
Summary This application note illustrates the implementation of an IrDA and UART system using a
CoolRunner™ CPLD. The fundamental building blocks required to create a half-duplex IrDA
and full-duplex UART interface design is described. The source code for this design is available
and can be found in the section HDL Code, page 9. This design fits an XC2C128 CoolRunner-
II or XCR23128XL CPLD.

Introduction IrDA devices provide a walk-up, point-to-point method of data transfer that is adaptable to a
broad range of computing and communicating devices. The first version of the IrDA
specification (version 1.0) provides communication at data rates up to 115.2 Kbps. Later
versions (version 1.1) extended the data rate to 4 Mbps, while maintaining backward
compatibility with version 1.0 interfaces. The protocol described in this application note is only
for 115.2 Kbps. The 4 Mbps interface uses a pulse position modulation scheme which sends
two bits per light pulse.

The IrDA standard contains three specifications. These relate to the Physical Layer, the Link
Access Protocol, and the Link Management Protocol. This document provides information on
the Physical Layer and does not provide a detailed explanation of the requirements for full IrDA
conformity. For more information on IrDA see "References" on page 10.

IrDA System Figure 1 illustrates the basic hardware building blocks for IrDA communication. The selection of
UART interface, RS232, and microcontroller or microprocessor, depends upon the
communication speed required. Data rates above 115.2 Kbps require a direct interface to the
address and data lines of the microprocessor or microcontroller. Data rates below 115.2 Kbps
can be implemented over a UART or RS232 port

A UART interface is implemented in this design for data rates up to 115.2 Kbps. The IrDA
specification is intended for use with a serial communications controller such as a conventional
UART. The data is first encoded before being transmitted as IR pulses. As shown in Figure 2,
the serial encoding of the UART is NRZ (non return to zero) encoding. NRZ encoded outputs
do not transition during the bit period, and may remain High or Low for consecutive bit periods.
This is not an efficient method for IR data transmission with LEDs. To limit the power
consumption of the LED, IrDA requires pulsing the LED in a RZI (return to zero, inverted)
modulation scheme so that the peak power to average power ratio can be increased. IrDA

Application Note: CoolRunner CPLD

XAPP345 (v1.1) September 30, 2002

IrDA and UART Design in a CoolRunner
CPLD

R

Figure 1: IrDA Block Diagram

UART
RS232

µP
µC

X345_01_080601

Modulation/
Demodulation

Serial Out

Serial In
Infared
Receive

Infared
Transmit
XAPP345 (v1.1) September 30, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this fea-
ture, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any war-
ranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

IrDA and UART Design in a CoolRunner CPLD
R

requires the maximum pulse width to be 3/16th of the bit period. A 16x clock is required, and
counting three clock cycles can easily be done to encode the transmitted data.

Half Duplex and Latency

The IrDA link cannot send and receive data at the same time. The IrDA link is a half-duplex
interface and a time delay must be allowed from when a link stops transmitting until it can
receive data again. A time period with a duration of 10 ms must be allowed between
transmitting and receiving data. The UART interface design is full-duplex, supporting
simultaneous read and write operations from the microprocessor or microcontroller interface.

UART and IrDA
Design

Figure 3 illustrates the system architecture for implementing a UART serial port interface with
an IrDA module in a CoolRunner CPLD. The UART or a discrete device must provide a 16x
clock for the IrDA 3/16 modulation scheme.

The Verilog code provided in this design for the UART interface consists of two HDL modules,
TRANSMIT and RECEIVE. Data is written to the transmitter and data is read from the receiver
through an 8-bit parallel data bus.

The Verilog code provided in this design for the IrDA emulates the operation of the Agilent
Technologies HSDL-7000. The IrDA HSDL-7000 consists of logic for both encoding and
decoding the transmit and receive data. Each encode and decode operation is driven by the
clock, derived from the UART, or supplied from a discrete source. This clock must be initially
configured to cope with the IrDA specified startup data rate of 9.6 Kbps, then adjusted to 16
times the desired baud rate.

