
Summary This application note describes how to implement the CoolRunner™-II advanced features in
the Xilinx software. These features include the DualEDGE triggered registers, clock divider,
CoolCLOCK, DataGATE, Schmitt trigger inputs, and I/O termination types. HDL code examples
are available for download, see Code Examples Download, page 11.

CoolRunner-II Xilinx CoolRunner-II CPLDs combine performance and low power in a single device. For more
information on the architecture of CoolRunner-II CPLDs, see References, page 11.
CoolRunner-II CPLDs feature enhanced clocking flexibility and provide design capabilities that
significantly reduce power consumption.

All design features discussed in this application note are supported in Foundation™ ISE,
WebFITTER™ and WebPACK™ ISE software from Xilinx. For more information on Xilinx
software, see References, page 11.

Software
Attributes

There are two main methods of attribute entry, each with their own advantages. A User
Constraint File (UCF) has the advantage of being easily edited while being separate from the
design source files. It has the benefit of allowing changes without needing to re-synthesize the
source code. For more information on entering constraints with the UCF, see References,
page 11.

Attribute entry within the source has the advantage of not needing to maintain a separate file for
the design constraints. All CoolRunner-II VHDL and Verilog attribute examples are only
applicable to the XST synthesis tool.

The attributes that are user definable and specific to the CoolRunner-II CPLD include:
CoolCLOCK, DataGATE, Schmitt trigger input, keeper or pullup I/O termination, I/O standards,
VREF, and open drain outputs. Some design constraints from this list are software selectable
via the ISE Project Navigator GUI. Individual signal constraints must be explicity defined in the
methods described above.

Please note that several syntax and help guides for attributes exist within the Xilinx ISE Project
Navigator. These help files are updated with each release of software and provide a reliable
source of information. The help menu can be located from within ISE under the menu option
Help | ISE Help Contents | CPLD Attributes.

DualEDGE
Registers

CoolRunner-II DualEDGE triggered registers allows designers to reach unprecedented
performance levels. CoolRunner-II CPLDs can double system performance by creating
DualEDGE triggered (DET) registers. CoolRunner-II DET registers allow data to be registered
on both the rising and falling edge of a clock.

CoolRunner-II DET registers can be used for logic functions that include shift registers,
counters, comparators, and state machines. Designers must evaluate the desired performance
of the CPLD logic to determine use of DET registers.

Application Note: CoolRunner-II

XAPP378 (v1.0) June 27, 2002

Using CoolRunner-II Advanced Features
R

XAPP378 (v1.0) June 27, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this fea-
ture, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warran-
ties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Using CoolRunner-II Advanced Features
R

The DET register can be inferred in any ABEL, HDL, or schematic design. Table 1 lists the
inference methods available to create a DET register in CoolRunner-II.

Examples
A designer can infer a single edge triggered (SET) register in any HDL design. A SET register
active on the rising edge of the input clock would require the following VHDL or Verilog syntax.

VHDL: if (clock’event) and (clock = ’1’) then
Verilog: always @ (posedge clock)

The required syntax to infer a CoolRunner-II DET register requires the register be active on
both the rising and falling edge of the clock. The following VHDL syntax would be used to infer
a CoolRunner DET register.

process (clock)
begin
if (clock’event) then
...

end if;
end process;

The following Verilog syntax would be used to infer a DET register in CoolRunner-II.

always @ (negedge clock or posedge clock)
...

The DET register is available with all macrocells in all devices of the CoolRunner-II family.

Clock Divider CoolRunner-II CPLDs provide additional clocking flexibility to the DET register feature with the
clock divider. The CoolRunner-II clock divider provides the capability to divide an incoming
clock and globally distribute the divided clock to all macrocells. The clock divider provides
additional power savings by reducing the toggle frequency of the internal clock network.

The CoolRunner-II clock divider is available on global clock, GCK2, and can divide the
incoming clock by 2, 4, 6, 8, 10, 12, 14, and 16. The clock divider creates a 50-50 duty cycle
divided clock without affecting TCO. The clock divider output is initialized low by the CPLD
power up reset circuitry.

