
Summary The inclusion of embedded processor cores in Xilinx FPGAs opens new doors for high-
throughput digital signal processing applications. System Generator for DSP is a high-level
modeling environment for designing custom DSP data paths with performance and efficiency
comparable to hand-crafted designs. Because System Generator for DSP is tightly integrated
with the Simulink® and MATLAB® tools from The Mathworks, Inc., FPGA designs are
implemented by users in a familiar setting without being overly concerned with underlying
hardware details.

A model can be extended to create a CoreConnect® On-Chip Peripheral Bus (OPB)
compatible peripheral using the libraries provided in System Generator for DSP. These
peripherals are used in conjunction with the MicroBlaze™ and PowerPC™ processor cores,
bringing unprecedented throughput and control to DSP embedded systems designers.

This application note shows how to model a slave OPB peripheral in the System Generator for
DSP and how to include the peripheral in an embedded systems platform compatible with the
Xilinx Embedded Development Kit (EDK). As an example, simple System Generator for DSP
constructs are used to connect a reloadable DA FIR filter to the OPB. An embedded (PowerPC
or MicroBlaze) processor is used to control filter coefficient reloading. Primary attention is paid
to connecting the DSP data path and the OPB. To illustrate how a processor might be used to
exchange data with the DSP peripheral, the steps needed to incorporate the peripheral in a
platform consisting of a processor and UART are described. Similar interface logic built using
System Generator makes it straightforward to implement far more sophisticated signal
processing peripherals.

Introduction High-performance DSP data paths modelled in System Generator for DSP (System Generator)
can be used as CoreConnect peripherals by extending them with an appropriate interface. The
Xilinx BlockSet provides the components necessary to model a DSP peripheral and OPB
interface. Although at present (v2.3 release), there are no intrinsic software models for either
the PowerPC or MicroBlaze processors, sufficient subsets of PowerPC and MicroBlaze
processor functionality, i.e., basic bus transactions, can be modeled within the same
environment. This results in a robust simulation and debug environment suitable for DSP
embedded systems design. When the software translates the model into hardware, the same
vectors used in the Simulink simulation are used as golden test vectors in the hardware test-
bench simulation. By ensuring correct peripheral behavior in the Simulink tool, the designer can
be confident the peripheral will function correctly in hardware.

MATLAB and Simulink are registered trademarks of The MathWorks, CoreConnect is a registered
trademark of IBM.

Application Note: Virtex-II Series

XAPP264 (v1.0) November 26, 2002

Building OPB Slave Peripherals using
System Generator for DSP
Author: Jonathan Ballagh, Eric Keller, James Hwang, Phil James-Roxby

R

XAPP264 (v1.0) November 26, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Building OPB Slave Peripherals using System Generator for DSP
R

This application note discusses the techniques needed to extend a System Generator signal
processing data path into a slave peripheral for use on the OPB. These techniques are
illustrated using a example platform comprised of a PowerPC or MicroBlaze processor, a UART
Lite peripheral for communication with a host PC and a reloadable distributed arithmetic (DA)
FIR filter DSP peripheral modeled in System Generator. The principles described in this
application note, provide a sufficient understanding of the System Generator peripheral
modeling process to promote similar techniques for use with other user models. In fact, a
significant portion of the bus interface logic used in the example peripheral model is applicable
and reusable with other models. This application note assumes the reader is comfortable with
System Generator for DSP as well as the Simulink and MATLAB tools. It also assumes the
reader has a basic understanding of OPB bus transaction protocols.[1]

Example
Platform

The example platform shown in Figure 1 explains how a System Generator model can be
extended to become a peripheral. It includes a software peripheral, an embedded processor
(either PowerPC or MicroBlaze) for controlling the peripheral, and a UART Lite for bidirectional
communication through a serial cable with an external host PC. The primary focus is on the
implementation of the peripheral itself.

The peripheral consists of a System Generator reloadable DA FIR filter augmented with a small
amount of control logic. The processor and UART use a serial cable to direct data between the
peripheral and a host PC. The PC uses MATLAB to analyze the filter output and design new
filters. The PC also initiates filter reloading and transfers new filter coefficients to the processor.
Upon receiving new coefficients from the PC, the processor controls the filter reloading from
within the FPGA.

The platform operates under two modes: filter reloading and filter frame data transfer. When the
filter is not being reloaded, frames of filter output are transferred over the OPB to the processor.
From there they are sent to the PC for analysis. On the PC the user can use a MATLAB filter
design tool to construct a new filter. After a new filter is constructed, the coefficients are
automatically transferred across the serial cable to the UART and then to the embedded
processor. Upon receiving the coefficients, the processor transfers the coefficients to the
peripheral.

