
CORE
Generator
Guide
CORE Generator Guide — 3.1i
Introduction

Getting Started

Using the CORE Generator

Understanding CORE
Generator Design Flows

Understanding the HDL
Design Flow

Troubleshooting the CORE
Generator System
Printed in U.S.A.

CORE Generator Guide

CORE Generator Guide
R

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard,
TRACE, XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx,
Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CoolRunner, CORE Generator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor,
MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O,
SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch,
Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL,
XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-
BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are
trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are
service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
Xilinx Development System

5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701;
5,892,681; 5,892,961; 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987;
5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958;
5,990,704; 5,991,523; 5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025;
6,002,282; and 6,002,991; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the
accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.
CORE Generator Guide

About This Manual

This manual describes the Xilinx CORE Generator™ Tool, which is
used for parameterizing cores optimized for Xilinx FPGAs.

Note This Xilinx software release is certified Year 2000 compliant.

Manual Contents
This manual covers the following topics:

• Chapter 1,“Introduction”—Introduces the Xilinx CORE Gener-
ator System by describing the process for installation and how to
obtain new and updated COREs.

• Chapter 2,“Getting Started”—Provides information for setting up
your environment and installing the CORE Generator.

• Chapter 3,“Using the CORE Generator”—Describes the CORE
browser, customizing a CORE, updating COREs, and integrating
the CORE Generator into applications.

• Chapter 4,“Understanding CORE Generator Design Flows”—
Describes how to integrate a CORE Generator module into a
design through the use of various design flows; schematic and
HDL.

• Chapter 5,“Understanding the HDL Design Flow”—Describes
the elements and procedures in a HDL design flow.

• Appendix A,“Troubleshooting the Core Generator System”—
Contains solutions and resources for using the CORE Generator
System.
CORE Generator Guide — 3.1i v

CORE Generator Guide
Additional Resources

For additional information, go to http://support.xilinx.com.
The following table lists some of the resources you can access from
this Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/
index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contain device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/
index.htm
vi Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
each convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply
values

edif2ngd design_name

♦ References to other manuals
CORE Generator Guide — 3.1i vii

CORE Generator Guide
See the Development System Reference Guide for more informa-
tion.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “….” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.
viii Xilinx Development System

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.
CORE Generator Guide ix

CORE Generator Guide
x Xilinx Development System

Contents
About This Manual
Manual Contents .. v
Additional Resources ... vi

Conventions
Typographical... vii
Online Document ... viii

Chapter 1 Introduction

CORE Generator System... 1-1
CORE Generator Components .. 1-4
New and Updated Cores.. 1-4
System Requirements and Installation Information........................ 1-4
Additional Resources ... 1-4

Chapter 2 Getting Started

Starting the CORE Generator System .. 2-1
CORE Generator System Installation Requirements................ 2-2
Setting Preferences .. 2-2

Setting Up Projects .. 2-3
Creating a New Project ... 2-4

Opening an Existing Project... 2-4
Selecting Design Entry Options ... 2-6

Schematic Design Environment.. 2-6
HDL Synthesis Design Environment... 2-6

Selecting Target XILINX FPGA Family Options............................. 2-7
Changing Project Design Entry Options... 2-7
CODE Generator Guide — 3.1i xv

Installing Setup Files .. 2-8
coregen.prj .. 2-8
corelib.xml... 2-8
.coregen.prf... 2-9

Using the Web Browser and the PDF Viewer 2-9

Chapter 3 Using the CORE Generator

Using the CORE Browser .. 3-1
Customizing a Core.. 3-4

Displaying the CoreViewer.. 3-5
Naming CORE Generator Modules .. 3-7
Using the Generate, Cancel, and Data Sheet Buttons 3-8
Illegal or Invalid Values ... 3-8
.COE Files... 3-8

Specifying Command Files .. 3-11
coregen.ini/coregen_user_name.ini.. 3-12
User-Generated Command Files .. 3-12
XCO Files.. 3-13
coregen.log ... 3-14

Generating Cores in Batch Mode... 3-14
Defining CORE Generator Command Line Options....................... 3-15

–b command_file_name.. 3-15
–i coregen_ini_file_name .. 3-15
–p project_path ... 3-15
–q polling_dir_path.. 3-15
–h .. 3-16
Listing the CORE Generator Commands.................................. 3-17
Listing the CORE Generator Global Properties 3-18
Listing Project Properties .. 3-19

Updating Cores in the CORE Generator.. 3-20
Downloading New Cores .. 3-21
Updating a Core Version in an Existing Project 3-21

Understanding the Update Project Cores Menu 3-22
Removing Cores .. 3-23
Using the get_models Command .. 3-24

Integrating CORE Generator into Applications 3-27
Polling Mode ... 3-27
Output Polling Files... 3-28
Input Polling Files.. 3-28
ASY and XSF Files ... 3-29

Listing Inputs and Outputs Files... 3-29
xvi Xilinx Development System

Contents
Chapter 4 Understanding CORE Generator Design Flows

Understanding CORE Generator Design Flow Basics................... 4-1
Describing the CORE Generator Schematic Design Flow 4-2

Starting a Schematic Design Flow with Viewlogic 4-3
Creating a Viewlogic Project ... 4-4
Creating Output Files .. 4-6
Foundation Design Flow ... 4-8
Foundation ISE Design Flow .. 4-8
Mentor Design Flow .. 4-8
Cadence Design Flow... 4-8

Describing the HDL Behavioral Model Delivery System Features . 4-8
XilinxCoreLib Simulation Library ... 4-9
coredb ... 4-9
Instantiation Template Files .. 4-9
Support for Unused Optional Pins .. 4-10
verilog_analyze_order File.. 4-10
vhdl_analyze_order File.. 4-10

Using the CORE Generator Verilog Design Flow Procedure......... 4-11
Using Instantiation Templates... 4-12
Using a .VEO Instantiation Template File 4-12

Verilog Instantiation Template for an 8-Bit Adder 4-12
Using the CORE Generator VHDL Design Flow Procedure 4-14

Using a .VHO Instantiation Template File................................. 4-15
VHDL Instantiation Template for an 8-Bit Adder 4-15

Chapter 5 Understanding the HDL Design Flow

Using the HDL Behavioral Model Delivery System 5-1
Understanding the Verilog HDL Design Flow................................. 5-2
Describing the Verilog Design Flow Procedure.............................. 5-2

Implementation Using Cadence Verilog-XL
and MTI Model Sim/VLOG.. 5-17
Understanding the VHDL HDL Design Flow 5-18

Describing the VHDL Design Flow Procedure..................... 5-19

Appendix A Troubleshooting the Core Generator System
Finding Solutions.. A-1
Additional Resources ... A-2

AllianceCORE Modules .. A-2
Obtaining Customer Support.. A-2
CORE Generator Guide xvii

xviii Xilinx Development System

Chapter 1

Introduction

This chapter introduces the Xilinx CORE Generator System, an easy
to use design tool that delivers parameterizable COREs optimized for
Xilinx FPGAs.

The following topics are included in this chapter:

• “CORE Generator System”

• “CORE Generator Components”

• “New and Updated Cores”

• “System Requirements and Installation Information”

• “Additional Resources”

CORE Generator System
The CORE Generator System’s main Graphical User Interface (GUI)
allows central access to COREs, data sheets, variable options, and
help functions, as shown in the following figure:
CORE Generator Guide — 3.1i 1-1

CORE Generator Guide
Figure 1-1 CORE Generator GUI

The Xilinx CORE Generator System provides you with a catalog of
ready-made functions ranging in complexity from simple arithmetic
operators such as adders, accumulators and multipliers, to system-
level building blocks including filters, transforms and memories.

The words “function” and “core” are used interchangeably in this
guide to mean a design entity like a multiplier or FIR filter which the
CORE Generator System can generate for the designer.

Cores are organized by functional type into folders that expand or
contract on demand. Detailed information on each core is included in
a specification or data sheet (Acrobat format), which is easily
accessed by clicking on the Datasheet button in the core customiza-
tion window or by clicking on the Datasheet icon in the main CORE
Generator application toolbar. This launches the Adobe Acrobat
Reader and calls up the datasheet for the selected core. Datasheets
include the following items:

• Functional information

• Area and performance data for some cores
1-2 Xilinx Development System

Introduction
• Pinouts and interface signal names

• Details on how to use the core in an application, making it easy
for you to determine whether a core meets your design require-
ments

The CORE Generator System can customize a generic functional
building block such as a FIR filter or a multiplier to meet the needs of
your application and simultaneously deliver high levels of perfor-
mance and area efficiency. This is accomplished by using Xilinx’s
core-friendly FPGA architectures and Xilinx Smart-IP™ technology.
Smart-IP technology leverages the following items:

• Xilinx FPGA architectural advantages such as look-up tables
(LUTs), distributed RAM, segmented routing and floorplanning
information

• Relative location constraints and expert logic mapping to opti-
mize performance of a given core instance in a given Xilinx FPGA
architecture

Smart-IP technology delivers the following:

• Physical layout optimized for high performance

• Predictable performance and resource utilization

• Reduced power requirements through compact design and inter-
connect minimization

• Performance independent of device size

• Ability to use multiple cores without deterioration of perfor-
mance

• Reduced compile time over competing architectures

• Reduced compile time over competing architectures

Parameterization provides the ability to generate cores which meet
design flexibility needs and which meet design size constraints. For
each core, the CORE Generator System delivers the following:

• A customized EDIF netlist

• Verilog® or VHDL behavioral simulation models

• Verilog or VHDL Instantiation templates

• Foundation or Viewlogic® schematic symbols
CORE Generator Guide 1-3

CORE Generator Guide
CORE Generator Components
The Xilinx CORE Generator system consists of the following three
distinct products:

• CORE Generator application

• Acrobat™ Reader application

• JAVA™ Runtime Support

New and Updated Cores
New cores can be downloaded and easily added to the CORE Gener-
ator from the Xilinx Website at either

http://www.xilinx.com/ipcenter/coregen/updates.htm

or at

http://www.xilinx.com/products/logicore/coregen

Please review the CORE Generator Web page before starting a new
design. You need to verify that you have the latest version of each
core and core datasheet.

System Requirements and Installation Information
See the 3.1i Release Notes for information on system requirements
and installation instructions for the CORE Generator System or the
Xilinx Alliance Quick Start Guide or Foundation Quick Start Guide.

Adobe Acrobat v 3.0 or later is needed to launch and view the cores
datasheets.

For Viewlogic users, the CORE Generator System interface to View-
logic requires that both the Viewlogic and the Xilinx implementation
Tools be set up on your system.

Additional Resources
The following section details additional online documentation
resources and how to access the information.
1-4 Xilinx Development System

Introduction
Links to the IP Center are available from the CORE Generator Help
Menu with the following path:

Help → Help on the Web → IP Center

Figure 1-2 Help Menu

For an overview of the supported design flows, refer to Chapter 4,
“Understanding CORE Generator Design Flow Basics” in this
manual.
CORE Generator Guide 1-5

CORE Generator Guide
1-6 Xilinx Development System

Chapter 2

Getting Started

 This chapter describes the various elements of the
CORE Generator System. Review this information before starting a
design using the cores offered with the CORE Generator System. The
following sections are described in this chapter:

• “Starting the CORE Generator System”

• “Setting Up Projects”

• “Opening an Existing Project”

• “Selecting Design Entry Options”

• “Selecting Target XILINX FPGA Family Options”

• “Changing Project Design Entry Options”

• “Installing Setup Files”

• “Using the Web Browser and the PDF Viewer”

Starting the CORE Generator System
This section describes the functions performed by the user in initi-
ating, designing, and maintaining core designs in Xilinx CORE
Generator System’s GUI environment.
CORE Generator Guide — 3.1i 2-1

CORE Generator Guide
CORE Generator System Installation Requirements
To install the CORE Generator in either your Windows or UNIX
workstation environments, do one of the following:

• (Windows) Select Start → Programs → Xilinx Alliance
Series 2.1i → Accessories → CORE Generator
System.