The clock divider circuit includes an active high synchronous reset, referred to as CDRST.
When the CDRST signal is asserted, the clock divider output is disabled after the current cycle.
When the CDRST signal is de-asserted the clock divider output will become active upon the
first edge of GCK2.

Table 1: DET Register Inference Summary

Design Entry Instantiation Method

ABEL Use the following syntax:
QOUT:=data; QOUT.DEC=clock;

VHDL/Verilog Infer a dual edge triggered register.

Schematic Instantiate a FDDn[S][R][E] component.
2 www.xilinx.com XAPP378 (v1.0) June 27, 2002
1-800-255-7778

http://www.xilinx.com

Using CoolRunner-II Advanced Features
R

Figure 1 illustrates the CoolRunner-II clock divider.

The CoolRunner-II clock divider includes a built in delay circuit. With the delay feature enabled,
the output of the clock divider will be delayed for one full count cycle. When used, the clock
divider does not output a rising clock edge until after the divider reaches the terminal count
value. The delay feature is either enabled or disabled upon configuration. The type of clock
divider component instantiated will determine if the delay is enabled or disabled. Figure 2
illustrates a timing waveform of the CoolRunner-II clock divider with the delay enabled and
disabled.

Xilinx Synthesis Technology (XST) allows a clock divider component to be instantiated directly
in the HDL source code. Table 2 lists the available clock divider components that can be
instantiated in any ABEL, HDL, or schematic design.

Figure 1: CoolRunner-II Clock Divider

Figure 2: Clock Divider Waveform

Table 2: Clock Divider Library Components

Component Description

CLK_DIVn Global Clock Divider Component. No support of the synchronous reset or
start delay features.
Available: CLK_DIV2, 4, 6, 8, 10, 12, 14, 16

CLK_DIVnR Global Clock Divider with Synchronous Reset. No support of the start
delay feature.
Available: CLK_DIV2, 4, 6, 8, 10, 12, 14, 16R

CLK_DIVnSD Global Clock Divider with Start Delay. No support of the synchronous
reset.
Available: CLK_DIV2, 4, 6, 8, 10, 12, 14, 16SD

CLK_DIVnRSD Global Clock Divider with Synchronous Reset and Start Delay.
Available: CLK_DIV2, 4, 6, 8, 10, 12, 14, 16RSD

Global
Clock

(GCK2)

CDRST

Clock
Divide

By
2,4,6,…,16

DIV2

DIV4

DIV16

to FB 1

to FB n

x378_01_041202

1st

GCK2
CDRST

Divide by 2
Divide by 16
Divide by 2

Divide by 16

No
Delay

3rd 5th 7th 17th
Clock Cycles

Delay
Enabled

x378_02_050802
XAPP378 (v1.0) June 27, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Using CoolRunner-II Advanced Features
R

VHDL Example
To design with the CoolRunner-II clock divider in VHDL requires both a component declaration
and component instantiation. The component declaration declares the name and interface of
the clock divider unit. The VHDL component declaration syntax for using a clock divide by 2,
the CLK_DIV2 component is shown here.

component CLK_DIV2 is
port (
CLKIN : in STD_LOGIC;
CLKDV : out STD_LOGIC);

end component;

The component instantiation associates signals with the ports of the clock divider component.
If a clock divide by 2 is desired, the CLK_DIV2 component must be instantiated. The incoming
clock signal, clk, is declared on the CLKIN port and the clock divider output signal,
clk_div_by_2, is declared on the CLKDV output port. The VHDL syntax is shown here for
instantiating the CLK_DIV2 component.