Figure 1: FPGA Platform: MicroBlaze, UART, and System Generator DSP Peripheral

OPB

Host PC

Data Analysis
and Filter Design

MicroBlaze
Core

filter data

coefficients

System
Generator
for DSP

Peripheral
coefficients

filter data

filter data

coefficients

UART
LITE

coefficients

filter data

Virtex-II Platform FPGA

x264_01_112002
2 www.xilinx.com XAPP264 (v1.0) November 26, 2002
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

DSP Data Path System Generator is ideal for modeling high-performance custom signal processing data
paths. In particular, the ease of modeling filtering applications in the software, makes them
useful, instructive examples. To extend a data path into an OPB peripheral, an example DSP
data path is used. It incorporates a reloadable FIR filter block from the Xilinx BlockSet. Included
with the filter is a small amount of control logic to manage coefficient reloading, adjust data
rates, and control filter output frame buffering.

A reloadable DA FIR filter block lies at the heart of the data path. The block supports
parameterization of coefficient precision, coefficient binary point, number of taps, and filter
oversampling rate. The block used in the example datapath is configured with 32 taps, 12-bit
coefficient precision, and reloadable coefficients (Figure 2).

Operation of the filter block is straightforward. When the filter is not being reloaded, input values
drive the xn port and filter output values drive the yn port. Filter reloading is initiated with a
pulse on the load port, load. During reload the rfd port outputs zeros to indicate the filter is busy.
Following the load pulse, new coefficients are written to the coef port. Asserting coef_we
identifies the current value on the coef port as valid. After all coefficients are written, the filter
comes back online some number of cycles later and resumes processing data. The block
signals when coefficient reloading is complete by reasserting the signal driven by rfd. For a
detailed description of the block, please refer to the DA FIR filter data sheet[2].

Figure 2: DA FIR Filter Block from the Xilinx DSP BlockSet

coef

xn

yn

rfd

coef_we

load

32 tap
FIR

FIR x264_02_111402
XAPP264 (v1.0) November 26, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/ipcenter

Building OPB Slave Peripherals using System Generator for DSP
R

The filter block is augmented with control logic to allow the data path to communicate with the
memory-mapped interface of the peripheral. The data path is implemented in the subsystem
shown in Figure 3.

The control logic enables the following in the data path:

• The data path monitors the status of a 1-bit run control register in the memory map
interface of the peripheral. The value of this register is driven to the subsystem through the
port labeled run in Figure 3. When the register is set to "1", contiguous filter output values
are written to a FIFO residing in the memory map interface. The FIFO write-enable signal
is driven by the frame_we port of the data path. When the register is set to "0", no values
are written to the FIFO. This control register allows the processor to manage data flow
from the peripheral to the bus. A full FIFO constitutes one frame of filter output data.

• The data input port of the filter is driven with an impulse train. The impulse train is
generated using a counter/comparator pair (blocks "Counter" and "Relational" in Figure 3)
to produce a pulse each time the counter rolls over. The maximum count value is chosen
to be larger than the number of filter taps. The cast block converts the Boolean (1-bit)
output of the relational block into a 12-bit input value driving the data input port of the filter.

• New filter coefficients written to the peripheral by the processor are stored in a second
memory mapped FIFO. It is the responsibility of the data path to monitor the coefficient
FIFO signals driven on input ports coef_empty and coef_full. When the FIFO is full,
indicating all coefficients have been written, the data path initiates a filter reload sequence
and issues read requests to the FIFO to obtain the new coefficients. The coefficient FIFO
read request is driven on the coef_re output port.

To conserve hardware, the filter is configured to oversample at a rate of four. The oversampled
filter runs at the system rate (i.e., the same rate as the OPB clock), and therefore the filter data
rate is four-cycles per sample. To compensate for the rate change, up and down samplers are
used (Figure 3 blocks "US", "DS_1," "DS_2," and "DS_3") at places where the data path
connects to the bus. Clock enable probes extract the clock enable pulses used in multi-rate
designs, and are used to ensure the FIFO Read/Write transactions align to the filter input
sample frame.

Figure 3: Example DSP Data Path Subsystem

yn
coef_data

run
frame_data

coef_re

coef_full

coef_empty

Data_Path_IP

frame_we

Counter

k=1

k=0

k=1

DS_1

DS_2

Const_0 Relational

coef_data
2

2

1

14

Del_1

DS_3

out
cast

Const_1

Reg_1

Del_2

coef_re

and

ce

AND_2

CE Probe

frame_data

frame_we

AND_1Reg_2

coef_we

coef_full

coef_empty

coef

xn

load

32 tap
FIR

rfd

run

us

FIR

and

CE
3

4

3

a
a=b

b

4

d

en

qrst

d

en

qrst

4

4

x264_03_111902

z−1z−1

z−1

z−1

z−1

z−1

z−1
4 www.xilinx.com XAPP264 (v1.0) November 26, 2002
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

Extending the
Data Path into a
Peripheral

A System Generator data path can be extended into a CoreConnect peripheral through a
custom interface constructed using the Xilinx BlockSet. A typical peripheral model requires the
following components in addition to the DSP data path.