• (UNIX Workstation) At a UNIX shell prompt, type coregen.
This starts the CORE Generator System. Make sure your environ-
ment is setup to run the Xilinx software as specified in the Xilinx
Alliance Quick Start Guide or Foundation Quick Start Guide. The two
required settings are 1) XILINX variable, set to your Xilinx instal-
lation directory, and 2) PATH variable, set to $XILINX/bin/plat-
form. The platform is either sol or hp.

Note For detailed information on CORE Generator installation for
both the PC and the Unix Workstation, refer to the Xilinx Alliance
Quick Start Guide or Foundation Quick Start Guide.

The CORE Generator application is installed from one of the
following main Xilinx software release CDs:

• Alliance 3.1i

• Foundation 3.1i

Setting Preferences
Your preferences are set through the preferences dialog box and are
maintained on a per user basis, as shown in the following figure:
2-2 Xilinx Development System

Getting Started
Figure 2-1 Preference Dialog Box

The location for Preferences on various platforms are as follows:

• (Windows) Preferences are stored in the registry and written to
the Windows registry.

• (UNIX workstation) Preferences are stored in your home direc-
tory in the file, coregen.prf.

Setting Up Projects
The following section describes creating new projects, opening up
existing projects, selecting design entry options, and other similar
topics.
CORE Generator Guide 2-3

CORE Generator Guide
Creating a New Project
This next section describes the procedure for creating a new project
using the Xilinx CORE Generator System.

1. Select Project→ New

In the New Project screen, you can type the path to the new
project directory into the Directory text field or you can click
on the Browse button and navigate to it.

Note The Xilinx CORE Generator System is designed to operate
within the directory structure of a pre-existing design entry envi-
ronment. Because of this, the CORE Generator System does not
create directories. You must make sure a directory exists before
browsing to it.

When a new project is created the cores displayed in the CORE
Generator System’s main window are the latest versions of the
cores.

2. Specify your Electronic Design Automation (EDA) Vendor from
the following selection: Foundation, Viewlogic, Cadence,
Mentor, or Other).

If you select Other, you need to specify the Netlist Bus Format
for individual bus bits. The B represents the name of the bus and
the I represents the bus index, for example B<I>, B[I], or BI.
Selecting any of the other vendors automatically sets the Netlist
Bus Format setting to the correct value for that vendor.

Opening an Existing Project
You can track the actual number of previously opened projects
through the Project → Preferences option in the main CORE
Generator GUI.

1. Select a project from the Project Path list in the dialog box. Select
the CORE Generator project that you want to work in and click
OK.

2. You may also place a check mark in the Always Open Last
Project check box in the following figure. Selecting this box
causes the CORE Generator System to bypass the CORE Gener-
ator dialog box, and to return to the last project worked on.
2-4 Xilinx Development System

Getting Started
Figure 2-2 Open Project Box

Note When starting up the CORE Generator System, select Open
Project and deselect the Always Open Last Project check
box in the Open Project dialog box.This restores the launching
of the CORE Generator project dialog box

For each user, the CORE Generator remembers the last n projects
that you opened. You can S+=elect a project from this list or
browse to any valid CORE Generator project. Each project main-
tains a list of the cores visible to that project and their version. If a
new IP has been added to the repository or removed from it, the
CORE Generator pops up a dialog asking if you want to update
the list of visible cores for that project.

When a project is opened by CORE Generator, it is locked to
prevent other users from working in the same project and poten-
tially overwriting files. If another user tries to open the project,
they receive a dialog showing who has the project locked. The
lock can be removed from this file. If the original CORE Gener-
ator session loses its lock, then the next time you attempt to
generate a core, you will receive a dialog showing who overrode
the lock.
CORE Generator Guide 2-5

CORE Generator Guide
Selecting Design Entry Options
From the Project Options dialog, select the Design Entry that you
would like to use. Selecting one of the following entries shows the
corresponding vendor(s) supported in the Vendor box:

Schematic Design Environment
The CORE Generator design environment currently supports the
following schematic design tools:

• Viewlogic

• Foundation

• Mentor®

• Cadence®

Note Limited Cadence support is currently available as described in
the “Cadence Design Flow” section.

HDL Synthesis Design Environment
The CORE Generator design environment currently supports the
following Hardware Descriptive Language (HDL) Synthesis tools,
which consist of VHDL or Verilog:

• Synopsys® FPGA Express

• Synopsys FPGA Compiler

• Exemplar

• Synplicity

When you chose VHDL or Verilog, the corresponding instantia-
tion template is generated in module_name.vho or
module_name.veo. These files contain commented HDL code
that can be used to instantiate a CORE Generator module in an
HDL design, and also contain code that supports behavioral
simulation. If you select VHDL as the design entry, then a .VHO
file is generated. If you select Verilog as the design entry, then a
.VEO file is generated. Vendor specific files may also be gener-
ated for schematic symbols and other uses.
2-6 Xilinx Development System

Getting Started
Based on the Vendor chosen, the output EDIF netlist contains the
appropriate bus delimiter for the module (), <>, [], or none. This
is necessary so that the ports in the CORE Generator module
match the port references in the EDIF netlist for your top level
design. The vendor option also controls the generation of vendor
specific pin and symbol files.

Selecting Target XILINX FPGA Family Options
The Xilinx CORE Generator System tailors the cores to the selected
Target Family setting. All cores are optimized to the selected Xilinx
architecture and do not work if integrated into a design targeted to a
different Xilinx FPGA family. Cores, that were targeted to the Spartan
architecture when they were generated, do not work if placed in a
Virtex design. You need to select the Target Family based on the
Xilinx architecture that you are targeting. Changing architectures
requires you to regenerate any cores you have already created.

After you have selected all the project options, click OK. The Xilinx
CORE Generator System initializes the new project. This initialization
may take several seconds. A coregen.prj file is written to the new
project. The coregen.prj file contains a record of all installed cores at
the time of project creation and their available versions. In order for
the list of cores available to be displayed, you need to specify a valid
CORE Generator project.

Changing Project Design Entry Options
You may change the Project Design Entry Options as follows:

1. Select Project → Project Options menu.

This opens a Project Options dialog box. You can change any of
the Design Entry, Vendor, Behavioral Simulation, and Family
options.

2. Click OK when you have finished modifying these options.

Note Changing the project options only affects new cores that
you generate. Cores created before making the project changes
still reflect the old options. Regenerate any cores that need to
inherit the new project options.
CORE Generator Guide 2-7

CORE Generator Guide
Installing Setup Files
The following section describes in some detail the setup files in the
CORE Generator. The setup file is required to properly configure
your CORE Generator session.

coregen.prj
The coregen.prj is the CORE Generator project file and is written to
your home directory on your UNIX workstation. The coregen.prj file
is automatically created whenever you create a new project. It
contains a record of project-specific property settings, information on
versions of the cores available to the project, and user-specified
output files. A valid CORE Generator project directory must contain
a coregen.prj file.

The information in the coregen.prj file includes a list of all the IP cores
and versions that are available to the project, as well as the version of
every core actually used in the project.

The coregen.prj file is a configuration file which is created, read, and
modified by the CORE Generator System for project management
purposes and should not be altered by the user.

corelib.xml
The CORE catalog file is called corelib.xml and is located in
$XILINX/coregen/ip. You build this catalog by scanning each of the
cores found in $XILINX/coregen/ip. This catalog is used by CORE
Generator at runtime to identify and locate all the cores that are
present in a CORE Generator software installation. You can also
update the catalog manually using the coredb utility.

The corelib.xml is present in the initial installation and updated with
the installation of each ip update. There is a utility coredb that you
can use to regenerate it if necessary. CORE Generator generates
corelib.xml if it is not present or out of synch with the ip repository. If
the corelib.xml needs to be built and you cannot write to $XILINX/
coregen/ip, CORE Generator can run but startup time is impacted by
trying to rebuild corelib.xml each time.
2-8 Xilinx Development System

Getting Started
.coregen.prf
The .coregen.prf is the Xilinx CORE Generator preferences file for
UNIX workstations. This is an ASCII option settings file that records
various user specific settings for the CORE Generator GUI. This file
consists of a mix of comment lines and property specification lines.
Comment lines begin with the # (octothorpe) character and designate
a line which is ignored when the file is read by the CORE Generator
System. The format for a line specifying a property in the preference
file is PropertyName=Value.For example,

AlwaysOpenLastProject=true

Each Property Name represents a particular property within the
Xilinx CORE Generator, and the corresponding Value Field is the
value to be applied to that property. Your preference settings are
stored in your home directory on a PC vendors platform. This is
recorded in the Windows registry. The name of your preference file
should be

During start-up, and after any optional coregen.ini file is read (Work-
stations only), CORE Generator System searches the preferences
directory for a .coregen.prf file. If this file is found, it is loaded and all
preferences contained in it override the default CORE Generator
System preference settings. If no preference file is found for the user
(as in the case of a first-time user), the various preference values take
on their hardcoded default values.

.coregen.prf.

The first time you start up the CORE Generator System, you will not
see a preference file. The preference file, .coregen.prf, is created the
first time you exit out of the CORE Generator System. The file is auto-
matically written to $XILINX/coregen/preferences when you exit
the CORE Generator application, based on settings you have speci-
fied during a project session.

Using the Web Browser and the PDF Viewer
Another feature of the Xilinx CORE Generator System, is the ability
to link to sites on the Web. You can click to the Xilinx CORE Gener-
ator System Home page or the Xilinx support.xilinx.com site. You can
also link to the AllianceCORE partner Websites.
CORE Generator Guide 2-9

CORE Generator Guide
The Xilinx CORE Generator System also provides all core datasheets
in Adobe Acrobat PDF format.

Figure 2-3 Data Sheets

The location of both the Web browser and the PDF Viewer can be set
with the Preference Options dialog box, as shown in the following
figure:
2-10 Xilinx Development System

Getting Started
Figure 2-4 Preference Dialog Box

To locate the Web Browser and the PDF Viewer, use the following
procedure:

1. Select Project → Preferences

The Preference Options dialog box appears.
CORE Generator Guide 2-11

CORE Generator Guide
Figure 2-5 Web Browser and PDF Viewer

2. In the Location of Web Browser, browse to your default browser,
for example, Microsoft Explorer.

3. In the Location of PDF Viewer, browse to the path of your PDF
Viewer.

Sample Preference File

A sample workstation preference file follows:

#Coregen preferences

#Fri Apr 21 13:46:57 PDT 2000

LastProject=/home/myprojects/fir_filter

AlwaysOpenLastProject = false

OverwriteFiles = true

WebBrowser = /usr/bin/netscape

PDFViewer = /usr/local/bin/acroread

The registry entries are created using the Registry Editor, as shown in
the following figure:
2-12 Xilinx Development System

Getting Started
Figure 2-6 Registry Entries

The following table shows the list of supported preference file prop-
erties:

Table 2-1 Preference File Table

Field Value Description

Always OpenLastProject False

True

Do not start CORE
Generator System in
the last project.

