector WIDTH

Q_TR1 OUT Std_Logic_Vector WIDTH

Q_TR2 OUT Std_Logic_Vector WIDTH

Table 9: CCwSE_TMR Port Definitions

Port Name Direction Type Width

CLK IN Std_Logic_Vector 3

S IN Std_Logic_Vector 3

CE IN Std_Logic_Vector 3

USERGND IN Std_Logic_Vector 3

TC OUT Std_Logic_Vector 3

CEO OUT Std_Logic_Vector 3

Q_TR0 OUT Std_Logic_Vector WIDTH

Q_TR1 OUT Std_Logic_Vector WIDTH

Q_TR2 OUT Std_Logic_Vector WIDTH

Table 10: CCwLCPE_TMR Port Definitions

Port Name Direction Type Width

VALUE IN Std_Logic_Vector WIDTH

CLK IN Std_Logic_Vector 3

INIT IN Std_Logic_Vector 3

PRE IN Std_Logic_Vector 3

CLR IN Std_Logic_Vector 3

CE IN Std_Logic_Vector 3

UP_DN IN Std_Logic_Vector 3

USERVCC IN Std_Logic_Vector 3

TC OUT Std_Logic_Vector 3

CEO OUT Std_Logic_Vector 3

Table 8: CCwRE_TMR Port Definitions (Continued)

Port Name Direction Type Width

http://www.xilinx.com

28 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

Memories
The block RAM TMR macros are similar to that shown in Figure 22. However, the block RAM
macros also include address collision protection, so that the data refresh circuitry does not
attempt to write to the same address currently being accessed by the user’s application.
Additionally, the write cycles of the data refresh for the redundant block memories are one clock
cycle staggered from each other to protect against multiple data corruption.

BRAM16x256s_TMR

The BRAM16x256s_TMR macro is a triple redundant block RAM memory, single port,
synchronous,16-bit wide data bus, 256 addresses deep, 8-bit wide address bus, and built-in
SEU correction. This macro is functionally equivalent to the Virtex library primitive
RAMB4_S16.

BRAM8x512s_TMR

The BRAM8x512s_TMR macro is a triple redundant block RAM memory, single port,
synchronous, 8-bit wide data bus, 512 addresses deep, 9-bit wide address bus, and built-in
SEU correction. This macro is functionally equivalent to the Virtex library primitive RAMB4_S8.

Q_TR0 OUT Std_Logic_Vector WIDTH

Q_TR1 OUT Std_Logic_Vector WIDTH

Q_TR2 OUT Std_Logic_Vector WIDTH

Table 11: BRAM16x256s_TMR Port Definitions

Port Name Direction Type Width

EN IN Std_Logic_Vector 3

CLK IN Std_Logic_Vector 3

RST IN Std_Logic_Vector 3

USERGND IN Std_Logic_Vector 3

WE IN Std_Logic_Vector 3

TR0_ADDR IN Std_Logic_Vector 8

TR1_ADDR IN Std_Logic_Vector 8

TR2_ADDR IN Std_Logic_Vector 8

TR0_DI IN Std_Logic_Vector 16

TR1_DI IN Std_Logic_Vector 16

TR2_DI IN Std_Logic_Vector 16

TR0_DO OUT Std_Logic_Vector 16

TR1_DO OUT Std_Logic_Vector 16

TR2_DO OUT Std_Logic_Vector 16

Table 12: BRAM8x512s_TMR Port Definitions

Port Name Direction Type Width

EN IN Std_Logic_Vector 3

CLK IN Std_Logic_Vector 3

RST IN Std_Logic_Vector 3

USERGND IN Std_Logic_Vector 3

WE IN Std_Logic_Vector 3

Table 10: CCwLCPE_TMR Port Definitions

Port Name Direction Type Width

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 29
1-800-255-7778

R

BRAM4x1024s_TMR

The BRAM4x1024s_TMR macro is a triple redundant block RAM memory, single port,
synchronous, 4-bit wide data bus, 1024 addresses deep, 10-bit wide address bus, and built-in
SEU correction. This macro is functionally equivalent to the Virtex library primitive RAMB4_S4.