• Interface to the OPB signals

• Address decoding logic

• A memory mapped register interface to the I/O ports of the data path

• Logic to manage bus transaction handshaking

To make the peripheral as modular as possible, each of the above components are
encapsulated in their own Simulink subsystem. Using subsystems also allows each component
to be designed and debugged individually, and then to be added to a library for future reuse. A
general case System Generator peripheral consisting of subsystems is shown in Figure 4. The
following sections focus on the implementation of each subsystem with an example using the
reloadable DA FIR filter data path.

Bus Interfacing Bus interface logic is needed to bridge the gap between the I/O ports on the peripheral and the
OPB. A Simulink subsystem is a natural parking place for this logic. The benefits of
encapsulating the bus interface logic in a subsystem are two-fold. First, placing this logic in a
subsystem results in a convenient abstraction of the OPB. Users can easily tap-off signals as
needed from the bus interface subsystem. Second, coupling Xilinx input gateway and output
gateway with the subsystem logic ensures the necessary ports are instantiated on the top-level
peripheral VHDL when the model is translated into hardware.

The names given to the gateway blocks reflect the corresponding OPB signal names. Following
this guideline allows the designer to easily identify and associate OPB signals in the
microprocessor peripheral description (MPD)[3] file with the corresponding top-level ports on
the VHDL model description.

Separating the bus interface logic into two subsystems, one for signals driven to the peripheral
by the OPB, and one for signals driven by the peripheral to the OPB, results in a more natural
depiction of the left-to-right data flow within the model. This is done in the example by
implementing the interface logic in two separate subsystems, OPB2IP_IF and IP2OPB_IF.
OPB2IP_IF contains the interfacing of signals driven by the OPB to the peripheral. IP2OPB_IF

Figure 4: A Peripheral Modeled in System Generator for DSP

OPB

System Generator for DSP Peripheral Model

Bus
Interface

Logic

Address
Decode

Memory
Mapped
Interface

System
Generator
Data Path

Hand-shaking
Logic

x264_04_112002
XAPP264 (v1.0) November 26, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

connects signals driven by the peripheral to the OPB. Wherever possible, register these signals
to improve timing.

The interface and subsystem logic for the OPB2IP_IF component is shown in Figure 5. A best
practice design registers the signals read from the OPB. These registers can be removed if the
peripheral timing constraints can be relaxed. Each register in the subsystem has an explicit
reset port exposed. Routing the OPB_rst signal to the reset port of each register ensures the
contents of these registers are reset to an initial value if the OPB reset is asserted.

Of note is the use of global from blocks as sources for the input gateways. Global from blocks
allow gateway blocks to be driven without needing explicit ports on the subsystem interface.
This has advantages for simulation, as shown when processor code is encapsulated into a
separate processor model subsystem. During simulation, the processor subsystem drives
these from blocks using global goto blocks.

The IP2OPB_IF subsystem is shown in Figure 6. All output signals are registered before being
written to the OPB. Again, these register blocks can be removed if peripheral timing is relaxed.
Global goto blocks follow the output gateways and allow the processor subsystem to monitor
the output signals of the peripheral without explicit wiring. The reset port on the SGP_DBus
register is driven by the registered acknowledge signal. This wiring ensures the peripheral data
output register resets to zero on the cycle immediately following the assertion of the
acknowledge signal. This satisfies the requirement to have the peripheral drive zeros to the
OPB when the acknowledge is Low. The terminated OPB signals are not used in this example.

Figure 5: OPB2IP_IF Subsystem

dbl fpt

OPB_ABus

[OPB_ABus]

dbl fpt

OPB_BE

[OPB_BE]

dbl fpt

OPB_DBus

[OPB_DBus]

dbl fpt

OPB_RNW

[OPB_RNW]

dbl fpt
OPB_Select

[OPB_select]

dbl fpt
OPB_seqAddr

[OPB_seqAddr]

dbl fpt
OPB_rst

[OPB_rst]

OPB_ABus_UnReg

OPB_ABus_Reg

OPB_BE_Reg

OPB_RNW_Reg

OPB_seqAddr_Reg

OPB_rst_UnReg

OPB2IP_IF

OPB_Select_UnReg

OPB_DBus_Reg

d

q
rst

d

q
rst

d

q
rst

d

q
rst

d

q
rst

8

7

6

5

4

3

2

1

OPB_rst_UReg

OPB_seqAddr_Reg

OPB_Select_UReg

OPB_RNW_Reg

OPB_DBus_Reg

OPB_BE_Reg

OPB_ABus_Reg

OPB_ABus_UReg

x264_05_112002
6 www.xilinx.com XAPP264 (v1.0) November 26, 2002
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

The IP2OPB_IF and OPB2IP_IF subsystems are placed in the top level of the peripheral
hierarchy. Every gateway is named after a corresponding OPB port and is assigned a matching
width.