Always start CORE
Generator in the last
active project.

LastNProjects

Last Project

LastProject<n>

Integer value

Integer value

Integer value

Recalls number of
previously opened
projects (default=4).

Path to last project
open by the user.

Path to project n in list
of previously open
projects.
CORE Generator Guide 2-13

CORE Generator Guide
OverwriteFiles False

True

Prompt user before
overwriting files
during elaboration.

Automatically over-
write design files
during elaboration.

Browser <path_to_web_browser> Set fully qualified path
to the user’s web
browser.

PDF Viewer <path_to_pdf_viewer> Set fully qualified path
to the users’ Acrobat,
Netscape, or other
PDF viewer.

Table 2-1 Preference File Table

Field Value Description
2-14 Xilinx Development System

Chapter 3

Using the CORE Generator

This chapter explains the major functions performed by the designer
when using the CORE Generator. The functions in this chapter
include the following:

• “Using the CORE Browser”

• “Customizing a Core”

• “Specifying Command Files”

• “Generating Cores in Batch Mode”

• “Defining CORE Generator Command Line Options”

• “Updating Cores in the CORE Generator”

• “Integrating CORE Generator into Applications”

• “Listing Inputs and Outputs Files”

Using the CORE Browser
The main view of the CORE Generator is the Core Generator Browser.
Cores that fall into particular application categories are grouped into
folders to assist you in locating the core appropriate to your needs.
The left hand of the Core Generator Browser allows you to browse
through these folders. To select a folder, click once on the folder name
in the left panel. To expand a folder, double- click the folder icon to
the left of the folder name. The folder expands to reveal more folders.
To close a folder, double- click the open folder icon. Some folders
have a + icon or a – icon to their left. You can open or close the folder
with a single click on the icon.
CORE Generator Guide — 3.1i 3-1

CORE Generator Guide
Figure 3-1 CORE Generator Browser

The cores in the selected folder are displayed in the right hand panel
of the Core Browser. Cores are listed by name and also have type,
version, family and vendor information displayed in columns. The
size of each column can be altered by pointing the mouse at the sepa-
rator between the column headings until the cursor changes to a ´
icon. Click and hold the left mouse button and then move the mouse
horizontally to resize the selected column. Release the mouse button
when the desired column width is achieved. The column ordering
can also be modified by clicking and holding the left mouse button
while pointing at the category label, then dragging the label to the
desired position by moving the mouse horizontally. Releasing the
mouse button deposits the label at its new position.

The size of each of the panels can be adjusted by pointing at the
vertical or horizontal bar separating the panels until the cursor
changes to a ↕ icon (for vertical bars) or ´ icon (for horizontal bars).
Clicking and holding the left mouse button allows the panels to be
resized when the mouse is moved. Release the mouse button down
when the desired panel layout is achieved.
3-2 Xilinx Development System

Using the CORE Generator
All panels have vertical and or horizontal scroll bars that allow navi-
gation if the information displayed in the panel is larger than the
current panel size.

Some cores in the right panel of the main window appear to be
grayed out. This means that these cores are not available for the
currently selected Xilinx FPGA family.

The status panel at the bottom of the core browser window displays
the results of actions and displays appropriate messages if any errors
or warnings occur.

A core can be selected by clicking the name of the core in the right
panel. After a core has been selected the data sheet can be viewed by
clicking on the Data Sheet button on the Core Browser toolbar or by
selecting the

Core → Datasheet

Figure 3-2 Data Sheet Selection Menu

Both of these actions launch the Acrobat Reader to display the data
sheet.
CORE Generator Guide 3-3

CORE Generator Guide
Figure 3-3 CORE Generator Data Sheet

You can also access a data sheet by pressing the right mouse button
over a core in the right panel of the main window. Data sheets can be
viewed for any core listed in the right panel whether they are grayed
out or not.

Customizing a Core
Most cores have a customization GUI. To open a customization GUI,
navigate to the module of your choice. From here, you can display the
customization GUI for a core by proceeding with one of the following
steps:

• Double-click the core in the right panel of the Core Browser, or

• Click on the Customize button on the Core Generator Browser
toolbar, or
3-4 Xilinx Development System

Using the CORE Generator
• Select the core in the left panel and select
Core → Customize, or

• Press the right mouse button over a core in the right panel of the
main window.

The customization GUI is only available for cores that support the
currently selected Xilinx FPGA family.

While the customization GUIs are unique for each core, there are
some characteristics that are common to all modules.

Displaying the CoreViewer
Selecting the CoreViewer checkbox brings up the CoreViewer after
generation of the core is completed.
CORE Generator Guide 3-5

CORE Generator Guide
Figure 3-4 CoreViewer Checkbox

The CoreViewer shows a graphical representation of the cores foot-
print, which can be useful in floorplanning a large design. It also
provides resource, and other statistical information about the imple-
mented core as shown in the following figure:
3-6 Xilinx Development System

Using the CORE Generator
Figure 3-5 CoreViewer Screen

The default tab, that is displayed when the parameterization window
is open, is the Parameter screen. A Core Overview screen is also avail-
able, as is a Contact Information screen. These tabs are accessed by
clicking the appropriate tab at the top of the parameterization
window.

Naming CORE Generator Modules
Most modules have a Component Name field which allows you to
assign a name to the core that you create. Files that the CORE Gener-
ator creates for a particular core have a root filename that matches the
Component Name. Component names have the following restric-
tions:

• Must begin with a lower case alphabetic character: a - z

• No uppercase letters

• May include (after the first character): 0 - 9, _(underscore)
CORE Generator Guide 3-7

CORE Generator Guide
• No extensions

• No HDL reserved words, for example,

Verilog: Do not use module, input, output

VHDL: Do not use component, function, configuration, port,
signal

Using the Generate, Cancel, and Data Sheet Buttons
The Generate, Cancel and Data Sheet buttons are common to all
parameterization windows. Assuming there are no conflicts with any
of the specified parameters, pressing Generate causes the CORE
Generator to create the requested files for the core. Pressing Cancel
returns you to the Core Browser window without generating any
files. Pressing Data Sheet invokes Adobe Acrobat to display the
data sheet for the module being parameterized.

For information about a specific core’s parameters, such as upper and
lower limits for certain fields, see the core’s data sheet.

Illegal or Invalid Values
All parameterization windows flag illegal or invalid data in the same
way. The affected field is highlighted in red until the problem is
corrected. If the reason a field is highlighted is not obvious, or if the
explanation in the log window is not clear, a more detailed explana-
tion can usually be obtained by pressing the Generate button.

.COE Files
Some cores require, for example, PDA FIR, SDA FIR, RAM and ROM,
and Virtex Block RAM, multiple coefficients or initialization values.
To specify the values for these modules, you must load a .COE file
using the Load Coefficient button in the parameterization window.

Module specific information about the requirements for a core’s COE
file can be found in that core’s data sheet.

The following syntax displays the general form for a COE file:

Keyword =Value ; Optional Comment
Keyword =Value ; Optional Comment
CoefData =Data_Value, Data_Value,
3-8 Xilinx Development System

Using the CORE Generator
The following table describes CORE keywords:

Note Any text after a semicolon is treated as a comment and is
ignored.

The CoefData, MemData, and
MEMORY_INITIALIZATION_VECTOR keywords must all be the
last keywords in the COE file. Any keywords that follow them are
ignored.

You can find examples of COE files for the PDA FIR, SDA FIR,
distributed RAM, distributed ROM, and Virtex block RAM COE files
in the $XILINX/coregen/data directory. The following section
displays examples of COE files:

****** Example of PDA FIR .COE file with ******
****** hex coefficients - pdafir.coe ******
Component_Name=fltr16;
Number_Of_Taps=16;
Input_Width = 8;
Output_Width = 20;
Coefficient_Width = 12;
Impulse_Response_Symmetry = true;
Radix = 16;
CoefData=346,EDA,0D6,F91,079,FC8,053,FE2;

****** Example of PDA FIR .COE file with *****
****** decimal coefficients – pfir_dec.coe ******
Component_Name=fltr16;
Number_Of_Taps=16;
Input_Width = 8;

Table 3-1 Description of Core Keywords

Keyword Description

CoefData Used for filters to indi-
cate that the data that
follows comprises the
coefficients of the filter.

MemData Used for distributed
memories.

MEMORY_INITIALIZATION_VECTOR Used for Virtex Block
memories.
CORE Generator Guide 3-9

CORE Generator Guide
Signed_Input_Data = true;
Output_Width = 21;
Coefficient_Width = 8;
Impulse_Response_Symmetry = true;
Radix = 10;
CoefData=1,-3,7,9,78,80,127,-128;

****** Example of SDA FIR .COE file with ******
****** decimal coefficients – sdafir.coe ******
Component_Name=sdafir;
Number_Of_Taps=6;
Radix=10;
Input_Width=10;
Output_Width=24;
Coefficient_Width=11;
Impulse_Response_Symmetry = false;
CoefData= -1,18,122,418,-40,3;

****** Example of distributed RAM .COE file ******
****** with hex coefficients – ram_hex.coe ******
Component_Name=ram16x12;
Data_Width = 12;
Address_Width = 4;
Depth = 16;
Radix = 16;
memdata=346,EDA,0D6,F91,079,FC8,053,
FE2,03C,FF2,02D,FFB,022,002,01A,005;

***** Example of distributed ROM .COE file *****
***** with decimal coefficients rom_dec coe *****
Component_Name=rom32x8;
Data_Width = 8;
Address_Width = 5;
Depth = 32;
Radix = 10;
memdata=127,127,127,127,127,126,126,126,
125,125,125,4,3,2,0,-1,-2,-4,-5,-6,-8,-9,
-11,-12,-13,-38,-39,-41,-42,-44,-45,-128;
3-10 Xilinx Development System

Using the CORE Generator
****** Example of Virtex single port ******
****** RAM .COE file with hex ******
coefficients v_spbram.coe
Component_Name = v_spbram;
Depth = 256;
Data_Width = 32;
Radix = 16;
Default_Data = FFF;
MEMORY_INITIALIZATION_VECTOR =
FF0,F0F,0FF,FF4,F4F,4FF,FF8,F8F,8FF;

****** Example of Virtex dual port ******
****** RAM .COE file with binary ******
****** coefficients – v_dpbram.coe ******
Component_Name=v_dpbram;
Depth_A = 4096;
Data_Width_A = 16;
Depth_B = 1024;
Data_Width_B = 64;
Radix = 2;
Default_Data = 10101010;
MEMORY_INITIALIZATION_VECTOR=
1111111111111110,
1111111111111101,
1111111111111011,
1111111111110111;

Specifying Command Files
A Xilinx CORE Generator command file is a file that contains valid
CORE Generator commands and comments. Command file comment
lines begin with a ’#’ symbol. The CORE Generator allows you to
execute command files in GUI mode by selecting the File →
Execute Command File item in the main menu and entering the
path to the command file. You can also execute the command files in
batch mode by invoking coregen in command line mode with the -b
command_file command line option.
CORE Generator Guide 3-11

CORE Generator Guide
The four types of command files in the CORE Generator are as
follows:

• coregen.ini/coregen_user_name.ini files

• User-generated command files

• XCO files

• coregen.log files

coregen.ini/coregen_user_name.ini
The CORE Generator supports the loading of INI files when they are
first invoked and when changing projects. An INI file can contain any
valid CORE Generator command. General preferences are stored on a
per user basis and project options are stored with the project. In
special situations, it is desirable to execute one or more commands on
startup or when opening a project. When you first invoke the CORE
Generator, it looks for a file named coregen.ini in the startup direc-
tory. Alternatively, you can direct the CORE Generator to read a
specific INI file with -i ini_file on the command line. When opening
a project, the CORE Generator looks for a coregen.ini in the project
directory.