BRAM2x2048s_TMR

Triple redundant block RAM memory, single port synchronous 2-bit wide data bus, 2048
addresses deep, 11-bit wide address bus, and built-in SEU correction. This macro is
functionally equivalent to the Virtex library primitive RAMB4_S2.

TR0_ADDR IN Std_Logic_Vector 9

TR1_ADDR IN Std_Logic_Vector 9

TR2_ADDR IN Std_Logic_Vector 9

TR0_DI IN Std_Logic_Vector 8

TR1_DI IN Std_Logic_Vector 8

TR2_DI IN Std_Logic_Vector 8

TR0_DO OUT Std_Logic_Vector 8

TR1_DO OUT Std_Logic_Vector 8

TR2_DO OUT Std_Logic_Vector 8

Table 13: BRAM4x1024s_TMR Port Definitions

Port Name Direction Type Width

EN IN Std_Logic_Vector 3

CLK IN Std_Logic_Vector 3

RST IN Std_Logic_Vector 3

USERGND IN Std_Logic_Vector 3

WE IN Std_Logic_Vector 3

TR0_ADDR IN Std_Logic_Vector 10

TR1_ADDR IN Std_Logic_Vector 10

TR2_ADDR IN Std_Logic_Vector 10

TR0_DI IN Std_Logic_Vector 4

TR1_DI IN Std_Logic_Vector 4

TR2_DI IN Std_Logic_Vector 4

TR0_DO OUT Std_Logic_Vector 4

TR1_DO OUT Std_Logic_Vector 4

TR2_DO OUT Std_Logic_Vector 4

Table 14: BRAM2x2048s_TMR Port Definitions

Port Name Direction Type Width

EN IN Std_Logic_Vector 3

CLK IN Std_Logic_Vector 3

RST IN Std_Logic_Vector 3

USERGND IN Std_Logic_Vector 3

WE IN Std_Logic_Vector 3

Table 12: BRAM8x512s_TMR Port Definitions (Continued)

Port Name Direction Type Width

http://www.xilinx.com

30 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

BRAM1x4096s_TMR

The BRAM1x4096s_TMR macro is a triple redundant block RAM memory, single port,
synchronous, one-bit wide data bus, 4096 addresses deep, 12-bit wide address bus, and built-
in SEU correction. This macro is functionally equivalent to the Virtex library primitive
RAMB4_S1.

CLKDLLs

Clk_DLL_TMR

The Clk_DLL_TMR macro is a triple redundant CLKDLL with built-in upset detection and
resynchronization. The Clk_DLL_TMR macro provides all the same functional features of the
Virtex library primitive CLKDLL. This macro also contains an upset detection circuit to recover
DLL lock for each individual redundant DLL. When one of the three redundant clock domains
are brought out of synchronization, or one of the DLLs becomes inactive, by an SEU, the DLL
in the affected redundant domain is automatically reset and resynchronized. The generic map
property DIV specifies the division factor for the CLKDV output. See the Xilinx Libraries Guide
for acceptable DIV values and complete functional description.

TR0_ADDR IN Std_Logic_Vector 11

TR1_ADDR IN Std_Logic_Vector 11

TR2_ADDR IN Std_Logic_Vector 11

TR0_DI IN Std_Logic_Vector 2

TR1_DI IN Std_Logic_Vector 2

TR2_DI IN Std_Logic_Vector 2

TR0_DO OUT Std_Logic_Vector 2

TR1_DO OUT Std_Logic_Vector 2

TR2_DO OUT Std_Logic_Vector 2

Table 15: BRAM1x4096s_TMR Port Definitions

Port Name Direction Type Width

EN IN Std_Logic_Vector 3

CLK IN Std_Logic_Vector 3

RST IN Std_Logic_Vector 3

USERGND IN Std_Logic_Vector 3

WE IN Std_Logic_Vector 3

TR0_ADDR IN Std_Logic_Vector 12

TR1_ADDR IN Std_Logic_Vector 12

TR2_ADDR IN Std_Logic_Vector 12

TR0_DI IN Std_Logic_Vector 1

TR1_DI IN Std_Logic_Vector 1

TR2_DI IN Std_Logic_Vector 1

TR0_DO OUT Std_Logic_Vector 1

TR1_DO OUT Std_Logic_Vector 1

TR2_DO OUT Std_Logic_Vector 1

Table 14: BRAM2x2048s_TMR Port Definitions (Continued)

Port Name Direction Type Width

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 31
1-800-255-7778

R

Instantiating
XVRWARE TMR
Macros in VHDL

TMR Counter
A complete VHDL example of using an XVRWARE Counter is provided in
xvrware\synplicity\examples\Counter32_tmr.vhd. The following is an excerpt from
this example.