Address
Decoding

When a processor (or other OPB master) attempts to read or write to a peripheral, it writes an
address to the bus. It is the responsibility of the peripheral to decode the address and decide if
the current address value is within the memory mapped allocation space of the peripheral. The
OPB master indicates a valid address value by asserting the OPB_select signal. The peripheral
needs only to decode the current address when OPB_select is High.

In this example, the address decoding subsystem is implemented with behavior matching the
p_select.vhd [4] component distributed with the Xilinx EDK. For reuse, the subsystem is made
as generic as possible. The subsystem and subsystem logic are shown in Figure 7. The
p_select subsystem has two input ports, addr and a_valid. Port addr is driven by the bus
address signal, OPB_ABus. The a_valid port of the subsystem is driven by the OPB_select
signal from the bus. The ps output port drives the peripheral select signal for the model.

Figure 6: IP2OPB_IF Subsystem

dblfpt

SGP_DBus

SGP_xferAck

SGP_retry

SGP_toutSup

SGP_errAck

dblfpt

dblfpt

dblfpt

dblfpt

SGP_xferAck_In

SGP_toutSup_In

SGP_errAck_In

IP2OPB_IF

SGP_retry_In

SGP_DBus_In

5 d

SGP_errAck_In

SGP_toutSup_In

SGP_retry_In

SGP_xferAck_In

SGP_DBus_In

q

4 d q

3

2

1

d q

d

d

q

q

rst

en

SGP_DBus

SGP_xferAck

x264_06_112002
XAPP264 (v1.0) November 26, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

Two slice blocks, Slice_C and Slice_D (Figure 7) extract the relevant bits of the address signal.
The slice blocks are configured with a range defined as an offset from the MSB. The constant
block stores the entire base address of the peripheral. The relational block tests for equality
between the outputs of the two slice blocks. Finally, a logical block configured to perform an and
operation ensures that the peripheral select output ps is only asserted when the address is
valid, as indicated by the a_valid signal. Note, the p_select subsystem implementation
assumes the memory map allocation range is an even power of two.

The usefulness of the p_select subsystem is further extended by converting it into a masked
subsystem. The subsystem is parameterized in terms of the desired base and high address
values for the peripheral model (Figure 8). The base and high address values are passed to
mask parameters C_BASE and C_HIGH respectively.

The close integration of System Generator with MATLAB allows blocks to be parameterized
using MATLAB expressions. This flexibility allows the constant and slice blocks to be
parameterized using the C_BASE and C_HIGH parameters. The slice blocks are identically
parameterized and the corresponding mask GUI is shown in Figure 9.

Figure 7: p_select Address Decoding Subsystem

addr

Constant

Relational

a_valid

Logical

ps
p_select

addr

a_valid

ps
4294967040

Slice_C

Slice_D

a

a=b

andb

1

1

2

[a:b]

[a:b]

x264_07_112002

Figure 8: Mask parameterization GUI for the p_select subsystem
x264_08_111402
8 www.xilinx.com XAPP264 (v1.0) November 26, 2002
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

Generating the
Acknowledge

A slave peripheral either read or written to on the OPB must generate an acknowledge pulse
once it has completed the transaction. This acknowledge must be accompanied by valid
peripheral output data during a read. This pulse is driven to the SGP_xferACK signal of the
OPB.

In the example peripheral, each read and write has a fixed and equal latency. Although a state
machine is an equally valid alternative, this example uses a register to produce the pulse. This
is the technique used in the tutorial "Designing Custom OPB Slave Peripherals for
MicroBlaze"[4] to generate the acknowledge. The input to the register is driven by the peripheral
select with extra logic to ensure the register resets on the cycle following its assertion.

Two additional registers introduce a two-cycle latency in the acknowledge thereby aligning the
pulse with the peripheral output data. The three register outputs are fed back and are used to
set the register to zero if any register output is a one. This logic is necessary because the
peripheral select signal remains High for several cycles. The acknowledge signal, however,
must only be asserted for a single cycle. The logic needed to generate the acknowledge pulse
is shown in Figure 10.