User-Generated Command Files
You can write your own command files to generate cores, create
projects, customize the CORE Generator environment, or execute any
other CORE Generator command. User-generated command files can
have any name and extension. All global property SET commands
executed within a user-generated command file are only in effect for
that session. However, all project property SET commands executed
within a user-generated command file modify the current project. For
more detailed information, please see the “Listing Inputs and
Outputs Files” .
3-12 Xilinx Development System

Using the CORE Generator
XCO Files
When generating a core, the CORE Generator creates a file called
component_name.xco. This is a log file that records all the options used
to create the core. It can be used to verify all the options that were
used when the core was generated and can also be used to recreate
the core exactly using the File → Execute → Command File or in
batch mode. You can use an XCO file from a batch file to bring up the
Customization GUI for a specific core with the values from the XCO.
This is useful when a core needs to be regenerated but has parameter
changes. The CORE Generator is run with the –b option pointing to
this batch file.

Comment lines begin with the # character. Any output format or
options lines start with the keyword SET. These options match the
options set in the coregen_User_Name.ini. The lines that start with
CSET are the options that are passed from the core customization
GUI. All data read in from a .COE file is also preceded by the CSET
keyword.

The following is an example for the FIR filter generated using the
pdafir.coe file:

Xilinx CORE Generator v2.1.11

Username = roman

FoundationPath = G:\Xilinx

COREGenPath = d:\cg212\rtf\coregen

ProjectPath = D:\Designs\cgvxtest

ExpandedProjectPath = D:\Designs\cgvxtest

SET BusFormat = BusFormatParen

SET SimulationOutputProducts = VHDL

SET ViewlogicLibraryAlias = ""

SET XilinxFamily = XC4000

SET DesignFlow = VHDL

SET FlowVendor = Synplicity

SELECT PDA_FIR_Filter XC4000 Xilinx 1.0

CSET number_of_taps = 16

CSET component_name = fltr16
CORE Generator Guide 3-13

CORE Generator Guide
CSET trim_empty_roms = FALSE

CSET radix = 10

CSET impulse_response_symmetry = TRUE

CSET signed_input_data = TRUE

CSET generate_cascadable_section = FALSE

CSET coefdata = 1,-3,7,9,78,80,127,-128

CSET output_width = 15

CSET input_width = 8

CSET coefficient_width = 8

CSET antisymmetry = FALSE

GENERATE

coregen.log
The coregen.log is a log file that is automatically written by the CORE
Generator. The coregen.log contains all the actions and messages
performed during a CORE Generator session, so you can refer to it to
see what occurred during that session. Since coregen.log is a
command file it can also be replayed to recreate a CORE Generator
session.

• (Windows) The coregen.log is written to $XILINX\coregen\tmp.

• (UNIX Workstation) The coregen.log is written to the current
project directory.

Generating Cores in Batch Mode
Running the CORE Generator System with no options selected causes
the CORE Generator to start in GUI mode. The CORE Generator
System can be run in batch mode to generate cores by specifying the
.XCO file that defines the core to be generated and its parameters,
and the project directory where the output files should be deposited.

The .XCO file created by the CORE Generator System, when run in
GUI mode, can be used to drive the generation of the same core in
batch mode. These can be edited and renamed to generate a slightly
different core. The .XCO file can contain the commands to generate
more than one core.
3-14 Xilinx Development System

Using the CORE Generator
If the directory where the CORE Generator executables resides is not
in the command search path, then the CORE Generator System must
be invoked using a fully specified path as follows:

coregen [-i path_to_coregen_ini_file_name] [-p
project_path] [-q polling_dir_path] [-h] -b
module_name.xco

Defining CORE Generator Command Line Options
The invocation of the CORE Generator System in batch mode is as
follows:

coregen –b core_name.xco –p project_path

The CORE Generator System’s command line options are as follows:

–b command_file_name
Tells the CORE Generator the name of the command file (suffix .XCO)
that should be executed by the batch mode run. The
command_file_name is the path to the command file to be executed.

–i coregen_ini_file_name
By default the CORE Generator System uses the profile that is in the
specified project directory. If a different profile is required, then the
path can be explicitly specified using a fully specified path name. The
coregen_ini_file_name is the path to the CORE Generator INI file to be
loaded. The profile also loads this file from the Project directory.

–p project_path
Specifies the project directory. The project path must be fully speci-
fied. The project_path is the path to the CORE Generator Project.

–q polling_dir_path
This is an option for third party tools that call the CORE Generator
System and should not be used by users in batch mode. The
polling_dir_path is the polling directory.
CORE Generator Guide 3-15

CORE Generator Guide
–h
This option displays the CORE Generator batch mode help screen.
The invocation of the CORE Generator system in batch mode is as
follows:

coregen -b core_name.xco -p project_path
3-16 Xilinx Development System

Using the CORE Generator
Listing the CORE Generator Commands
The following table describes the CORE Generator commands/argu-
ments and their functions:

Table 3-2 CORE Generator Commands

Command Arguments Function

CSET core_property>=value Sets a core property
value.

END N/A Terminates CORE
Generator session.

EXECUTE N/A Executes indicated
command file.

GENERATE N/A Elaborates the
currently selected core.

LAUNCH N/A Launches a core
customization GUI.

NEWPROJECT project_path Creates a new project
in the indicated direc-
tory. Not valid in a
XCO command file.

SELECT core_name architecture
vendor core_version

Selects the indicated
core.

SET global_property=value
project_property=value

Sets a CORE Generator
property value.

SETPROJECT project_path Changes the current
project to the indicated
property value. Not
valid in a XCO
command file.
CORE Generator Guide 3-17

CORE Generator Guide
Listing the CORE Generator Global Properties
The following table lists the CORE Generator global properties,
values, and their descriptions:

Table 3-3 Global Properties

Global Properties Values Description

CoreGenPath path Specifies the path to
the CoreGen install
directory

CoreSelect SpecifiedVersion |
LatestVersion | ProjectVersion

This property applies
only when reading a
XCO file in batch
mode.
Specified Version: Use
only the core version
specified.
Latest Version: Use the
latest version of the
specified core avail-
able in any of the
loaded libraries.
Project Version: Use
the version of the core
specified in the project
file.

DebugModes true | false (default) Sets debug mode.

FoundationPath path Specifies the path to
the Foundation install
directory.

GuiMode GuiOn | GuiOff Sets the GUI or batch
modes.

LockProjectProps true | false Set the global prop-
erty to true to lock the
project. To unlock,
reset this property to
false.
3-18 Xilinx Development System

Using the CORE Generator
Listing Project Properties
The following table describes the Project Properties commands,
values, and their functions:

ProjectOverride true | false Specify true to use the
current project’s
attributes instead of
those listed in the XCO
file. Specify false to use
those attributes in the
XCO files.

Username username This is your login
name.

Table 3-4 Project Properties

Command Values Description

BusFormat BusFormatAngleBracket |
BusFormatSquareBracket |
BusFormatParen |
BusFormatNoDelimiter

Sets the indicated output
bus formatting.

DesignFlow Schematic | VHDL | Verilog Schematic generates
EDIF and VHDL.

Verilog generates the
corresponding HDL
configuration files to be
used with other static
behavioral HDLs
provided by CORE
Generator

ExpandedProjectPath project_path Specifies the expanded
path to the CORE Gener-
ator install directory.

Table 3-3 Global Properties

Global Properties Values Description
CORE Generator Guide 3-19

CORE Generator Guide
Updating Cores in the CORE Generator
The CORE Generator is capable of handling multiple versions of any
core. The ability to create new versions of a core, while maintaining
existing versions allows a designer to introduce additional function-
ality. A designer can also fix problems in an earlier version of a core
without forcing all users of a core to use the new version.

Each project maintains a list of cores visible to the project and their
version number. This list is located in the section on the right of the
main CORE Generator window. Only one version of each core is
visible at any one time. All cores in the repository are available
through batch mode so an older core can be regenerated at any time.
When a new project is created, the latest version of all the cores is
added to the project. You can customize a project to change the
specific versions visible within a project.

FlowVendor Foundation | Viewlogic |
Mentor | Cadence |
Synplicity | Synopsys |
Exemplar | Other

Signifies which vendor
toolset you have selected
to simulate and develop
the core design.

ProjectPath project_path Specifies the path to the
current project.

SimulationOutputProducts VHDL | Verilog Specifies the outputs
products for elaboration.

ViewlogicLibraryAlias ViewlogicLibraryAlias/
<alias_name>

Specifies the Viewlogic
library alias. Defaults to
primary on UNIX.

XilinxFamily XC4000 Spartan | Virtex |
Spartan2 | Virtex2

Consists of targeted
architecture.

Table 3-4 Project Properties

Command Values Description
3-20 Xilinx Development System

Using the CORE Generator
Downloading New Cores
When new cores and new versions of existing cores are downloaded
from the IP Center, they are installed in the CORE Generator’s hier-
archy but are not visible to existing projects. This capability exists to
insulate existing projects from updates to the cores used in that
project. Any changes in the functionality does not impact existing
projects since new cores are not automatically updated for existing
projects. The multiple version support capability exists to allow a
new core or new version of an existing core to be made available in an
existing project.

The new cores and their installation instructions can be downloaded
from the Xilinx IP Center at

http://www.xilinx.com

Updating a Core Version in an Existing Project
When new cores and new versions of existing cores are downloaded
from the IP Center, they are added to the repository but are not auto-
matically available in existing projects. After new cores have been
added and a project is opened, a dialog box is shown asking you if
you want to update the project list of visible cores. This capability
exists to insulate existing projects from unwanted changes while still
allowing you to update projects easily.
CORE Generator Guide 3-21

CORE Generator Guide
Figure 3-6 Update Dialog Menu

All to Latest

Updates all the cores in the project to the latest version available in
the repository and adds all new cores.

Custom

Launches the Custom Update Window and allows you to selectively
add new cores and/or versions of cores.

Understanding the Update Project Cores Menu
The procedure for updating existing cores to the newest cores version
follows:

1. Select Project →Update Cores → All to Latest.
This menu selection can be used at any time to update all the
cores in the project to the latest version available in the repository
and add any new cores.
3-22 Xilinx Development System

Using the CORE Generator
2. Select Project →Update Cores →Custom.
Use this selection to customize your cores by adding or removing
individual cores to the current project profile.

3. The Update Project Cores screen appears and offers you the
following folder selections, for example, catalog selections by
function:

Figure 3-7 Update Project Cores Custom Window

♦ Basic Elements

♦ Communication & Networking

♦ Digital Signal Processing

♦ Math Functions

♦ Microprocessors, Controllers & Peripherals

♦ ProtoType & Development Hardware Products

♦ Storage Elements & Memories

Removing Cores

Use the following procedure to remove individual cores to the
current project profile:
CORE Generator Guide 3-23

CORE Generator Guide
1. Select Digital Signal Processing → DSP ProtoType &
Development Hardware Products as shown in the
following figure:

Figure 3-8 Update Project Cores Custom Window

2. Select DSP Hardware Accelerator Board

3. The core is removed.

Using the get_models Command
The get_models program is a command line utility that is used to
manually extract the Verilog or VHDL behavioral models embedded
within a user’s CORE Generator System installation to a single,
central location. In the 3.1i and later releases of the CORE Generator
System, get models is run automatically during the installation of the
CORE Generator software. You do not need to run the get_models
since it is also run during installation of post 3.1i CORE IP updates.
You can run the get_models manually if for example, the install
extraction fails.