U1: CLK_DIV2
port map(
CLKIN => clk,
CLKDV => clk_div_by_2);

If a clock divide by 16 with a synchronous reset and start delay is desired, the CLK_DIV16RSD
component must be declared and instantiated. The VHDL syntax for the component
declaration is shown here.

component CLK_DIV16RSD is
port (
CLKIN : in STD_LOGIC;
CDRST : in STD_LOGIC;
CLKDV : out STD_LOGIC);

end component;

The component instantiation assigns the port signals. The input clock signal, clk, is declared on
the CLKIN port. The clock divider reset signal, clk_div_rst, is declared on the CDRST port. The
clock divider output, clk_div_by_16, is declared on the CLKDV port. This component will also
enable the start delay circuitry in the CoolRunner-II clock divider. The syntax to instantiate the
CLK_DIV16RSD component in VHDL is shown here.

U1: CLK_DIV16RSD
port map (
CLKIN => clk,
CDRST => clk_div_rst,
CLKDV => clk_div_by_16);

Verilog Example
Verilog design entry with XST does not require a component declaration; only the component
instantiation is necessary. The Verilog syntax to instantiate the CLK_DIV16RSD component is
shown here. The input clock signal, clk, is assigned to the CLKIN port. The clock divider reset
signal, clk_div_rst, is assigned to the CDRST port. The clock divider output, clk_div_by_16, is
assigned to the CLKDV port.

CLK_DIV16RSD U1 (
.CLKIN (clk),
.CDRST (clk_div_rst),
.CLKDV (clk_div_by_16));

ABEL Example
Designing with clock dividers in CoolRunner-II requires both the component declaration and
component instantiation. The clock divider must be declared as an external component in an
ABEL design as shown here.
4 www.xilinx.com XAPP378 (v1.0) June 27, 2002
1-800-255-7778

http://www.xilinx.com

Using CoolRunner-II Advanced Features
R

CLK_DIV2R external (CLKIN, CDRST -> CLKDV);

Component instantiation in an ABEL design occurs by assigning an identifier to the clock
divider component. In this example, U1 is the identier assigned to the clock divider component,
CLK_DIV2R, using the functional_block ABEL keyword.

U1 functional_block CLK_DIV2R;

The following equations illustrate the component port mapping. The input clock, clk, is mapped
to the CLKIN port. The clock divider reset signal, clk_div_rst, is mapped to the CDRST port.
The clock divider output signal, clk_div_by_2, is assigned to the CLKDV output port.

U1.CLKIN = clk;
U1.CDRST = clk_div_rst;
clk_div_by_2 = U1.CLKDV;

Note the signal assigned to the CDRST port will automatically be mapped to the CDRST/I/O
pin. Note the clock divider is available on CoolRunner-II 128 macrocell devices and larger.

CoolCLOCK The CoolRunner-II CoolCLOCK feature is the technique of combining the global clock divider
and DET registers. Power savings are achieved by dividing the global clock by 2, distributing a
lower frequency clock on the internal clock network, and then doubling the clock at each
macrocell. Zero clock skew can be acheived due to the zero insertion delay of the clock divider
and the DET registers. Figure 3 illustrates the CoolRunner-II CoolCLOCK feature.

Since GCK2 is the only clock network that can be divided, the CoolCLOCK feature is only
available on GCK2. The CoolCLOCK feature can be implemented by assigning an attribute to
an input clock. The CoolCLOCK attribute replaces the need to instantiate the clock divider and
infer DET registers. Table 3 lists the methods available to use the CoolCLOCK attribute.

Figure 3: CoolCLOCK

Input
Divide
Clock

Device
Routing Macrocell

GCK2

CDRST

DIV2

Divide
by 2

D/T/L Q

T
Latch

DualEDGE

D

Global
Divided
Clock

x378_03_041202

Table 3: CoolCLOCK Attribute

Attribute
Format Syntax Example

UCF NET <clock name> COOL_CLK; NET clk COOL_CLK;

ABEL XILINX PROPERTY 'COOL_CLK <clock name>'; XILINX PROPERTY ’COOL_CLK clk’;

VHDL attribute COOL_CLK : string;
attribute COOL_CLK of <clock name>: signal is "TRUE";

attribute COOL_CLK : string;
attribute COOL_CLK of clk : signal is "TRUE";

Verilog //SYNTHESIS attribute COOL_CLK of <clock name>:
signal is "TRUE";
Note: The comment delimiters are intentional and
necessary for XST.