Figure 9: Mask Parameterization GUI for the Slice_C Block
x264_09_111402
XAPP264 (v1.0) November 26, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

Defining a
Memory
Mapped I/O
Interface

The peripheral communication interface with the OPB is defined in this section. This is typically
realized through a memory mapped I/O interface where each port on the example data path is
assigned an offset from the base address of the peripheral. There are five I/O ports of interest
in the design’s data path. The ports are assigned the offset values shown in Table 1.

Additional decoding logic is included in the peripheral to generate the enable signals for each
memory mapped register/FIFO component. The subsystem used to generate these enable
signals is shown in Figure 11. A slice block extracts the relevant bits from the address signal. In
the example peripheral, the addresses are aligned to the full 32-bit word boundaries. Therefore,
ignore the two least significant bits of the address signal as they are not needed for data
steering. The OPB_BE signal is not used in the model. The OPB_rnw signal and peripheral
acknowledge signals are concatenated with the extracted address bits. The resulting signal
drives the first input port of a series of comparators. A constant block drives the second input
port of each comparator. The constant value is derived using the offset value of the memory
mapped element along with the read/write status, and assumes an asserted acknowledge. The
enable signals can now be wired to the enable ports of their respective memory mapped
components.

Figure 10: Acknowledgement Generation Subsystem

ps

rst

ack

ack_gen

1

2

ps

rst

not

not
and

Logical

not

d

rst q

Reg_1
Convert

Reg_2
Reg_3

ack

cast d

1

q
rst

d
q

rst

x264_10_112002

z−1

z−1

z−1

Table 1: I/O mapping for the DA FIR Filter Peripheral

Signal Description Transfer Offset

out_0_re Data Read 0x0

out_1_re Buffer Full Read 0x4

out_2_re Buffer Empty Read 0x8

in_0_we Run/Stop Write 0xC

in_1_we Coefficient Write 0x10
10 www.xilinx.com XAPP264 (v1.0) November 26, 2002
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

Having assigned peripheral I/O ports to addresses, a memory mapped interface is constructed
using the Xilinx BlockSet. The memory map interface is partitioned into two subsystems, one
for the peripheral inputs and the other for the peripheral outputs. The peripheral input memory
map is considered first.

A standard memory-mapped input interface is comprised of register and FIFO blocks; both are
naturally modeled and available in the Xilinx BlockSet. The input memory map for the example
peripheral is implemented using a register block for the run control register and a FIFO block for
filter coefficient buffering. Both the register and FIFO data inputs are driven by the OPB data
input signal. Slice blocks are placed on both data input signals before the block inputs. For the
run control, only a single bit for the control is required. This eliminates the need to use a 32-bit
register to store the bus data. Instead, the slice block extracts the LSB from the data bus and
generates a Boolean output signal. Likewise, the slice block for the FIFO extracts the 12 bits
needed to store each filter coefficient. However, the precision produced by the slice block is
incompatible with the filter coefficient precision required by the DA FIR filter block. The slice
block generates an unsigned 12-bit number with zero factional bits. The parameterization of the
DA FIR filter block requires signed 12-bit values with 11 fractional bits. To make this conversion,
a force block is placed immediately after the Slice_B block. The force block does not require

Figure 11: Enable Generation Subsystem

5

4

3

2

1

20

19

26

25

24

High

d q

Low

High

Low

cat

cat

[a:b]

Slice

ack_in ack_out

out_0_re

out_1_re

out_2_re

in_0_we

in_1_we

addr

rnw

a

a=b

a=b

a=b

a=b

a=b

3

ack_in

1 6

2

ack_in

out_0_re

out_1_re

out_2_re

in_0_we

in_1_we

ack_out

en_gen

addr

mw

x264_11_112102

bz−1

a

bz−1

a

bz−1

a

bz−1

a

bz−1

z−1
XAPP264 (v1.0) November 26, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

additional hardware resources and is only used to allow Simulink to correctly interpret and
scale the coefficient data value.

Many System Generator blocks provide explicit enable and reset controls. These ports are
mapped to the enable and reset ports in the synchronous hardware elements when the model
is translated into hardware. These ports are used in the example memory map to control when
the register and FIFO blocks are written to. An explicit enable signal is exposed on the register
block and is driven by its respective we signal in_0_we from the address decoding logic.
Similarly, the we port of the FIFO block is driven by the corresponding we signal, in_1_we. The
corresponding input memory map subsystem is shown in Figure 12.

The output memory map interface is comprised of a FIFO with multiplexing logic to switch
between FIFO output signals. As shown in Table 1, three outputs from the FIFO: data, full, and
empty are the predominant concern. In addition, the output memory map must drive zeros to
the OPB data output signal if the master is not attempting to read from one of these three
signals.