Figure 2: IrDA 3/16 Data Modulation

UART
TXD

(NRZ)

Start
Bit

0 1 0 1 0 0 1 1 0 1

Data Bits

Bit
Time

Stop
Bit

IR_TXD
(RZI)

X345_02_080601
3/16

Figure 3: UART and IrDA Block Diagram

TRANSMIT
TXD

Parallel
Data
Byte

16XCLK

RCV

UART

X345_03_080601

RECEIVE

IR_ENCODE

IrDA

IR_DECODE

IR_TXD

IR_RCV
2 www.xilinx.com XAPP345 (v1.1) September 30, 2002
1-800-255-7778

IrDA and UART Design in a CoolRunner CPLD
R

UART Interface Figure 4 illustrates the functionality of the UART interface. The data bus interface to the UART
module is 8-bits. Even or odd parity can be selected on the serial data out, SOUT.

The serial data out, SOUT follows the format shown in Figure 5.

UART Transmit Logic
Data transfer in this design is controlled by the system microprocessor or microcontroller. The
UART design must interface with the parallel processor bus and necessary control lines. The
UART transmit logic consists of interpreting processor write commands, generating the
transmit clock, TXCLK, at the desired baud rate, and shifting out data on SOUT. The UART
logic must interpret the active Low write signal from the processor and read in data from the
data bus. The data is read into the transmit hold register. Once the write signal is de-asserted,
a flag is asserted to start shifting data out on SOUT. Figure 6 illustrates the logic of interpreting
the write signal.

Figure 4: UART Main Interface Logic

Figure 5: UART Data Out Format

Figure 6: Assigning Transmit Data

RECEIVE

SIN

16XCLK

UART

X345_04_080701

RESET

Parity Error

Parallel
Data Byte

READ

Framing Error

Overrun Error

RX_RDY

TX_RDY

WRITE

M
ux

H
ol

d
R

eg
is

te
r

S
hi

ft
R

eg
is

te
r

Control
Logic

TRANSMIT

SOUT

H
ol

d
R

eg
is

te
r

S
hi

ft
R

eg
is

te
r

Control
Logic

Start
Bit

LSB MSB

8 Data Bits

Parity
Bit

X345_05_080701

Stop
Bit

IDLE write = '1'

write = '0'

ASSIGN

write = '1'

DATA_RDY
X345_06_080701
XAPP345 (v1.1) September 30, 2002 www.xilinx.com 3
1-800-255-7778

IrDA and UART Design in a CoolRunner CPLD
R

The second part of control logic for the UART transmitter is dividing the 16x clock to transmit
data at the desired baud rate. The transmit clock, TXCLK, is generated using a 3-bit counter
that increments on the rising edge of the 16x input clock. TXCLK controls when data changes
on the serial data output of the UART. Figure 7 illustrates this logic, TXCLK changes value
when the 3-bit counter is equal to zero.

The last main portion of the UART transmit logic is shifting out data on SOUT. Figure 8
illustrates the control logic to send data out according to the data format shown in Figure 5. The
START TRANSMIT logic sends the start signal out on SOUT. The SHIFT OUT logic shifts the
transmit shift register and sends data out on SOUT. When the paritycycle signal is asserted,
the parity bit is transmitted. Once the data and parity has been transmitted, the done bit is sent
by the STOP OUT logic.

UART Receive Logic
The UART receive logic must interpret the incoming data from the IrDA module on SIN, as well
as present a parallel byte of data to the microprocessor or microcontroller in the system. To
interpret the incoming SIN data, the receive logic must search for the start bit in the data

Figure 7: TXCLK Generate Logic

Figure 8: SOUT Control Logic

START reset = '0'

cnt < 8

reset = '1'

IDLE

cnt = 0cnt = 8

INCR

X345_07_080701

START reset = '0'

reset = '1'

IDLE reset = '1'

reset = '0' and txdone = '1'
and txdatardy = '0'

START
TRANSMIT

txdone = '0' or
txdatardy = '0'

SHIFT
OUT

txdone ='0' and
paritycycle = '0'

paritycycle = '1'

PARITY
OUT

txdone = '1'

STOP
OUT

X345_08_080701
4 www.xilinx.com XAPP345 (v1.1) September 30, 2002
1-800-255-7778

IrDA and UART Design in a CoolRunner CPLD
R

stream. The start bit is indicated by an active Low signal for eight clock cycles after a falling
edge on SIN.

A falling edge on SIN is read by the DETECT EDGE logic as shown in Figure 9. To receive
data, the receive clock must be centered on the low leading start bit. The receive clock, RXCLK
is generated by dividing the 16x clock using a 4-bit counter.