//SYNTHESIS attribute COOL_CLK of clk :
signal is "TRUE";
XAPP378 (v1.0) June 27, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Using CoolRunner-II Advanced Features
R

Note the CoolCLOCK feature is available on CoolRunner-II 128 macrocell devices and larger.

DataGATE CoolRunner-II designers can block specified inputs under the control of the DataGATE
function. By blocking inputs, switching signals do not drive internal chip capacitance and
thereby reduce overall power consumption. The last value on the input pin prior to the assertion
of the DataGATE rail is latched and used by the CPLD internally. Figure 4 illustrates the
DataGATE feature in CoolRunner-II.

There are two attributes associated with the DataGATE feature in CoolRunner-II. The first
attribute specifies if an input will be affected by DataGATE and the second designates the
DataGATE control signal.

The DataGATE feature is selectable on a per pin basis. Each input pin that uses DataGATE
must be assigned a DATA_GATE attribute. Table 4 illustrates the syntax for enabling
DataGATE on an input signal.

The DataGATE assertion rail can be driven from either an I/O pin or internal logic. The
DataGATE enable signal is a dedicated DGE/I/O pin for each package in CoolRunner-II. Upon
implementation, the software recongnizes a design using DataGATE and automatically assigns
this I/O pin to the DataGATE enable control function, DGE. Internally generated DataGATE

Figure 4: DataGATE Block Diagram

Data Latch

to AIM

DataGATE
Assertion Rail

Input
Pin

Configuration
Bit

X378_04_041202

Table 4: DataGate Attribute

Attribute
Format Syntax Example

UCF NET <signal name> DATA_GATE; NET data_in DATA_GATE;

ABEL XILINX PROPERTY 'DATA_GATE <signal name>'; XILINX PROPERTY ’DATA_GATE data_in’;

VHDL attribute DATA_GATE : STRING;
attribute DATA_GATE of <signal name>: signal is
"TRUE";
Note: The string attribute need only be declared once
for all DATA_GATE attributes.

attribute DATA_GATE : STRING;
attribute DATA_GATE of data_in : signal is "TRUE";

Verilog //SYNTHESIS attribute DATA_GATE of <signal
name>: signal is "TRUE";
Note: The comment delimiters are intentional and
necessary for XST.

//SYNTHESIS attribute DATA_GATE of data_in :
signal is "TRUE";
6 www.xilinx.com XAPP378 (v1.0) June 27, 2002
1-800-255-7778

http://www.xilinx.com

Using CoolRunner-II Advanced Features
R

contol logic can be assigned to this I/O pin with the BUFG=DATA_GATE attribute. The methods
of assigning the DataGATE enable signal are shown in Table 5.

Schmitt Trigger Each CoolRunner-II I/O has multiple input buffers used for various I/O standard configurations.
One of these input buffers behaves as a Schmitt trigger input and is enabled upon CPLD
configuration. The Schmitt trigger input allows the board designer the flexibility to utilize the
CoolRunner-II with both high speed signals as well as slow switching signals on the same
device. Slowly switching signals can cause havoc on digital systems by causing double
clocking or glitches on a CMOS input, however this can be virtually eliminated by using the
Schmitt trigger input. The Schmitt trigger input use is only at the cost of a few nanosecond
delay (refer to the CoolRunner-II datasheet, see References, page 11).

Table 6 illustrates the attribute syntax to assign the Schmitt trigger input buffer to a specific
signal.