In a Xilinx software installation, CORE Generator models may exist
in the CORE Generator tree ($XILINX/coregen) in either archived or
source file format. For Verilog interpretive simulators such as
Cadence Verilog-XL, extracting the behavioral models to a single
3-24 Xilinx Development System

Using the CORE Generator
library directory collects them together in one location so that they
can be referenced from a common location by the simulator. For
compiled simulators (all VHDL simulators, and some Verilog simula-
tors such as Synopsys VCS), extracting the behavioral models to a
single library directory allows them to be conveniently analyzed by
your Verilog or VHDL simulator.

You can use the get_models program to extract individual behavioral
models for specific CORE Generator modules to your project direc-
tory if preferred.

Syntax

get_models [-h | -help] [-vhdl] [verilog]
[-dest destination directory]

Required Parameters

-verilog|-vhdl

Using these parameters extracts Verilog or VHDL behavioral models
only. Specify either the -verilog or -vhdl options when running
get_models.

Note When specifying the -verilog option, specify the explicit path to
the destination directory to tailor the ‘include statement in the .VEO
template file correctly.

Optional Parameters

-dest destination_directory

Use this parameter as the target location when creating the xilinx-
corelib and any VendorCoreLib subdirectories. The metacharacters .
and .. are supported. The xilinxcorelib subdirectory will always be
one of the directories created in this directory. The Verilog default
location of destination_directory is $XILINX/verilog/src. The VHDL
default location of destination_directoryis $XILINX/vhdl/src. For
networked UNIX workstations, you may need system administrator
privileges to extract models to this Xilinx software directory location.

Inputs

The inputs to the get_models utility are the CORE Generator
behavioral models located in your Xilinx CORE Generator System
installation. The models exist in either of the following two formats:
CORE Generator Guide 3-25

CORE Generator Guide
• Archived together with other data files associated with a given IP
module, for example, .JAR (JAVA Archive format) file, located at
$XILINX/coregen/ip/com/xilinx.

• Non-archived source file format, .V and .VHD files, in a simula-
tion subdirectory of a given Core Generator IP module directory.
CORE Generator IP module data files are located at $XILINX/
coregen/ip/com/xilinx.

Note You may not need to specify the path to these inputs when
using the get_models utility. The path to the behavioral models is
implied by the value of your XILINX environment variable.

Outputs

The get_models utility produces a directory of extracted source
format Verilog or VHDL behavioral models named xilinxcorelib or
VendorCoreLib. In addition, an ASCII text file containing a compre-
hensive listing of the extracted models is created. For Verilog
compiled simulators, the order indicated in the
verilog_analyze_order file is only a suggested order, since Verilog
simulators do not require models to be compiled strictly in a top-
down order.

In contrast, VHDL simulators require models to be compiled from the
bottom-up using lower level blocks before higher level blocks, and
there can be more than one compile order that meets this bottom-up
order requirement. For instance, the order specified in the
vhdl_analyze_order file is an example of one such combination that
the get_models option generates automatically for you. The
get_models also generates a get_models.log log file in the
destination directory.
3-26 Xilinx Development System

Using the CORE Generator
Integrating CORE Generator into Applications
The CORE Generator provides a number of interfaces for integration
into other applications. The Xilinx Foundation series of tools is a
good example of the level of integration that is possible. The Xilinx
Alliance series provides integration with various third party CAE
tools. This section describes the specific interfaces provided by the
CORE Generator that allow others to integrate it into their applica-
tions.

SETPROJECT project_name

LAUNCHXCO sco_filename

You can then run CORE Generator with the -b batch_filename
command.

Polling Mode
The CORE Generator can be invoked in the polling mode, which
looks the same as the standard GUI mode. Polling mode allows an
application to communicate to CORE Generator through files. This
mode is useful to an application that needs to run CORE Generator
continuously in the background while frequently checking to see if
CORE Generator has generated a core, and occasionally issuing
instructions to the CORE Generator. CORE Generator can read and
write files in polling mode and the application uses the -q option of
poll_dir_path to specify where the files are located.
CORE Generator Guide 3-27

CORE Generator Guide
Output Polling Files
Output polling files are written by CORE Generator to communicate
to an application when CORE Generator has finished generating a
core. Output polling files always have the name coregen.fin and they
contain two lines.

1. The first line contains the following:

♦ User assigned core name

♦ Name of the core

♦ Core version

2. The second line contains the keyword SUCCESS or ERROR
depending on whether the core was successfully generated. For
example,

coregen.fm

regaddr Registered_Addr 1.0

SUCCESS

When an application finds the keywords, SUCCESS or ERROR in the
coregen.fin file, the application reviews the various log files to deter-
mine the appropriate processing for the core. See the “Listing Inputs
and Outputs Files” section for details on log files. The application
should delete the coregen.fin file immediately after it has been
processed so that the CORE Generator is free to write a new file. The
CORE Generator overwrites coregen.fin on the next core generation.

Input Polling Files
The CORE Generator uses the input polling file to receive commands
from the invoking application. The input polling file always has the
name CORE Generator.com. CORE Generator can contain any
number of valid CORE Generator commands and is terminated by
the keyword, COMPLETE. While in the polling mode, CORE Gener-
ator frequently monitors the status of the CORE Generator.com file.
When it detects the keyword, COMPLETE, CORE Generator sequen-
tially executes the commands in the file. CORE Generator deletes the
CORE Generator.com file after completion of the last command.
3-28 Xilinx Development System

Using the CORE Generator
ASY and XSF Files
The ASY file is an ASCII file containing graphical symbol information
and pin attributes. The ECS schematic editor uses this file to generate
symbols.

The XSF pin file is used by the Foundation tools to create a symbol
representing the core. The ASY graphical symbol file is used by the
Foundation iSE tools to display a symbol representing the core.

Listing Inputs and Outputs Files
This section lists both the input files used by the CORE Generator
System, and the output files generated by the CORE Generator
System.

Table 3-5 CORE Generator Input Files

File Extension Description

.COE ASCII data file. Defines the coef-
ficient values for FIR Filters and
initialization values for Memory
modules. See $XILINX/coregen/
data for sample .COE files.

.XCO CORE Generator file containing
the parameters used for regener-
ating a core. It can also be used as
a logfile to determine the settings
used to generate a particular
core. This file is generated by the
CORE Generator System along
with any core that it creates in
the current project directory. For
details on the .xco file refer to the
“XCO Files” section of this
chapter.
CORE Generator Guide 3-29

CORE Generator Guide
Table 3-6 CORE Generator Output Files

File Extension Description

.ASY Graphical symbol file. Used by
the Foundation iSE tools to create
a symbol representing the core.

.EDN EDIF Implementation Netlist for
the core. Describes how the core
is to be implemented. Used as
input to the Xilinx Implementa-
tion Tools.

get_models.log Log file containing all user
visible messages displayed
during a get_models run. The log
file is written to the get_models
destination directory.

.MIF Memory Initialization File which
is automatically generated by the
CORE Generator System for
Virtex Block RAM modules
when an HDL simulation flow is
specified. A MIF data file is used
to support HDL functional simu-
lation of Block RAM modules as
well as to specify the many
instantiation values for the
implementation netlist.

.VEO Verilog Template file. The
components in this file can be
used as a guide to creating the
core’s Verilog instantiation and
its Verilog behavioral netlist. For
more details refer to the “Using
the CORE Generator Verilog
Design Flow Procedure” in
Chapter 4.
3-30 Xilinx Development System

Using the CORE Generator
verilog_analyze_order This file lists the CORE Gener-
ator Verilog behavioral models in
a suggested compiled order
before performing a behavioral
simulation in a compiled simu-
lator. This applies to compiled
Verilog simulators only, for
example, Synopsys VCS and
Cadence NC-Verilog.

.VHO VHDL Template file. The compo-
nents in this file can be used to
instantiate a core. For more
details, refer to the section on
“Using the CORE Generator
VHDL Design Flow Procedure”
in Chapter 4.

vhdl_analyze_order This file lists the CORE Gener-
ator VHDL behavioral models in
the order that they must be
compiled for simulation More
than one compile order may be
valid for the library.

vlink.log Log file created by the VLLINK
script when a Viewlogic Sche-
matic Design Flow is selected
from the Project Option menu.
This file records the operations
and status of the various func-
tion calls used to create a View-
logic symbol and WIR file for
functional simulation.

.XSF A pin file used by the Founda-
tion tools to create a symbol
representing the core.

XilinxCoreLib/*.v Verilog behavioral models
extracted from the IP installed in
the CORE Generator tree.

Table 3-6 CORE Generator Output Files

File Extension Description
CORE Generator Guide 3-31

CORE Generator Guide
XilinxCoreLib/*.vhd VHDL behavioral models
extracted from the IP installed in
the CORE Generator tree.

XilinxCoreLib/*_comp.vhd VHDL component declaration
files for each CORE Generator IP
module extracted from the CORE
Generator.

Table 3-6 CORE Generator Output Files

File Extension Description
3-32 Xilinx Development System

Chapter 4

Understanding CORE Generator Design Flows

This chapter describes how to integrate a CORE Generator module
into a user design through the use of various design flows; schematic
and HDL. This chapter contains a general overview of the design
flows, which include the following topics:.

• “Understanding CORE Generator Design Flow Basics”

• “Describing the CORE Generator Schematic Design Flow”

• “Describing the HDL Behavioral Model Delivery System
Features”

• “Using the CORE Generator Verilog Design Flow Procedure”

• “Using the CORE Generator VHDL Design Flow Procedure”

Understanding CORE Generator Design Flow
Basics

The CORE Generator System produces a Electronic Data Interchange
Format (EDIF) netlist, and may also produce a Foundation or View-
logic schematic symbol, and/or a Verilog Output (VEO) or VHDL
Output (VHO) template file. The Electronic Data Netlist (EDN) file
contains the information for implementing the module. The Founda-
tion or Viewlogic symbol allows you to integrate the CORE Generator
module into a schematic for Electronic Design Automation (EDA)
tools. Finally, the VEO and VHO template files contain code that can
be used as a model to instantiate a CORE Generator module in a
Verilog or VHDL design so that it can be simulated and integrated
into a design.
CORE Generator Guide — 3.1i 4-1

CORE Generator Guide
The grayed areas in Figure 4-1 indicate the portions of the design
flow directly associated with the CORE Generator. The left-side gray
area shows the EDN, VEO, VHO, and schematic symbol files
produced by the CORE Generator System. The right-side gray area
shows the XilinxCoreLib and VendorCoreLib source libraries
that are created or updated during CORE Generator and IP module
update installation. These libraries contain the behavioral simulation
models for the CORE Generator cores.

Figure 4-1 CORE Generator Flow Chart

Describing the CORE Generator Schematic Design
Flow

The CORE Generator System produces an EDIF Implementation
Netlist (EDN) for schematic design flows. For Viewlogic and Founda-
tion flows, the CORE Generator also produces a schematic symbol.
The EDN file contains information for implementing the module. The
Foundation symbol or Viewlogic symbol allows you to integrate the
module into a schematic for these EDA tools.