Once a valid start bit is detected, the data is sampled on SIN at each RXCLK rising edge. The
receive shift register is shifted with the incoming SIN data. Running parity is generated with
each incoming data bit. When a stop bit is detected, any error flags are set. This includes parity,
overrun, and framing error flags.

A main function of the UART receive logic is interfacing with the processor. The CPLD detects
a valid edge on the READ signal asserted by the processor. The CPLD then places the
received parallel data on the system data bus.

Figure 9: UART Receive Logic

START reset = '0'

reset = '1'

IDLE sin = '1'

sin = '0'sin = '1'

DETECT
EDGE

sin = '0'

rxclk = '1'

SHIFT IN
DATA

GENERATE
PARITY

Stop Bit
Detected

?

Yes

No

SET ERROR
FLAGS

X345_09_080701
XAPP345 (v1.1) September 30, 2002 www.xilinx.com 5
1-800-255-7778

IrDA and UART Design in a CoolRunner CPLD
R

IrDA Interface Figure 10 illustrates the input and output requirements of the IrDA module in this design. RXD
and TXD are the serial connections to the UART SIN and SOUT data lines respectively. IRRXD
and TXRXD are the IrDA 3/16th pulse signals that are fed into the LED driver/receiver circuitry
as shown in Figure 10.

The encoding scheme shown in Figure 2 sends a pulse for every space or "0" that is sent on
the TXD line. On a High-to-Low transition of the TXD line, the generation of the pulse is delayed
for seven clock cycles of the 16XCLK before the pulse is set High for three clock cycles (or
3/16th of a bit time) and then subsequently pulled low.

The decoding scheme shown in Figure 11 seeks a High-to-Low transition of the IRRXD line
which signifies a 3/16th pulse. This pulse is stretched to accommodate one bit time (16 clock
cycles). Every pulse that is received is translated into a "0" on the RXD line equal to one bit
period.

CoolRunner
Implementation

The UART and IrDA design was implemented in Verilog as described above. Xilinx Project
Navigator was used for compilation, fitting, and simulation of the design in a CoolRunner
CPLD. Xilinx Project Navigator, which includes the ModelTech simulation tool, is available free-
of-charge from the Xilinx website at www.xilinx.com/products/software/webpowered.htm. The
design was targeted for a 3.3V, 128 macrocell CoolRunner XPLA3 CPLD (XCR3128XL-
VQ100). The UART and IrDA design utilization is shown in Table 1. These utilizations were

Figure 10: IR HDL Block Diagram

Figure 11: IrDA Decoding Scheme

IR Module
(HSDL-7000)

X345_10_080701

LED Driver

IRTXD

IRRXD

Post
Amplifier

Pre-
Amplifier

LED

PIN

TXD

RXD

16XCLK

16XCLK

Start
Bit

1 0 1 1 1 0 1 1

Data Bits

16
Clock
Cycles

Stop
Bit

RXD

IRRXD

X345_11_080701

3/16
6 www.xilinx.com XAPP345 (v1.1) September 30, 2002
1-800-255-7778

www.xilinx.com/products/software/webpowered.htm

IrDA and UART Design in a CoolRunner CPLD
R

achieved using certain fitting parameters, actual results may vary. As shown, there is area
remaining in the CPLD for the implementation of other logic in the system.

The Verilog IrDA design can also be targeted as a stand alone module in a 3.3V 32-macrocell
CoolRunner XPLA3 CPLD (XCR3032XL). CPLD utilization for implementing the IrDA design is
shown in Table 2.

Design Verification
The UART/IrDA transmit and receive Verilog design verification has been done through
simulation using ModelSim XE in Project Navigator. The design has been verified both
functionally and with the timing model generated when fitting in a CoolRunner CPLD. The
implemented test bench drove the data, control, and timing necessary to test a transmit
operation from the UART to the IrDA output and test the received data from the IrDA and UART
modules. Implementation in an actual system may require modification of the control signals
used in the source code and test benches provided.

ModelSim Implementation
Notes:

Please refer to XAPP338: Using Xilinx WebPack and ModelTech ModelSim Xilinx Edition as a guide
to using ModelSim with Project Navigator. The ModelSim Quick Start demo provides a good first step
for getting familiar with ModelSim.