When a read request is issued to the peripheral and the address corresponds to one of these
three signals, valid data must be driven to the bus data signal. The bus must have the valid data
driven to it in the same cycle as when the acknowledge signal is asserted. The peripheral
drives zeros at all other times to avoid bus contention.

The output memory map subsystem and logic are shown in Figure 13. A MUX block configured
with four inputs is used to switch between constant zeros and the FIFO outputs. The FIFO
outputs are all different widths, however, this is compensated for by using cast blocks to convert
the output widths to 32 bits. The input to the subsystem are the three output read enable
signals. These signals are concatenated together and drive the input of a ROM block. The ROM
block is parameterized to decode the signal and drive the MUX select line with an appropriate
value. If none of the read-enable signals are asserted, the MUX selects the constant 32-bit zero
input.

Figure 12: Example Peripheral Input Memory Map

1

2

opb_dbus

[a:b]

Slice_A

in_0_we

Slice_B

d

en

in_0_reg

in0_data

1q

2

3

4

3

4

in_1_we

in1_full

in1_empty

in1_data

in_1_re

in_1_FIFO

din[a:b] force
dout

empty

%full

full

we

re

in_0_we

in_1_re

mem_if_in

in_1_we

opb_dbus

in1_data

in1_full

in1_empty

in0_data

z−1

x264_12_112002
12 www.xilinx.com XAPP264 (v1.0) November 26, 2002
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

Figure 13: Example Peripheral Output Memory Map

out_1_re

out_0_data

out_2_re
sgp_dbus

out_0_re

out_0_we

mem_if_out

3
out_2_re

2
out_1_re 1

out_0_re

4
out_0_data

5
out_0_we

High

High
Low

Low

cat

cat

din
dout

empty

%full

full

we

re

out_0 FIFO

addr

ROM

cast

k=0

cast

cast

d0

d1

d2

d3

Mux

sel

1
sgp_dbus

x264_13_112002
XAPP264 (v1.0) November 26, 2002 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

Simulating the
Peripheral

The complete peripheral implementation is shown in Figure 14.

Simulink offers a variety of tools for simulating and debugging the peripheral model. These
tools can be used by coupling the peripheral model with a bus stimuli model. StateFlow™, an
event-driven interactive modeling and simulation tool from MathWorks, can be used as a tool to
model basic processor behavior. By simulating subsets of the processor code using state
transition diagrams, the user can better visualize peripheral model behavior under realistic
stimuli. Simulating subsets of the processor code in Simulink is also advantageous as most
analysis tools from existing Simulink libraries can be used in the peripheral debugging process.
When the model is translated to hardware, System Generator automatically produces a test
bench using the bus simulation test vectors as golden test vectors in the hardware simulation.
By running these tests, the hardware representation is both bit and cycle accurate when
compared to the behavior of the model.

Figure 14: Example Peripheral Implementation

OPB_ABus_UReg

OPB_ABus_Reg

OPB_BE_Reg

OPB_DBus_Reg

OPB_RNW_Reg

OPB_Select_UReg

OPB_seqAddr_Reg

OPB_rst_UReg

OPB2IP_IF

opb_dbus

[out_0_re]

[out_1_re]

[out_2_re]

[in_0_we]

[sgp_dbus]

[in_1_we]

mem_if_in Sysgen_IP

opb_dbus

in_0_we

in_1_we in1_empty

in1_data

in0_data

in_1_re in1_full

coef_data

frame_data

frame_we

coef_re

coef_empty

coef_full

run

out_0_re

out_1_re

out_2_re sgp_dbus

out_0_data

out_0_we

SGP_DBus_In

SGP_xferAck_In

SGP_retry_In

SGP_toutSup_In

SGP_errAck_In

IP20PB_IF

mem_if_out

[out_0_re]

[out_1_re]

[out_2_re]

[in_0_we]

[ack]

[sgp_dbus]

[in_1_we]

[ack]ack_out

en_gen

ack_gen
p_select

ps
addr

ps
a_valid

pst
ack

in_1_we

in_0_we

out_2_re

out_1_re

ack_in

addr

out_0_re

opb_dbus

k=0

x264_14_111402
14 www.xilinx.com XAPP264 (v1.0) November 26, 2002
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

For the example peripheral, a StateFlow diagram is implemented to model a MicroBlaze code
stub. Each StateFlow diagram output drives a corresponding OPB input port of the input bus
interface subsystem of the peripheral. Similarly, every StateFlow input is driven by an OPB
output port from the output bus interface subsystem of the peripheral. Abstract connections to
the bus interface subsystems are realized by the input and outputs of the StateFlow diagram
driving or reading global from or goto blocks, respectively. This approach allows encapsulation
of the StateFlow diagram, source, and syncs into a single subsystem. Because the input and
outputs are wired to global from/goto blocks, bus signals can be tapped off accordingly with
additional from/goto blocks. The model monitors the bus signals driven by the peripheral via
global from blocks.