X8974

HDL Editor

HDL Editor

CORE Generator
or IP Install

Schematic Editor

Schematic Simulation Tools

Implementation Tools

Symbol

Synthesizer

VHO
VEO

EDIF

EDIF

EDN EDIF

CORE Generator

simprim Unified

Xilinx CoreLib

<Vendor> CoreLib

Unisim

VITAL & Verilog

simprim

VITAL, Verilog,
Gate-level

HDL
Test Bench

VHDL
Verilog

VHDL
Verilog

EDIF

SDF

VHDL
Verilog

VHDL
Verilog

SDF

Behavioral Simulation Models

Timing
Simulation

Flow
Functional
Simulation

Flow

Verilog & VHDL
Instantiation
4-2 Xilinx Development System

Understanding CORE Generator Design Flows
Starting a Schematic Design Flow with Viewlogic
The Viewlogic interface outputs are generated by a script, vllink,
which calls for both Viewlogic and Xilinx tools. You need to setup
your platform with the following instructions:

• (Windows) Install both the Viewlogic and Xilinx Implementation
Tools software in order to generate the outputs required to inte-
grate a core into a Viewlogic design.

• (UNIX workstation) Set your environment to run both the View-
logic tools and the Xilinx Implementation software. If you run
Powerview v6.1 you need to have your environment setup to run
Viewlogic Fusion v1.4 or later. This setup gives you access to the
VHDL2SYM utility for symbol generation. If any of these tools
are not installed or not properly set up in your environment, then
diagnostic errors similar to the following example may be
reported in the CORE Generator console, coregen.log, or
vlink.log file in your project directory:

"WARNING: Core xxx did not generate product
ViewSym"

For both platforms, you need to place your CORE Generator
project in a valid Viewlogic project directory. A valid Viewlogic
project directory consists of a project defined in a local project
viewdraw.ini file. This file is automatically created in Workview
Office by the Workview Office Project Manager.

Note For details on Viewlogic and Xilinx Implementation Tools
setup, please refer to the Alliance or Foundation Quick Start Guide.
CORE Generator Guide 4-3

CORE Generator Guide
Creating a Viewlogic Project
The following procedure describes the process for creating a View-
logic project:

1. Create a directory for a Viewlogic project by entering the
following path:

c:\wvoffice\project

2. Set up project libraries

♦ (UNIX Workstation) Define the project libraries in the view-
draw.ini file located in the project’s working directory.

♦ (Windows) Set up the project libraries through the Project
Manager GUI.

Continue with the following steps:

3. Open a New project.

4. Add a configured FPGA library from the list. As an example, if
the XC4000XL is selected, the XC4000x, logiblox, simprims,
builtin and xbuiltin libraries are added automatically.

5. Add the project directory as a Writable library and give it the
alias, primary. Move it to the top of the library search order.

6. Save the project in the Viewlogic Project Manager.

The following is an example of the library search order needed to
create an XC4000XL design:

dir [p] c:\wvoffice\project (primary)

dir [rm] %XILINX%\viewlog\data\xc4000x
(xc4000x)

dir [r] %XILINX%\viewlog\data\logiblox (logi-
blox)

dir [rm] %XILINX%\viewlog\data\simprims
(simprims)

dir [rm] %XILINX%\viewlog\data\builtin
(builtin)

dir [rm] %XILINX%\viewlog\data\xbuiltin
(xbuiltin)
4-4 Xilinx Development System

Understanding CORE Generator Design Flows
Note The primary alias is very important since the CORE Gener-
ator system looks for it in order to define the directory to copy the
symbol and simulation files. This alias should match the one
specified in the CORE Generator System Options under View-
logic Library alias.

7. Set the Output Format. From the CORE Generator Project menu,
select Project Options to open the dialog box shown in the
following figure:

Figure 4-2 Project Options Dialog Box

Check the following options:

♦ Design Flow: Schematic

♦ Vendor: Viewlogic

The netlist bus format is automatically set to <BI> when View-
logic is specified as the vendor.
CORE Generator Guide 4-5

CORE Generator Guide
8. Set Project Path and Viewlogic Library alias from the CORE
Generator Project menu.

Select Project → Open. Set the Project Path to point to the
Viewlogic project directory you are working on, for example,
c:\wvoffice\project. If the desired project is not on your list
of displayed projects, use the Browse button to navigate to this
directory. Make sure that the string you enter in the CORE Gener-
ator window for the Viewlogic Library Alias matches the one
defined in the viewdraw.ini file. The default Viewlogic Library
Alias is primary but you can use any name with up to 8 charac-
ters.

Creating Output Files
Use the following procedure to create a Viewlogic symbol, a View-
logic simulation file, and a netlist file.

1. Select Desired Module

Select the module you want to generate by navigating through
the cores hierarchy with the module browser and clicking the
desired module. You may click the SPEC button on the CORE
Generator toolbar to review the module’s datasheet.

2. Double-click the selected module to reveal its parameterization
window.

3. When you have entered all the parameterization details required
by the module, click the Generate button.

This creates a Viewlogic Symbol, a Viewlogic WIR file, and a
netlist file (.EDN). The symbol is created with a block type of
Composite and placed in the SYM subdirectory within the View-
logic project. This symbol will not necessarily match the CORE
Generator module symbol shown in the datasheets in shape and
pin order. It is possible to manually modify your symbol using
the Viewlogic Symbol Editor.

The simulation file is created from the EDN file and placed in the
WIR subdirectory within the Viewlogic project. The .EDN file ,
used for implementation, is placed directly in the Viewlogic
project directory.
4-6 Xilinx Development System

Understanding CORE Generator Design Flows
The WIR simulation file is created from the EDN file and placed
in the WIR subdirectory within the Viewlogic project. The WIR
file is used by Viewlogic to generate the .VSM file for functional
simulation and should not be deleted. In order to generate this
file the CORE Generator System needs to access several Xilinx
implementation tools executables. WIR file generation may fail if
your environment is not set up properly. If an error occurs during
the generation of these files, check the vllink.log file located in the
Project Directory.

Note Workview Office 7.4/7.5, and Powerview 6.0 partially
support Virtex and Spartan2 simulation in Viewsim. Use either
VHDL or Verilog to simulate Virtex designs created with View-
logic schematics. Please refer to Xilinx Solution 4318 at the
following location for the latest information in Viewsim simula-
tion support for Virtex:

http://www.xilinx.com/techdocs/4318.htm

4. Load the Symbol in the Schematic Editor.

Open the Viewlogic schematic tool, load your top level schematic
(or create a new one) and add the new symbol for the module
you have just created to the schematic.

5. Attach a LEVEL property to the symbol with a value of XILINX.
Check that this property has been added correctly to the symbol
by displaying all properties attached to the symbol.

6. Connect the symbol to the rest of your design.

7. Check and save your schematic design.

When executing the Viewlogic Check program, error messages
like the following example, are displayed for every CORE Gener-
ator module but can be safely ignored.

ERROR: Could not load schematic sheet: corename.1

These error messages can be safely ignored. They are the by
product of generating the Viewlogic symbol with a Composite
block type to allow generation of the WIR files.

From now on, use the same flow for processing this design as you
would for using macros from the Unified Library. For further
information, refer to the Viewlogic Interface/Tutorial Guide.
CORE Generator Guide 4-7

CORE Generator Guide
Foundation Design Flow
Beginning with the 2.1i release of the Xilinx Foundation Series toolset,
the CORE Generator System is integrated into the Foundation Project
Manager, the Schematic Editor, and the HDL Editor. Please refer to
the 3.1i documentation for details on integrating your CORE Gener-
ator module into a Foundation schematic design or HDL design.

Foundation ISE Design Flow
For details on how to integrate CORE Generator modules into a
Foundation ISE design, please refer to the Foundation Series ISE Guide.

Mentor Design Flow
Beginning with the 2.1i release, the CORE Generator System is inte-
grated into the Mentor Design Architecture. Please refer to the Mentor
Interface Guide documentation for details on integrating your CORE
Generator module into a Mentor schematic design.

Cadence Design Flow
Setting the Vendor to Cadence in the CORE Generator Project
Options dialog window will direct the application to generate and
EDIF Implementation netlist with the proper bus delimiter format for
Concept-HDL.

For further information integrating a core into a Concept-HDL sche-
matic, please refer to Solution 2005 at

http://www.support.xilinx.com.

Describing the HDL Behavioral Model Delivery
System Features

The HDL behavioral model delivery system features a parameterized
behavioral simulation model library (XilinxCoreLib), a instantiation
template file, and a optional unused pin support that minimizes reli-
ance on the Xilinx Mapper for removal of extraneous logic.
4-8 Xilinx Development System

Understanding CORE Generator Design Flows
XilinxCoreLib Simulation Library
The CORE Generator System provides both Verilog and VHDL
XilinxCoreLib behavioral simulation libraries to support the CORE
Generator cores. The Verilog library is located at
$XILINX/verilog/src/XilinxCoreLib, and the VHDL library is
located at $XILINX/vhdl/src/XilinxCoreLib. In the previous 2.1i
release, the libraries were extracted manually with the get_models
utility. Starting with the 3.1i release, the XilinxCoreLib libraries are
provided in source file format at standard locations in the Xilinx
installation tree.

Note The libraries are now automatically updated by the IP Update
installer when installing Core IP updates.

coredb
The coredb command line utility updates or regenerates the
coredb.xml installed IP database file. The processes executed by
coredb to update the coredb.xml database run automatically during
the first CORE Generator GUI startup session, after installation of an
IP module update. You can also run the coredb manually to explicitly
force an update of coredb.xml.

Syntax

coredb

Instantiation Template Files
The .V and the .VHD behavioral models for each CORE Generator
module are not copied to your project directory. The CORE Generator
System only writes out .VEO and .VHO HDL instantiation template
files. These instantiation template files contain pointers to the generic,
parameterized HDL simulation models in the XilinxCoreLib libraries.
In the case of a hierarchical behavioral model, pointers to the lower
level behavioral models referenced by a higher level behavioral
model are also written to the instantiation template files.
CORE Generator Guide 4-9

CORE Generator Guide
Support for Unused Optional Pins
The parameterized Xilinx CORE Generator HDL behavioral models
are written to support unused optional pins on CORE Generator
modules. The models are written to support those users who might
not require all the input and output ports on a CORE Generator, for
example, clock enable, and registered versions of outputs. Optional
pins are omitted from the EDIF implementation netlist for the core
when the core is generated if their associated functions are not
requested by the user. The result is less reliance on the Xilinx Mapper
to remove extraneous or unused logic.

verilog_analyze_order File
This file lists the CORE Generator Verilog behavioral models in the
order in which it is suggested that they be compiled before
performing a behavioral simulation in a compiled simulator. This
applies to compiled Verilog simulators only such as Synopsys VCS,
and Cadence NC-Verilog.

vhdl_analyze_order File
This file lists the CORE Generator VHDL behavioral models in the
order in which they must be compiled for simulation. More than one
compile order may be valid for the library.
4-10 Xilinx Development System

Understanding CORE Generator Design Flows
Using the CORE Generator Verilog Design Flow
Procedure

This section briefly describes the procedure for behavioral simula-
tion, synthesis, and implementation of Verilog designs containing
CORE Generator modules. Please see “Understanding the Verilog
HDL Design Flow” in Chapter 5 for more details.