Figure 12 illustrates the test environment for transmitting a data byte using the UART and IrDA
modules. Upon receiving an active WRITE signal, the UART TXRDY signal is asserted. Data is
sent to the UART module and transmitted as shown on the SOUT signal. TXCLK is the internal
divided clock signal for the UART module. IRTXD is the data transmitted from the IrDA module.

Table 1: UART and IrDA XPLA3 128-Macrocell Utilization

Resource Available Used Utilization

Function Blocks 8 6 75.0%

Macrocells 128 88 68.75%

Product Terms 384 129 33.60%

Foldback NANDs 64 0 0%

I/O Pins 80 17 21.25%

Table 2: Standalone IrDA XPLA3 32-Macrocell Utilization

Resource Available Used Utilization

Function Blocks 2 1 50.0%

Macrocells 32 14 43.75%

Product Terms 96 26 27.10%

I/O Pins 32 4 12.50%
XAPP345 (v1.1) September 30, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com/apps/xapp.htm#338

IrDA and UART Design in a CoolRunner CPLD
R

The IR transmitted data is in the form as shown in Figure 2 and includes the start bit, eight data
bits, a parity bit, and a stop bit in each data transmission.

Figure 13 illustrates receiving data on the IrDA IRRXD input and presenting the parallel data
byte from the UART to the system. The IrDA receive module recognizes the format of incoming
data and sends the translated serial stream to the UART, as illustrated in Figure 11 on the SIN

Figure 12: UART and IrDA Transmit Simulation
8 www.xilinx.com XAPP345 (v1.1) September 30, 2002
1-800-255-7778

IrDA and UART Design in a CoolRunner CPLD
R

signal. The UART module shifts the incoming serial data into a holding register. Upon the
UART receiving an active READ signal, the UART places the parallel data onto the data bus.

HDL Code THIRD PARTIES MAY HAVE PATENTS ON IRDA. BY PROVIDING THIS HDL CODE AS ONE
POSSIBLE IMPLEMENTATION OF THIS DESIGN, XILINX IS MAKING NO
REPRESENTATION THAT THE PROVIDED IMPLEMENTATION OF THIS DESIGN IS FREE
FROM ANY CLAIMS OF INFRINGEMENT BY ANY THIRD PARTY. XILINX EXPRESSLY
DISCLAIMS ANY WARRANTY OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, AND XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR
PURPOSE, THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY OR REPRESENTATION THAT THE IMPLEMENTATION IS FREE
FROM CLAIMS OF ANY THIRD PARTY. FURTHERMORE, XILINX IS PROVIDING THIS
REFERENCE DESIGNS "AS IS" AS A COURTESY TO YOU.

XAPP345 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Figure 13: Transmit and Receive Simulation
XAPP345 (v1.1) September 30, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com/products/xaw/coolvhdlq.htm

IrDA and UART Design in a CoolRunner CPLD
R

Conclusion IrDA is a low cost, walk-up, point-to-point method of IR communication protocol used in
applications ranging from laptops to phones to fax machines. This design is an example
implementation of an IrDA interface for data ranges less than 115.2 Kbps connected to a UART
interface. Version 1.1 extends the IrDA specification to 4 Mbps and can be implemented using
pulse position modulation.

References 1. Infrared Data Association (IrDA).

2. Hewlett Packard IrDA Data Link Design Guide.

3. Agilent HSDL-7000 Data Sheet: IR 3/16 Encode/Decode IC.

4. Agilent Application Note 1119: IrDA Physical Layer Implementation for Agilent
Technologies’ Infrared Products.

5. Xilinx Application Note XAPP341: UARTs in Xilinx CPLDs.

6. QuickLogic Application Note: QAN20. Digital UART Design in HDL.

7. Faulkner, Lawrence. IrDA "More than Wireless".

8. Evans, David James. IrDA Applications in CoolRunner CPLDs.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

08/08/01 1.0 Initial Xilinx release.

09/30/02 1.1 Minor edits.
10 www.xilinx.com XAPP345 (v1.1) September 30, 2002
1-800-255-7778

	Summary
	Introduction
	IrDA System
	Half Duplex and Latency

	UART and IrDA Design
	UART Interface
	UART Transmit Logic
	UART Receive Logic

	IrDA Interface
	CoolRunner Implementation
	The Verilog IrDA design can also be targeted as a stand alone module in a 3.3V 32-macrocell CoolR...
	Design Verification
	ModelSim Implementation

	HDL Code
	Conclusion
	References
	Revision History