Component Declaration

Architecture Virtex_TMR of Counter32_tmr is

component xvr_ccwre_tmr
generic(width : integer);
port(CLK : in std_logic_vector(2 downto 0);
R : in std_logic_vector(2 downto 0);
CE : in std_logic_vector(2 downto 0);
USERGND : in std_logic_vector(2 downto 0);
USERVCC : in std_logic_vector(2 downto 0);
TC : out std_logic_vector(2 downto 0);
CEO : out std_logic_vector(2 downto 0);
Q_TR0 : out std_logic_vector(width-1 downto 0);
Q_TR1 : out std_logic_vector(width-1 downto 0);
Q_TR2 : out std_logic_vector(width-1 downto 0));
end component;

Since the redundant clock signals of the counter are vectored, if the clock signals of the parent
component are individual, then a vector must be created for port mapping.

Signal Count32_tr0 : std_logic_vector(31 downto 0);
Signal Count32_tr1 : std_logic_vector(31 downto 0);
Signal Count32_tr2 : std_logic_vector(31 downto 0);

Begin

Instantiation

The width generic parameter must be set to any integer value for instantiation. The following
instance specifies a 32-bit counter. Subsequently, the triple redundant output ports must be
mapped to 32-bit vector signals.

Table 16: Clk_DLL_TMR Port Definitions

Port Name Direction Type Width

CLKIN0 IN Std_Logic 1

CLKIN1 IN Std_Logic 1

CLKIN2 IN Std_Logic 1

RST0 IN Std_Logic 1

RST1 IN Std_Logic 1

RST2 IN Std_Logic 1

CLK_TR0 OUT Std_Logic 1

CLK_TR1 OUT Std_Logic 1

CLK_TR2 OUT Std_Logic 1

CLK_2X0 OUT Std_Logic 1

CLK_2X1 OUT Std_Logic 1

CLK_2X2 OUT Std_Logic 1

CLK_2X0 OUT Std_Logic 1

CLK_2X1 OUT Std_Logic 1

CLK_2X2 OUT Std_Logic 1

http://www.xilinx.com

32 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

counter: xvr_ccwre_tmr
generic map(width=>32)
port map(CLK=>CLK, R=>RST, CE=>CE, USERGND=>RST, USERVCC=>CE,
Q_TR0=>Count32_tr0, Q_TR1=>Count32_tr1, Q_TR2=>Count32_tr2);

This instantiation makes use of the parent component’s RST and CE signals to tie off the
USERVCC and USERGND ports.

If the count values are also the outputs to the FPGA design, then their final voting and
recombination are accomplished with the OUTPUT_TMR macro. One macro must be
instantiated for each bit of the output bus. This is most easily accomplished with a Generate
statement.

L0: For I in 0 to 31 generate
outputs: output_tmr
port map(TR0=>Count32_tr0(I), TR1=>Count32_tr1(I),
TR2=>Count32_tr2(I), V0=>Count_tr0(I), V1=>Count_tr1(I), V2=>Count_tr2(I));
end generate;

End Virtex_TMR;

TMR Block RAM
The TMR block RAM macros provide a synchronous single-port memory block function. The
following example is taken from xvrware\synplicity\src\block RAM_TMR.vhd. The
component declaration for the BRAM8x512s_TMR macro is as follows:

Component Declaration

ARCHITECTURE MITIGATED OF block RAM_TMR IS

component bram8x512s_tmr
generic (INIT_00, INIT_01, INIT_02, INIT_03,
INIT_04, INIT_05, INIT_06, INIT_07,
INIT_08, INIT_09, INIT_0A, INIT_0B,
INIT_0C, INIT_0D, INIT_0E, INIT_0F : string :=