The tags on the global from/goto blocks match the from/goto tags found in bus interface blocks,
OPB2IP_IF and IP2OPB_IF. The processor model in Figure 15 accepts a trigger condition;
where the triggering is on the rising edge of the clock. A clock probe block extracts the system
clock and drives the trigger port of the StateFlow diagram. The resulting StateFlow model with
sample state transitions modeling a processor code stub are shown in Figure 15.

Included with each state transition in the diagram is a set of signal assignments producing a
corresponding bus transaction (Figure 15). Using StateFlow allows easy, reproducible behavior
of a processor code stub. In this case, the stub is focused solely on testing the functionality of
the DSP peripheral, and not on the other components in the platform. The model is used only
during simulation and is not translated in the hardware implementation.

Figure 15: StateFlow Diagram Block with Example State Transitions

OPB_rst

OPB_DBus

OPB_select

OPB_RNW

OPB_ABus

PB_seqAd

OPB_BE

SGP_DBus

SGP_xferAck

SGP_DBus

OPB_ABus

OPB_RNW

OPB_Select

OPB_DBus

OPB_rst

Scope

SGP_xferAck

Processer
Model

k=1 CLK
OPB

RequestFIFOFull
entry:
OPB_ABus = 4294967044;
OPB_RNW = 1;
OPB_Select = 1;

WaitForAck1
exit:
OPB_Dbus = 0;
OPB_ABus = 0;
OPB_RNW = 0;
OPB_Select = 0;

AssertRun
entry:
OPB_ABus = 4294967052;
OPB_DBus = 1;
OPB_RNW = 0;
OPB_Select = 1;

[SGP_xferAck ==1]

x264_15_112102
XAPP264 (v1.0) November 26, 2002 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

Including the
Peripheral in a
Platform

Although System Generator produces all VHDL and netlist files necessary for the peripheral
implementation, there are some modifications to make to the VHDL before it can be
incorporated in a platform. In addition to making these modifications, the user must generate
the required MPD, Peripheral Analyze Order (PAO), and Black-Box Definition (BBD) data files
used to describe the peripheral.

There are several inconstancies between the VHDL signal formats produced by System
Generator and the signal formats expected by the Platform Generator. Observe these
differences and compensate for them by either producing an additional wrapper around the top-
level to express the signals in the proper format or by adjusting the top-level System Generator
VHDL accordingly. From a reusability standpoint, it is better to generate a top-level wrapper.
The required changes are as follows:

• 1-bit wide System Generator VHDL signals are expressed using std_logic_vector types
instead of std_logic. The Platform Generator expects std_logic signal types.

• If the peripheral model does not use a signal from the OPB, the signal will be optimized
away and will not show up on the top-level VHDL port declaration. These ports must be
explicitly re-added to the top-level VHDL file.

• System Generator defines bit ordering of the signal using little-Endian notation while the
PowerPC and MicroBlaze operate under the assumption of big-Endian ordering. The
signal ordering on the top-level VHDL ports must be reversed.

The PAO file lists all HDL files needed for synthesis of the peripheral. Refer to the Embedded
System Tools Guide[3] for information about the PAO format. System Generator produces a file
similar to the PAO file and with minor tweaking, this file can be converted into the correct PAO
format. The xst project file contains a list of all VHDL files needed for synthesis. For example,
the first five lines of the xst_opb_sgp_filter.prj file created by the software are shown in this
sample VHDL file list from XST project file:

const_pkg.vhd

conv_pkg.vhd

clock_pkg.vhd

synth_reg.vhd

synth_reg_w_init.vhd

With only a few changes easily realized in a text editor, the project file can be converted into a
PAO file. The corresponding five sample lines are from the PAO file:

lib opb_sgp_filter_v1_00_a const_pkg

lib opb_sgp_filter_v1_00_a conv_pkg

lib opb_sgp_filter_v1_00_a clock_pkg

lib opb_sgp_filter_v1_00_a synth_reg

lib opb_sgp_filter_v1_00_a synth_reg_w_init

Many System Generator blocks are mapped to handcrafted IP cores [5] when they are
translated into hardware. Each core is distributed in EDIF netlist form. Copy every file with a
.edn extension from the model’s implementation directory into the netlist directory of the
peripheral. For the EDK to copy the files over during implementation, the user must specify
each netlist in the BBD file. The BBD file for the example peripheral follows.
16 www.xilinx.com XAPP264 (v1.0) November 26, 2002
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