Table 5: DataGate Control Attribute

Attribute
Format Syntax Example

UCF NET <signal name> BUFG=DATA_GATE; NET dg_en BUFG=DATA_GATE;

ABEL XILINX PROPERTY 'BUFG=DATA_GATE <signal
name>';

XILINX PROPERTY ’BUFG=DATA_GATE dg_en’;

VHDL attribute BUFG : STRING;
attribute BUFG of <signal name>: signal is
"DATA_GATE";
Note: The string attribute need only be declared once
for all BUFG attributes.

attribute BUFG : STRING;
attribute BUFG of dg_en : signal is "DATA_GATE";

Verilog //SYNTHESIS attribute BUFG of <signal name>:
signal is "DATA_GATE";
Note: The comment delimiters are intentional and
necessary for XST.

//SYNTHESIS attribute BUFG of dg_en : signal is
"DATA_GATE";

Table 6: Schmitt Trigger Attribute

Attribute
Format Syntax Example

UCF NET <signal name> SCHMITT_TRIGGER; NET data_in SCHMITT_TRIGGER;
NET clock SCHMITT_TRIGGER;

ABEL XILINX PROPERTY 'SCHMITT_TRIGGER
<signal name>';

XILINX PROPERTY 'SCHMITT_TRIGGER data_in';
XILINX PROPERTY 'SCHMITT_TRIGGER clock';

VHDL attribute SCHMITT_TRIGGER : STRING;
attribute SCHMITT_TRIGGER of <signal name>:
signal is "TRUE";
Note: The string attribute need only be declared
once for all SCHMITT_TRIGGER attributes.

attribute SCHMITT_TRIGGER : STRING;
attribute SCHMITT_TRIGGER of data_in: signal is
"TRUE";
attribute SCHMITT_TRIGGER of clock: signal is
"TRUE";

Verilog //SYNTHESIS attribute SCHMITT_TRIGGER of
<signal name>;
Note: The comment delimiters are intentional and
necessary for XST.

//SYNTHESIS attribute SCHMITT_TRIGGER of data_in;
//SYNTHESIS attribute SCHMITT_TRIGGER of clock;
XAPP378 (v1.0) June 27, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Using CoolRunner-II Advanced Features
R

I/O Termination CoolRunner-II pins may be terminated in the following ways: keeper (also referred to as
bushold) and pullup. Usage of the keeper and the pullup circuitry is exclusive on a global basis.
When one of these two (keeper and pullup) termination modes is selected for any number of
signals, the other termination mode is no longer available to any other signal.

Keeper
The keeper circuitry provides the ability to hold the last known value on an I/O pin using weak
pullup/down resistors. If an unterminated I/O pin was in high-impedence and floating, this
would cause excessive leakage current. The keeper circuitry eliminates the need for external
termination that would resolve this. Table 7 illustrates the attribute syntax for specifying the
keeper termination on any I/O pin.

Pullup
The internal pullup allows the designer to eliminate external pullup resistors on the board,
thereby reducing cost and simplifying board layout. Table 8 illustrates the attribute syntax for
specifying the pullup I/O termination.

Table 7: Keeper Attribute

Attribute
Format Syntax Example

UCF NET <signal name> KEEPER; NET data_in KEEPER;
NET clock KEEPER;

ABEL XILINX PROPERTY 'KEEPER <signal name>'; XILINX PROPERTY 'KEEPER data_in';
XILINX PROPERTY 'KEEPER clock';

VHDL attribute KEEPER : STRING;
attribute KEEPER of <signal name>: signal is "TRUE";
Note: The string attribute need only be declared once for
all KEEPER attributes.

attribute KEEPER : STRING;
attribute KEEPER of data_in: signal is "TRUE";
attribute KEEPER of clock: signal is "TRUE";

Verilog //SYNTHESIS attribute KEEPER of <signal name>;
Note: The comment delimiters are intentional and
necessary for XST.