"00");
port (EN : in std_logic_vector(2 downto 0);
 CLK : in std_logic_vector(2 downto 0);
 RST : in std_logic_vector(2 downto 0);
 WE : in std_logic_vector(2 downto 0);
 USERGND : in std_logic_vector(2 downto 0);
 tr0_ADDR : in std_logic_vector(8 downto 0);
 tr1_ADDR : in std_logic_vector(8 downto 0);
 tr2_ADDR : in std_logic_vector(8 downto 0);
 tr0_DI : in std_logic_vector(7 downto 0);
 tr1_DI : in std_logic_vector(7 downto 0);
 tr2_DI : in std_logic_vector(7 downto 0);
 tr0_DO : out std_logic_vector(7 downto 0);
 tr1_DO : out std_logic_vector(7 downto 0);
 tr2_DO : out std_logic_vector(7 downto 0));
end component;

The INIT generic attributes are used to specify initial data values for the memory content. See
either the Xilinx Library Guide or the Synplify Help for data formats. If the INIT values are left
unspecified, all values will default to "0."

Instantiation

The following instantiation initializes the data content to a binary count sequence. The INIT
values are propagated to all three redundant memory elements.

BRV: bram8x512s_tmr
generic map (
INIT_00 => "201F1E1D1C1B1A191817161514131211
100F0E0D0C0B0A090807060504030201",

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 33
1-800-255-7778

R

INIT_01 => "403F3E3D3C3B3A393837363534333231
302F2E2D2C2B2A292827262524232221",
INIT_02 => "605F5E5D5C5B5A595857565554535251
504F4E4D4C4B4A494847464544434241",
INIT_03 => "807F7E7D7C7B7A797877767574737271
706F6E6D6C6B6A696867666564636261",
INIT_04 => "A09F9E9D9C9B9A999897969594939291
908F8E8D8C8B8A898887868584838281",
INIT_05 => "C0BFBEBDBCBBBAB9B8B7B6B5B4B3B2B1
B0AFAEADACABAAA9A8A7A6A5A4A3A2A1",
INIT_06 => "E0DFDEDDDCDBDAD9D8D7D6D5D4D3D2D1
D0CFCECDCCCBCAC9C8C7C6C5C4C3C2C1",
INIT_07 => "00FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1
F0EFEEEDECEBEAE9E8E7E6E5E4E3E2E1",
INIT_08 => "201F1E1D1C1B1A191817161514131211
100F0E0D0C0B0A090807060504030201",
INIT_09 => "403F3E3D3C3B3A393837363534333231
302F2E2D2C2B2A292827262524232221",
INIT_0A => "605F5E5D5C5B5A595857565554535251
504F4E4D4C4B4A494847464544434241",
INIT_0B => "807F7E7D7C7B7A797877767574737271
706F6E6D6C6B6A696867666564636261",
INIT_0C => "A09F9E9D9C9B9A999897969594939291
908F8E8D8C8B8A898887868584838281",
INIT_0D => "C0BFBEBDBCBBBAB9B8B7B6B5B4B3B2B1
B0AFAEADACABAAA9A8A7A6A5A4A3A2A1",
INIT_0E => "E0DFDEDDDCDBDAD9D8D7D6D5D4D3D2D1
D0CFCECDCCCBCAC9C8C7C6C5C4C3C2C1",
INIT_0F => "00FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1
F0EFEEEDECEBEAE9E8E7E6E5E4E3E2E1")
port map (CLK=>CLK, RST=>RST, USERGND=>USERGND, EN=>EN, WE=>WE,
tr0_ADDR=>ADDR_TR0, tr0_DI=>DATA_IN_TR0, tr0_DO=>DATA_OUT_TR0,
tr1_ADDR=>ADDR_TR1, tr1_DI=>DATA_IN_TR1, tr1_DO=>DATA_OUT_TR1,
tr2_ADDR=>ADDR_TR2, tr2_DI=>DATA_IN_TR2, tr2_DO=>DATA_OUT_TR2);

The block RAM TMR macros require a USERGND connection. This connection should not be
made to the block RAM’s RST signal as this can disrupt the data refresh circuitry. However,
connection to an active High global FPGA reset signal is adequate, if a dedicated USERGND
signal is not available. See VCC and GND Extraction, page 21 for more details.