1. Generate the module.

Specify the Target Architecture and Verilog Design Entry settings
for the project. Select the desired module, specify the customiza-
tion parameters for the module, then generate the module.

2. Instantiate the module in the parent design.

Insert the instantiation template from the .VEO files for each
module into the parent design, and edit the module connections.

3. Create module.name.v from the .VEO file.

Copy the .VEO file to module_name.v. Edit the `include statement
from the .VEO file for each user generated module to reflect the
path to your XilinxCoreLib directory. Comment out the instantia-
tion template section in module_name.v.

4. Create a testbench.

Perform the behavioral simulation, including module_name.v in
the command line.

5. Perform the behavioral simulation, including module_name.v in
the command line.

6. Synthesize the design, applying any required black-box proper-
ties to the CORE Generator modules.

7. Write out the implementation netlist.

8. Implement the design using the Xilinx tools.
CORE Generator Guide 4-11

CORE Generator Guide
Using Instantiation Templates
Instantiation template files are files containing code that can be used
to instantiate your CORE Generator module into your Verilog or
VHDL design, and also contain code that supports behavioral simu-
lation.The CORE Generator .VEO instantiation template file is auto-
matically generated when you select Verilog as one of your Design
Entry options in the Project Options menu. For the VHDL version,
please see the “Verilog Instantiation Template for an 8-Bit Adder”
section.

Using a .VEO Instantiation Template File
A Verilog instantiation template consists of the following compo-
nents:

• Simulation Model include statement

• Instantiation code

• Module port declaration with customization parameters, as
shown in the following example:

Verilog Instantiation Template for an 8-Bit Adder

/*The following line MUST appear at the top of the
 file in which the instantiation will be made:*/
// LIB_TAG

`include “XilinxCoreLib/adreVHT.v”
// LIB_TAG_END
/*The following is an example of an instantiation.

Cut and paste this code into your design,
 changing the instance name and port connections

(in parentheses) to your own signal names.*/
// INST_TAG
adder8 YourInstanceName

.A(A),

.B(B),
.C(C),

.CE(CE),

.CI(CI),

.CLR(CLR),
4-12 Xilinx Development System

Understanding CORE Generator Design Flows
.S(S));
// INST_TAG_END
*/Cut and paste this code into your design, after
 the module in which it is to be instanced.*/
// MOD_TAG
module adder8 (

A,
B,
C,
CE,
CI,
CLR,
S);

input [7 : 0] A;
input [7 : 0] B;
input C;
input CE;
input CI;
input CLR;
output [8 : 0] S;

ADREVHT #(8,
1)
inst (.A(A),
.B(B),
.C(C),
.CE(CE),
.CI(CI),
.CLR(CLR),
.S(S));

endmodule
// MOD_TAG_END
CORE Generator Guide 4-13

CORE Generator Guide
Using the CORE Generator VHDL Design Flow
Procedure

This next section consists of a brief description of the VHDL Design
Flow procedure using the MTI ModelSIM. Please see Chapter 5 for
more details.

1. Generate the module. Specify the Target Architecture and VHDL
Design Entry settings for the project.

2. Analyze the xilinxcorelib library models as follows:

♦ Create a library for the analyzed behavioral models named
xilinxcorelib, using MTI ModelSIM.

♦ Establish a link to the location where the analyzed behavioral
models will reside using MTI ModelSIM.

♦ Analyze the source behavioral models in $XILINX/vhdl/
src/xilinxcorelib to the newly created library.

3. Instantiate the module in the parent design.

♦ Copy the component, instance, and configuration declara-
tions into the parent design.

♦ Edit the instantiation template to connect the core to the
parent design.

4. Simulate the design.

Analyze the parent design and testbenchfile. Simulate the test-
bench VHDL CONFIGURATION.

5. Synthesize the design.

6. Write out the implementation netlist for the design.

7. Implement the design using the Xilinx tools.
4-14 Xilinx Development System

Understanding CORE Generator Design Flows
Using a .VHO Instantiation Template File
A .VHO file contains code that instantiates your CORE Generator
module into your VHDL design. It also contains code that supports
behavioral simulation. The .VHO file is similar to the .VHI instantia-
tion template generated by the 1.4 and 1.5 versions of the CORE
Generator, but is distinguished by an additional VHDL CONFIGU-
RATION section that must be added to a CONFIGURATION declara-
tion in your VHDL testbench file or upper level design file. The
configuration sets the values of various VHDL generics used to
customize the CORE Generator VHDL simulation models in this
release.

A VHDL instantiation template consists of the following compo-
nents:

• xilinxcorelib LIBRARY declaration

• COMPONENT declaration

• Instantiation template

• CONFIGURATION declaration with VHDL generics, as shown
in the following example:

VHDL Instantiation Template for an 8-Bit Adder

--User: Make sure that these statements appear

--above the top-level entity declaration in your

VHDL design...

--LIB_TAG

Library xilinxcorelib;

Use xilinxcorelib.null_comp.all;

-- LIB_TAG_END

-- User: Make sure that this statement appears

-- in the architecture header in your VHDL design...

-- COMP_TAG

component adder8

port (
CORE Generator Guide 4-15

CORE Generator Guide
a: IN std_logic_VECTOR(7 downto 0);

b: IN std_logic_VECTOR(7 downto 0);

c: IN std_logic;

ce: IN std_logic;

ci: IN std_logic;

clr: IN std_logic;

s: OUT std_logic_VECTOR(8 downto 0));

end component;

-- COMP_TAG_END

-- User: Make sure that this statement appears

-- in the architecture body in your VHDL design,

-- substituting your own instance name where shown.

-- Do not forget to change the net names in the port
map

-- to your own design’s net names.

-- INST_TAG

your_instance_name : adder8

port map (

a => a,

b => b,

c=> c,

ce => ce,

ci => ci,

clr => clr,

s => s);

-- INST_TAG_END

-- User: Make sure that this text appears

-- within the top-level configuration body in your
VHDL design,

-- for example:

--

-- configuration cfg_top of top_level is
4-16 Xilinx Development System

Understanding CORE Generator Design Flows
-- for arch_name

-- Insert text here>

-- end for;

-- end cfg_top;

--

-- CONF_TAG

for all : adder8 use entity

 XilinxCoreLib.null(behavioral)

generic map(

signed => true,

input_width => 8);

end for;

CONF_TAG_END

The lines between the two markers, --

 CONF_TAG, and –CONF_TAG_END:

-CONF_TAG

for all : adder8 use entity

 XilinxCoreLib.null(behavioral)

generic map(

signed => true,

input_width => 8);

end for;

--CONF_TAG_END
CORE Generator Guide 4-17

CORE Generator Guide
The lines between the two markers –CONF_TAG and
CONF_TAG_END must be added to a CONFIGURATION statement
in your VHDL test fixture file or top level design file, for example,

-CONF_TAG

for all : adder8 use entity

XilinxCoreLib.null(behavioral)

generic map(

signed => true,ionput_width => 8);

end for;

CONF_TAG_END
4-18 Xilinx Development System

Chapter 5

Understanding the HDL Design Flow

This chapter describes the elements in a Hardware Description
Language (HDL) design flow in the CORE Generator System envi-
ronment and contains the following sections:

• “Using the HDL Behavioral Model Delivery System”

• “Understanding the Verilog HDL Design Flow”

• “Understanding the VHDL HDL Design Flow”

Using the HDL Behavioral Model Delivery System
To integrate a CORE Generator module into a HDL design, you need
to start with the following procedure:

• Generate the module

• Instantiate the module in your design

• Perform a behavioral simulation of your design with the inte-
grated module

• Analyze the models

• Simulate the models

• Synthesize the design

• Implement the design
CORE Generator Guide — 3.1i 5-1

CORE Generator Guide
Understanding the Verilog HDL Design Flow
This section describes the procedure for behavioral simulation,
synthesis, and implementation of Verilog designs containing CORE
Generator modules using the following third party vendor tools:

Synthesis:

• Synopsys FPGA Compiler

• Synopsys FPGA Express

• Synplicity Synplify

• Exemplar Leonardo

Simulation

• MTI ModelSim/VLOG

• Cadence Verilog-XL

Describing the Verilog Design Flow Procedure
This next section describes in detail, how to use create a Verilog
design.

1. Generate the module. Specify the Design Entry, Vendor, and
Behavioral Simulation settings for the project.

To generate the module, start the Xilinx CORE Generator by
selecting Project → New Project.
5-2 Xilinx Development System

Understanding the HDL Design Flow
Figure 5-1 New Project Menu Screen

Select Project Options →Design Flow →
Verilog→Vendor
This specifies the synthesis vendor software to synthesize your
Verilog design. The EDIF bus delimiter format required for this
flow is written out by the synthesizer for your design. This
ensures for proper integration with the upper level parent imple-
mentation netlist.

In Figure 5-2, the Design Entry is set to Verilog, and the Vendor is
set to Synopsys. As a result, the bus delimiter format is automati-
cally set to B<I>
CORE Generator Guide 5-3

CORE Generator Guide
Figure 5-2 Verilog Behavioral Simulation Option

2. Prepare for simulation by extracting the behavioral models to a
source library.module.

Install the CORE Generator in the $XILINX/coregen
directory.
To simulate cores, you need to extract the behavioral models from
the CORE Generator system installation area to a directory,
referred to as <destination _directory>. The recommended loca-
tion of <destination_directory> is $XILINX/verilog/src. This is
the location of the source code for all other Xilinx Verilog
libraries.

Extract the CORE Generator Verilog Behavioral Models to a
source library. This step is required for all simulators.
5-4 Xilinx Development System

Understanding the HDL Design Flow
3. Instantiate the module in the parent.

Insert the instantiation template from the .VEO files into the
parent design, and edit the module connections. Create
module_name.v. Edit the ‘include library inclusion section to
reflect the actual location of the extracted behavioral model
source library. Comment out the instantiation template section in
the module_name.v.

Select Design Entry→Verilog
Both a Verilog template file component_name.VEO, and an imple-
mentation netlist component_name.EDN are generated whenever a
core is generated. The .VEO template file includes the following
items:

♦ Library `include statement

♦ Module declaration section

♦ Module instantiation template

The following example illustrates the use of the Verilog template
file with a parent design. Copy the module instantiation template
and paste it into the parent design, as described in the following
section:

Code Example 1 Using the Verilog myadder8.veo Instantiation
Template File

/**
This file was created by the Xilinx CORE Generator tool,
and is (c) Xilinx, Inc. 1998, 1999. No part of this file
may be transmitted to any third party (other than
intended by Xilinx) or used without a Xilinx programmable
or hardwire device without Xilinx’s prior written permission.
***/
// The following line must appear at the top of the file
// in which the core instantiation will be made.
//Ensure that the translate_off/_on
//compiler directives are correct for your synthesis tool(s).

//-- Begin Cut here for LIBRARY inclusion ---//
LIB_TAG

// synopsys translate_off
‘include "XilinxCoreLib/adreVHT.v"
// synopsys translate_on
// LIB_TAG_END ------- End LIBRARY inclusion --------
CORE Generator Guide 5-5

CORE Generator Guide
// The following code must appear after the module in
//which it is to be instantiated. Ensure that the translate_off/_on
//compiler directives are correct for your synthesis tool(s).