//SYNTHESIS attribute KEEPER of data_in;
//SYNTHESIS attribute KEEPER of clock;

Table 8: Pullup Attribute

Attribute
Format Syntax Example

UCF NET <signal name> PULLUP; NET data_in PULLUP;
NET clock PULLUP;

ABEL XILINX PROPERTY 'PULLUP <signal name>'; XILINX PROPERTY 'PULLUP data_in';
XILINX PROPERTY 'PULLUP clock';

VHDL attribute PULLUP : STRING;
attribute PULLUP of <signal name>: signal is "TRUE";
Note: The string attribute need only be declared once for
all PULLUP attributes.

attribute PULLUP : STRING;
attribute PULLUP of data_in: signal is "TRUE";
attribute PULLUP of clock: signal is "TRUE";

Verilog //SYNTHESIS attribute PULLUP of <signal name>;
Note: The comment delimiters are intentional and
necessary for XST.

//SYNTHESIS attribute PULLUP of data_in;
//SYNTHESIS attribute PULLUP of clock;
8 www.xilinx.com XAPP378 (v1.0) June 27, 2002
1-800-255-7778

http://www.xilinx.com

Using CoolRunner-II Advanced Features
R

I/O
Configuration

CoolRunner-II devices (128 macrocell and greater) support multiple I/O banks in a single
device, allowing for easy interfacing to different voltage standards on one chip. A device can
support one I/O standard per bank (i.e. XC2C128 has two banks and can therefore support up
to two I/O standards). Regardless of which I/O voltage standard is selected, any pin may be
configured as an open-drain output.

I/O Standards
Table 9 lists the supported I/O standards on CoolRunner-II devices. Note that all standards are
not supported in every density.

Figure 5 illustrates how to specify the default I/O standard for all pins in a design. The I/O
standard can be selected in the Implement Design Process Properties window under the Basic
Tab.

Table 9: CoolRunner-II Supported I/O Standards

XC2C32 XC2C64 XC2C128 XC2C256 XC2C384 XC2C512

I/O Banks 1 1 2 2 4 4

LVTTL Yes Yes Yes Yes Yes Yes

LVCMOS33,
LVCMOS25,

& LVCMOS18

Yes Yes Yes Yes Yes Yes

1.5V I/Os Yes Yes Yes Yes Yes Yes

SSTL2-1 &
SSTL3-1

No No Yes Yes Yes Yes

HSTL-1 No No Yes Yes Yes Yes

Figure 5: Global I/O Standard Selection
XAPP378 (v1.0) June 27, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Using CoolRunner-II Advanced Features
R

If a design requires multiple I/O standards on the same device, each pin must be manually
declared with the appropriate I/O standard attribute. Table 10 illustrates the available I/O
standard attributes that can be declared.

Table 11 illustrates the syntax for specifying an I/O standard attribute. The examples shown in
Table 11 are for specifying the LVCMOS18 I/O standard. For other standards, LVCMOS18 can
be replaced with the appropriate attribute name shown in Table 10.

Open Drain
A signal that is grounded when "false" and is in high-impedence when "true" is considered an
open-drain signal. An output on CoolRunner-II can be configured as open drain by simply

Table 10: I/O Standard Attributes

I/O Standard Attribute Name

LVTTL LVTTL

LVCMOS 3.3V LVCMOS33

LVCMOS 2.5V LVCMOS25

LVCMOS 1.8V LVCMOS18

1.5V I/O LVCMOS15

SSTL 2-1 SSTL2_I

SSTL 3-1 SSTL3_I

HSTL-1 HSTL_I

Table 11: I/O Standard Attribute Syntax

Attribute
Format Syntax Example

UCF NET <signal name> <I/O standard attribute
name>;

NET data_in IOSTANDARD=LVCMOS18;
NET clock IOSTANDARD=LVCMOS18;

ABEL XILINX PROPERTY
'IOSTANDARD=LVCMOS18 <signal name>';

XILINX PROPERTY 'IOSTANDARD=LVCMOS18
data_in';
XILINX PROPERTY 'IOSTANDARD=LVCMOS18
clock';

VHDL attribute IOSTANDARD : STRING;
attribute IOSTANDARD of <signal name>: signal
is "<I/O standard attribute name>";
Note: The string attribute need only be declared
once for all IOSTANDARD attributes.

attribute IOSTANDARD : STRING;
attribute IOSTANDARD of data_in: signal is
"LVCMOS18";
attribute IOSTANDARD of clock: signal is "LVCMOS18";

Verilog //SYNTHESIS attribute IOSTANDARD of <signal
name> is "<I/O standard attribute name>";
Note: The comment delimiters are intentional and
necessary for XST.