TMR CLKDLL
The following example is taken from
xvrware\synplicity\examples\Clk_Mgr_TMR.vhd.

Component Declaration

component Clk_DLL_TMR
generic (DIV : string);
port (
CLKIN0 : in std_logic;
CLKIN1 : in std_logic;
CLKIN2 : in std_logic;
RST0 : in std_logic;
RST1 : in std_logic;
RST2 : in std_logic;
CLKDV0 : out std_logic;
CLKDV1 : out std_logic;
CLKDV2 : out std_logic;
CLK2X0 : out std_logic;
CLK2X1 : out std_logic;
CLK2X2 : out std_logic;
CLK_TR0 : out std_logic;

http://www.xilinx.com

34 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

CLK_TR1 : out std_logic;
CLK_TR2 : out std_logic);
end component;

Although a CLKDLL requires an IBUFG on its CLKIN port and a BUFG to feedback the clock
output from CLK0 to CLKFB, the Clk_DLL_TMR macro already provides these, so these
instantiations are not necessary.

The CLK_TRn output ports drive a BUFG and thus can be directly connected to any clock loads
in the FPGA design. In order to use one of the other output selections, a BUFGS should be
instantiated in series.

The CLKDV output provides a clock division of the reference input clock specified by the DIV
attribute. See the Xilinx Libraries Guide for value options.

Instantiation

TDLL: Clk_DLL_TMR
generic map (DIV=>"2")
port map (CLKIN0=>CLKIN0, CLKIN1=>CLKIN1, CLKIN2=>CLKIN2, RST0=>RST0,
RST1=>RST1, RST2=>RST2, CLK_TR0=>CLK_TR0, CLK_TR1=>CLK_TR1,
CLK_TR2=>CLK_TR2, CLKDV0=>CLKDV0, CLKDV1=>CLKDV1, CLKDV2=>CLKDV2,
CLK2X0=>CLK2X0, CLK2X1=>CLK2X1, CLK2X2=>CLK2X2);

The instantiation above specifies a clock division of two. Therefore, the CLKDVn outputs will be
one half the CLKINn frequency, but phase-locked with CLK_TRn.

Other Examples
in VHDL

TMR State-Machines
Finite State-Machines (FSM) are an inevitable aspect of digital design. FSM circuitry
implements sequential processing, sequencing control, and decision-making algorithms.
Development methods for FSM circuits range from explicit Case statements to FSM compilers.

Like counters, state-machines create registered feedback logic loops that must be replicated
and voted in order to assure reliability against SEUs. The TMR implementation of such circuits
might seem a bit tedious, but its effectiveness is well worth the effort.

The following example is a simple four-state state-machine with two “event” inputs: A and B.
The bubble diagram is shown in Figure 30.

Figure 30: Dual Event State Machine Bubble Diagram

A

A A

A

B

B B

B

A and B

S0

S1 S3

S2

XAPP197_30_031201

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 35
1-800-255-7778

R

When Event A is active the state machine proceeds to the next state number. When Event B is
active the state machine proceeds to the previous state number. When both Event A and Event
B are active the state machine transitions to the opposite state. When neither event are active
the state machine stays in its current state.

A VHDL representation of this circuit is shown in
xvrware\synplicity\examples\Dual_Event_FSM.vhd.

A One-Hot encoding scheme has been arbitrarily selected for the FSM. Symbolic encoding will
not work for implementing TMR state-machines, because the majority voters must be inserted
into each register feedback path. Therefore, state-machine encoding must be explicit. The
registered State signal forms a registered logic loop. Therefore, this is the insertion point for
majority voters when replicating the triple redundancy. In the design, the FSM states are
decoded into separate outputs that control external switches. These are throughput logic
structures and as such do not require majority voters. However, since they are FPGA outputs,
OUTPUT_TMR macros will be inserted along their FPGA exit path. The TMR version of this
design is shown in xvrware\synplicity\examples\Dual_Event_FSM_TMR.vhd and is
as follows:

Notes:
1. There are further text comments between code segments.)
library IEEE;
use IEEE.Std_Logic_1164.all;
use IEEE.Std_logic_unsigned.all;

Entity dual_event_fsm_tmr Is
port (Switch_Control_TR0 : out std_logic_vector(3 downto 0);
Switch_Control_TR1 : out std_logic_vector(3 downto 0);
Switch_Control_TR2 : out std_logic_vector(3 downto 0);
Event_A, Event_B : in std_logic_vector(2 downto 0);
Clk, Rst, Ce : in std_logic_vector(2 downto 0);
user_gnd : in std_logic_vector(2 downto 0)); -- Routed GND signal.

End dual_event_fsm_tmr;

Comments: There are now three redundant versions of every input and output. Individual bit
signals have become three bit vectors and logic vectors have been replicated.

Architecture rtl Of dual_event_fsm_tmr Is

component output_tmr
port (
 TR0 : in std_logic;
 TR1 : in std_logic;
 TR2 : in std_logic;
 V0 : out std_logic;
 V1 : out std_logic;
 V2 : out std_logic);
end component;

Comments: The BUFT style voter has been arbitrarily selected for this implementation.

component TRV_BUFT
port (
 TR0 : in std_logic;
 TR1 : in std_logic;
 TR2 : in std_logic;
 V : out std_logic);
end component;

Comments: The original signal “State” has been expanded to a three vector array to
accomodate the triple redundancy. The Array has two variable indicies. The first index specifies
the redundant domain and the second specifies the bit position of the vector.

-- Use Arrays to create redundant vectors.
subtype Vector2 is Std_Logic_Vector(1 downto 0);

http://www.xilinx.com

36 www.xilinx.com XAPP197 (v1.0) November 1, 2001
1-800-255-7778

Triple Module Redundancy Design Techniques for Virtex FPGAs
R

Type Vector2Array is ARRAY (0 to 2) of Vector2;

subtype Vector4 is Std_Logic_Vector(3 downto 0);
Type Vector4Array is ARRAY (0 to 2) of Vector4;

Signal State, StateV : Vector2Array;
Signal Sw_Ctl : Vector4Array;

Comments: The output_tmr macro is inserted on the output paths.

-- Instantiate Triple Redundant Output Module.
L0: For I in 0 to 3 Generate
SW0: output_tmr
port map(TR0=>Sw_Ctl(0)(I), TR1=>Sw_Ctl(1)(I), TR2=>Sw_Ctl(2)(I),
V0=>Switch_Control_TR0(I), V1=>Switch_Control_TR1(I),
V2=>Switch_Control_TR2(I));

end generate;

Comments: The TRV_BUFT voters are inserted into the registered feedback paths. One voter
is inserted for each bit in each redundant path. Since this is a two-bit state machine with triple
redundancy, six voters are instantiated. Since each voter uses three BUFTs, the total
implementation will use 18 BUFTs. Two Generate statements are used to insert the voters. The
first generate loop (K) specifies the redundant domain, while the second (I) specifies the bit
position.

-- Instantiate Voters into feedback paths.
L1: For K in 0 to 2 Generate -- K is the redundant domain.
L2: For I in 0 to 1 Generate -- I is the bit position.
SV: TRV_BUFT -- Or use TRV_LUT for
port map(TR0=>State(0)(I), TR1=>State(1)(I), TR2=>State(2)(I),
V=>StateV(K)(I));
end generate;

end generate;

Comments: The redundancies for the decoders are implemented by embedding the original
code inside a LOOP statement (just as Generate was used for redundant instances) and
specifying the redundant domain (bit index for signals and vector index for arrays) with a
variable (K). The CASE sensitivity was previously the State signal in the original code, but is
now the triple redundant arrayed majority vote signal StateV (output of the majority voters).