###
##
Copyright (c) 2002 Xilinx, Inc. All rights reserved.
##
opb_sgp_filter_v2_0_0.bbd
##
Black-Box Definition file
##
###

FILES
opb_sgp_filter_xlcounter_free_x_0_core.edn,
opb_sgp_filter_xlfifo_x_0_core.edn, opb_sgp_filter_xlfifo_x_1_core.edn,
opb_sgp_filter_xlfir_reloadable_1ch_x_0_core.edn,
opb_sgp_filter_xlmux_x_0_core.edn,
opb_sgp_filter_xlrelational_x_7_core.edn,
opb_sgp_filter_xlsprom_dist_x_0_core.edn

In the MPD file, the STYLE parameter must be set to MIXED. Setting this parameter to MIXED
informs the Platform Generator that the design has both HDL and optimized hardware netlist
files. The MPD file for the reloadable filter peripheral follows.

###
##
Copyright (c) 2002 Xilinx, Inc. All rights reserved.
##
opb_sgp_filter_v2_0_0.mpd
##
Microprocessor Peripheral Definition file
##
###

PARAMETER VERSION = 2.0.0
BEGIN opb_sgp_filter, IPTYPE=PERIPHERAL, IMP_NETLIST=TRUE, STYLE=MIXED

BUS_INTERFACE BUS=SOPB, BUS_STD=OPB, BUS_TYPE=SLAVE

Global ports
PORT clk = OPB_Clk, DIR=IN, SIGIS=CLK, BUS=SOPB
PORT opb2ip_if_opb_rst = OPB_Rst, DIR=IN, BUS=SOPB

OPB signals
PORT opb2ip_if_opb_abus = OPB_ABus, DIR=IN, VEC=[0:31], BUS=SOPB
PORT opb2ip_if_opb_be = OPB_BE, DIR=IN, VEC=[0:3], BUS=SOPB
PORT opb2ip_if_opb_rnw = OPB_RNW, DIR=IN, BUS=SOPB
PORT opb2ip_if_opb_select = OPB_select, DIR=IN, BUS=SOPB
PORT opb2ip_if_opb_seqaddr = OPB_seqAddr, DIR=IN, BUS=SOPB
PORT opb2ip_if_opb_dbus = OPB_DBus, DIR=IN, VEC=[0:31], BUS=SOPB
PORT ip2opb_if_sgp_dbus = Sl_DBus, DIR=OUT, VEC=[0:31], BUS=SOPB
PORT ip2opb_if_sgp_errack = Sl_errAck, DIR=OUT, BUS=SOPB
PORT ip2opb_if_sgp_retry = Sl_retry, DIR=OUT, BUS=SOPB
PORT ip2opb_if_sgp_toutsup = Sl_toutSup, DIR=OUT, BUS=SOPB
PORT ip2opb_if_sgp_xferack = Sl_xferAck, DIR=OUT, BUS=SOPB

END
XAPP264 (v1.0) November 26, 2002 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Building OPB Slave Peripherals using System Generator for DSP
R

References 1. IBM, Inc. On-Chip Peripheral Bus: Architecture Specifications Version 2.1,
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8

2. Xilinx, Inc., Distributed Arithmetic FIR Filter V7.0, Product Specification.
http://www.xilinx.com/ipcenter/catalog/logicore/docs/da_fir.pdf

3. Xilinx, Inc., Embedded System Tools Guide: Embedded Development Kit, EDK (v3.1 EA)
September 24, 2002.

4. Xilinx, Inc., Tutorial: Designing Custom OPB Slave Peripherals for MicroBlaze, February 8,
2002. http://www.xilinx.com/ipcenter/processor_central/microblaze/doc/opb_tutorial.pdf

5. Xilinx, Inc., Xilinx Core Generator System,
http://www.xilinx.com/products/logiccore/coregen/index.htm.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

11/26/02 1.0 Initial Xilinx release.
18 www.xilinx.com XAPP264 (v1.0) November 26, 2002
1-800-255-7778

http://www.xilinx.com
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8
http://www.xilinx.com/ipcenter/catalog/logicore/docs/da_fir.pdf
http://www.xilinx.com/ipcenter/processor_central/microblaze/doc/opb_tutorial.pdf
http://www.xilinx.com/products/logiccore/coregen/index.htm

	Summary
	Introduction
	Example Platform
	DSP Data Path
	Extending the Data Path into a Peripheral
	Bus Interfacing
	Address Decoding
	Generating the Acknowledge
	Defining a Memory Mapped I/O Interface
	Simulating the Peripheral
	Including the Peripheral in a Platform
	References
	Revision History