//SYNTHESIS attribute IOSTANDARD of data_in is
"LVCMOS18";
//SYNTHESIS attribute IOSTANDARD of clock is
"LVCMOS18";
10 www.xilinx.com XAPP378 (v1.0) June 27, 2002
1-800-255-7778

http://www.xilinx.com

Using CoolRunner-II Advanced Features
R

declaring the OPEN_DRAIN attribute in the Xilinx software. Table 12 illustrates the syntax for
specifing an open drain output with the OPEN_DRAIN attribute.

Code Examples
Download

Example source code is available for download. Both VHDL and Verilog code with test benches
are available for using the CoolRunner-II advanced features.

THE DESIGNS ARE PROVIDED TO YOU "AS IS". XILINX MAKES AND YOU RECEIVE NO
WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
AND XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE.
These are only example designs, not fully functional cores. XILINX does not warrant the
performance, functionality, or operation of these designs will meet your requirements, or that
the operation of the designs will be uninterrupted or error free, or that defects in the designs will
be corrected. Furthermore, XILINX does not warrant or make any representations regarding
use or the results of the use of the designs in terms of correctness, accuracy, reliability or
otherwise.

XAPP378 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Conclusion Performance and low power have finally come together with CoolRunner-II CPLDs. The
available advanced features furthur reduce power consumption and provide advanced clocking
management options. For additional assistance with the CoolRunner-II advanced features,
please contact the Xilinx hotline or refer to the Xilinx web support (http://support.xilinx.com/).

References 1. CoolRunner-II family data sheet

2. Xilinx ISE design entry software

3. Application Note: XAPP352: Utilizing a UCF for CoolRunner XPLA3 CPLDs

Revision
History

The following table shows the revision history for this document.

Table 12: Open Drain Attribute

Attribute
Format Syntax Example

UCF NET <signal name> OPEN_DRAIN; NET data_out OPEN_DRAIN;

ABEL XILINX PROPERTY 'OPEN_DRAIN <signal name>'; XILINX PROPERTY 'OPEN_DRAIN data_out';

VHDL attribute OPEN_DRAIN : STRING;
attribute OPEN_DRAIN of <signal name>: signal is
"TRUE";
Note: The string attribute need only be declared once
for all OPEN_DRAIN attributes.

attribute OPEN_DRAIN : STRING;
attribute OPEN_DRAIN of data_out: signal is
"TRUE";

Verilog //SYNTHESIS attribute OPEN_DRAIN of <signal
name>;
Note: The comment delimiters are intentional and
necessary for XST.

//SYNTHESIS attribute OPEN_DRAIN of data_out;

Date Version Revision

06/27/02 1.0 Initial Xilinx release.
XAPP378 (v1.0) June 27, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/
http://www.xilinx.com/products/cpldsolutions/datasheets.htm#CoolRunner2
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Design+Tools
http://www.xilinx.com/publications/products/cool/apps_pdf/xapp352.pdf
http://www.xilinx.com/products/xaw/coolvhdlq.htm

	Summary
	CoolRunner-II
	Software Attributes
	DualEDGE Registers
	Examples

	Clock Divider
	VHDL Example
	Verilog Example
	ABEL Example

	CoolCLOCK
	DataGATE
	Schmitt Trigger
	I/O Termination
	Keeper
	Pullup

	I/O Configuration
	I/O Standards
	Open Drain

	Code Examples Download
	Conclusion
	References
	Revision History