-- CASE sensitivity for Voted signal.
SW_DEC: process (StateV)
begin
For K in 0 to 2 Loop -- Loop to generate redundancy.
CASE StateV(K) Is
When "00" =>
Sw_Ctl(K) <= "0001";

When "01" =>
Sw_Ctl(K) <= "0010";

When "11" =>
Sw_Ctl(K) <= "0100";

When "10" =>
Sw_Ctl(K) <= "1000";

When others => null;
End Case;

End Loop;
end process;

Comments: Similarly, the redundancies for the state machine are implemented with a LOOP
statement. Notice carefully the insertion of an additional asynchronous initialization condition.
The original code specifiied a synchronous reset function, but not an asynchronous condition.
This is not a problem if this function of the primitive Virtex flip-flop is utilized; however, some

http://www.xilinx.com

Triple Module Redundancy Design Techniques for Virtex FPGAs

XAPP197 (v1.0) November 1, 2001 www.xilinx.com 37
1-800-255-7778

R

synthesis tools may not make use of this feature leaving the initialization control of the flip-flops
unspecified. (See "VCC and GND Extraction" on page 21.) The USER_GND signal is, therefore,
used to make this specification.

FSM: process(Clk)
begin
For K in 0 to 2 Loop -- Loop to generate redundancy.
If (user_gnd(K) = ’1’) Then -- Tie off FF init pin.
State(K) <= "00";

ElsIf (Clk(K)’event and Clk(K)=’1’) Then
If (Rst(K)=’1’) Then
State(K) <= "00";

Elsif (Ce(K)=’1’) Then
CASE StateV(K) Is
When "00" =>
If (Event_A(K) = ’1’ and Event_B(K) = ’1’) Then
State(K) <= "11";

Elsif ...

End If;
When others => null;
End Case;
End If;

End If;
End Loop;
end process;

Comments: Although other mitigation methods can warn against the use of a ’null’ expression
for the construction of Finite State-Machines, it is not a point of concern for this method. The
redundant feedback paths will correct any redundant register that is upset to an illegal state.

Conclusion Implementing proper Triple Module Redundancy in an FPGA design will harden that design
from any single configuration bit upset. Combining this technique with the partial
reconfiguration methods described in XAPP216 provides an SEU Mitigation method that
obtains an absolute zero SEU error rate. However, this error rate does not take into account any
device-level, single-event functional interrupts. See data sheet for SEFI cross-sections.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

11/1/01 1.0 Initial Xilinx release (with corrected FTP site information).

http://www.xilinx.com

	Triple Module Redundancy Design Techniques for Virtex FPGAs
	Summary
	TMR in FPGAs
	Introduction
	Throughput Logic
	State-Machine Logic
	I/O Logic
	Special Features

	Triple Redundancy and Voting
	Majority Voters
	Implementing Voters with 3-State Buffers
	Implementing Voters in Look-Up Tables

	Implementing TMR for Throughput Logic Structures
	Logic Replication and Voting

	Implementing TMR for State- Machines
	The Simple State-Machine

	Implementing TMR for I/O Logic
	TMR Inputs
	TMR Outputs
	IOB Registers
	Inter-FPGA Communications

	Special Architecture Features
	Block RAM
	Simple Redundancy
	Redundancy and Refresh
	Data Encryption

	Clock Management
	Clock Buffers
	Clock DLLs

	Arithmetic Carry Chains
	Schematic Designs
	Designs in VHDL

	Distributed RAM and Shift-Register LUTs

	VCC and GND Extraction
	Persistent Errors
	Where to Find VCC and GND
	Flip Flops
	Arithmetic Carry Chains

	Power Tie Downs

	XVRWARE Macro Synthesis Library
	Library Macros
	Voters
	TRV_LUT and TRV_BUFT
	OUTPUT_TMR

	Counters
	CCwCE_TMR
	CCwPE_TMR
	CCwRE_TMR
	CCwSE_TMR
	CCwLCPE_TMR

	Memories
	BRAM16x256s_TMR
	BRAM8x512s_TMR
	BRAM4x1024s_TMR
	BRAM2x2048s_TMR
	BRAM1x4096s_TMR

	CLKDLLs
	Clk_DLL_TMR

	Instantiating XVRWARE TMR Macros in VHDL
	TMR Counter
	Component Declaration
	Instantiation

	TMR Block RAM
	Component Declaration
	Instantiation

	TMR CLKDLL
	Component Declaration
	Instantiation

	Other Examples in VHDL
	TMR State-Machines

	Conclusion
	Revision History