//-- Begin Cut here for MODULE Declaration --// MOD_TAG
module myadder8 (
A,
B,
C,
CE,
CI,
CLR,
S);

input [7 : 0] A;
input [7 : 0] B;
input C;
input CE;
input CI;
input CLR;
output [8 : 0] S;

// synopsys translate_off

ADREVHT #(
8,
1)
inst (

.A(A),

.B(B),

.C(C),

.CE(CE),

.CI(CI),

.CLR(CLR),

.S(S));
// synopsys translate_on
endmodule
// MOD_TAG_END ------- End MODULE Declaration -------
// The following must be inserted into your Verilog file
//for this core to be instantiated. Change the instance
//name and port connections (in parentheses) to your own //signal
5-6 Xilinx Development System

Understanding the HDL Design Flow
names.

//-Begin Cut here for INSTANTIATION Template-
// INST_TAG
myadder8 YourInstanceName (

.A(A),

.B(B),

.C(C),

.CE(CE),

.CI(CI),

.CLR(CLR),

.S(S));
// INST_TAG_END ------ End INSTANTIATION Template -------

The .VEO file can be copied to myadder8.v and used to reference
the behavioral model for the adder after editing the ‘include’
statement to reflect the actual location of the extracted xilinx-
corelib and/or Vendor-CoreLib libraries commenting out the
Instantiation Template section of the file using "/* */" comment
markers as follows:

/* myadder8 YourInstanceName
.A(A),
.B(B),
.C(C),
.CE(CE),
.CI(CI),
.CLR(CLR),
.S(S));

*/

Analyze the resulting myadder8.v file, along with the parent
design when preparing for simulation.

Using an Alternate Method for Instantiating
Modules

You can also use an alternate method by pasting the library decla-
ration, module declaration and instantiation template for the core
into the parent Verilog design file. Begin the alternate pasting
method, paste the VERILOG parent design file: myadder8_top.v.
The component, myadder8, is instantiated, and the module is
declared. The instantiation template is copied from
myadder8.veo, and pasted into the parent design.
CORE Generator Guide 5-7

CORE Generator Guide
myadder8.top_alt.v
/* blah */
// synopsys "translate_off"
// Edit this path if necessary to reflect the actual location
// of the XilinxCoreLib library (usually $XILINX/verilog/src/
XilinxCoreLib)

‘include "/XilinxCoreLib/adreVHT.v"
// synopsys translate_on

// LIB_TAG_END ------- End LIBRARY inclusion --------------

module myadder8_top (A_P, B_P, CLK_P, CE_P, CI_P, CLR_P, S_P);

input [7:0] A_P;
input [7:0] B_P;
input CLK_P;
input CE_P;
input CI_P;
input CLR_P;
output [8 : 0] S_P;

// The following block of code instantiates the core.
// Change the instance name and port connections
// (in parentheses) to your own signal names.

//----------- Begin Cut here for INSTANTIATION Template ---//
INST_TAG
myadder8 YourInstanceName (
 .A(A_P),
 .B(B_P),
 .C(CLK_P),
 .CE(CE_P),
 .CI(CI_P),
 .CLR(CLR_P),
 .S(S_P));

// INST_TAG_END ------ End INSTANTIATION Template ---------
endmodule

// The following code must appear after the module in which it
5-8 Xilinx Development System

Understanding the HDL Design Flow
// is to be instantiated. Ensure that the translate_off/_on compiler
directives are correct for your synthesis tool(s).

//----------- Begin Cut here for MODULE Declaration -------//
MOD_TAG
module myadder8 (
 A,
 B,
 C,
 CE,
 CI,
 CLR,
 S); // synthesis black_box

input [7 : 0] A;
input [7 : 0] B;
input C;
input CE;
input CI;
input CLR;
output [8 : 0] S;

 // synopsys translate_off

 ADREVHT #(
 8,
 1)
 inst (
 .A(A_P),
 .B(B_P),
 .C(CLK_P),
 .CE(CE_P),
 .CI(CI_P),
 .CLR(CLR_P),
 .S(S_P));

// synopsys translate_on

endmodule
// MOD_TAG_END ------- End MODULE Declaration -------------
CORE Generator Guide 5-9

CORE Generator Guide
The user specified instance name of myadder8_1 replaces YourIn-
stanceName, and dummy signal names are replaced with actual
signal names. Sections of code beginning with
// synopsys translate_off and ending with
//synopsys translate_on directives are ignored by the
synthesizer and are used for simulation only.

Note This directive is supported by Synopsys FPGA Compiler,
Foundation Express, FPGA Express, Exemplar, and Synplicity
synthesis tools.

The following example displays the Verilog parent design file:
myadder8_top.v:

Code Example 2 Verilog Parent Design File: myadder8_top.v

//--
// synopsys translate_off
// edit the next line to reflect the actual path to
// XilinxCoreLib
‘include "/XilinxCoreLib/adreVHT.v"

// synopsys translate_on
module top (A_P, B_P, C_P, CE_P, CI_P, CLR_P, S_P);
input [7 : 0] A_P;
input [7 : 0] B_P;
input C_P;
input CE_P;
input CI_P;
input CLR_P;
output [8 : 0] S_P;
// INST_TAG
myadder8 #(8, 1) myadder8_1 (
.A(A_P),
.B(B_P),
.C(C_P),
.CE(CE_P),
.CI(CI_P),
.CLR(CLR_P),
.S(S_P));
// INST_TAG_END
endmodule

4. Create a testbench.
5-10 Xilinx Development System

Understanding the HDL Design Flow
Write a testbench file called, testbench.v to simulate a parent
design that contains the myadder8 core. Include an instantiation
of the parent design and a stimulus to activate the adder. The
following example displays the framework for a testbench used
to simulate this design, with some sample simulation stimulus.

Code Example 3 Testbench.v File

‘timescale 1 ns/1 ps
module testbench;

reg C;
reg CE;
reg CI;
reg CLR;
reg [7:0] A;
reg [7:0] B;
wire [8:0] S;

/* Instantiation of top level design */
top uut (

.C_P (C),

.CE_P (CE),

.CI_P (CI),

.CLR_P (CLR),

.A_P (A),

.B_P (B),

.S_P (S)
);

/* Add stimulus here */
always #10 C = ~C;
initial begin

$timeformat(-9,3,"ns",12);
end
initial begin

CI = 0;
A = 0;
B = 0;
CE = 1;
C = 1;
CLR = 1;

#100
CLR=0;
#20;
A = 8’b10000000;
CORE Generator Guide 5-11

CORE Generator Guide
B = 8’b00000001;
#40;
A= 8’b11100001;
#40
B= 8’b00000010;
#1000 $stop;
// #1000 $finish;

end
/* end stimulus section */

endmodule

5. Analyze the behavioral simulation.

Verilog simulation netlists need to be analyzed before simulation
can proceed for some vendors. For example, if you are using
Model Technology’s (MTI) ModelSim simulation tool to simulate
your design, both the parent netlist and the testbench must be
analyzed. You can analyze the simulation files by using the vlog
command into a local, default, work library called work, which is
created using the vlib command. Use the following commands in
the project directory for MTI ModelSIM:

vlib work

vlog +incdir+“${XILINX}/verilog/src”test-
bench.v

vlog +incdir+“${XILINX}/verilog/src”
myadder8_top.v

vlog +incdir+“${XILINX}/verilog/src”
myadder8.v

You can omit vlog myadder8.v from the command line if you use
the Alternate Method.

To load the testbench, the parent design, and the simulation
model of the 8-bit adder core, stored in the subdirectory, Xilinx-
CoreLib. invoke the simulator with the following command:

vsim top_level_module

If you are using the Cadence Verilog-XL simulation tool, you can
invoke the simulator with the following command:

verilog +incdir+“${XILINX}/verilog/src”test-
bench.v myadder8_top.v myadder8.v
5-12 Xilinx Development System

Understanding the HDL Design Flow
The ${XILINX}command refers to the install area. You can omit
myadder8.v from the command line if you use the Alternate
Method.

6. Synthesize the design.

Synthesize the parent design containing the core or cores. Direct
the synthesizer to treat each core as a black-box. The logic for
each core is specified only in its EDIF implementation netlist
component_name.EDN, not in any Verilog file. The following
table describes synthesis logic instructions for the vendor tools

The following example displays a Verilog black box:

// synopsys translate_on

module top (A_P, B_P, C_P, CE_P, CI_P,
CLR_P, S_P);

input [7 : 0] A_P;

input [7 : 0] B_P;

input C_P;

Table 5-1 Synthesis Logic Instructions

Vender Tool Instructions

Exemplar Leonardo Do not read in a separate .V or
EDIF file for the CORE Generator
module. FPGA Express automati-
cally treats the module as a black
box.

Synopsys FPGA Compiler Apply the dont_touch attribute
to the module via the Synopsys
compile script.

Synopsys FPGA Express Do not read in a separate .V or
EDIF file for the CORE Generator
module. FPGA Express automati-
cally treats the module as a black
box.

Synplicity Synplify Apply the "/* attribute to the
component instantiation to prevent
back box warning from Synplify
during compilation.
CORE Generator Guide 5-13

CORE Generator Guide
input CE_P;

input CI_P;

input CLR_P;

output [8 : 0] S_P;

// INST_TAG

myadder8 #(8, 1) myadder8_1 (

.A(A_P),

.B(B_P),

.C(C_P),

.CE(CE_P),

.CI(CI_P),

.CLR(CLR_P),

.S(S_P)) /* synthesis black_box */;

// INST_TAG_END

endmodule

7. Write Out the Implementation Netlist.

After the parent design has been synthesized, write out its imple-
mentation netlist using the synthesis tool. Depending on the
synthesis tool being used and the target architecture, this imple-
mentation netlist may be an EDIF or XNF file, or a set of EDIF or
XNF files.
5-14 Xilinx Development System

Understanding the HDL Design Flow
The CORE Generator System breaks buses out into their compo-
nent bits when writing out the EDIF implementation netlist for a
module. This formerly created pin mismatch problems with the
upper level EDIF written out by some synthesis tools. However,
beginning with the 1.5 release of the Xilinx Implementation tools,
EDIF2NGD automatically resolves connections between bus nets
written out in bus format (for example, address<7:0>) in a
parent EDIF netlist, and bus nets written out as individual bits in
a lower level EDIF. Table 5-2 lists the various vendor tools and
descriptions for writing out netlists.
CORE Generator Guide 5-15

CORE Generator Guide
Table 5-2 Implementation Netlist Formats

Vendor Description

Exemplar Write out the
implementation
netlist in EDIF
format.

Synopsys FPGA Compiler No special instruc-
tions. FPGA
Compiler writes
out an SEDIF or
SXNF file for
XC4000 designs,
and SEDIF for
Virtex designs.

Synopsys FPGA Express No special instruc-
tions. When you
direct FPGA
Express to Export
the Netlist, Express
writes out an XNF
file for 4K designs,
and EDIF for
Virtex designs.

Synplicity Synplify Synplify writes
out either XNF or
EDIF netlists for
both XC4000
designs. It writes
out only EDIF for
Virtex designs.
5-16 Xilinx Development System

Understanding the HDL Design Flow
8. Implement the Netlist Cores.

The implementation netlists for each of the cores in the parent design
are merged in with the main design when the NGDBuild program
(the Translate stage of the Xilinx Flow Engine) is run on the top level
parent design during design implementation. To merge the netlists
successfully, verify that all of the CORE Generator .EDN EDIF
netlist(s) for the generated module or modules are located in the
same directory as the top level EDIF netlist for the synthesized
design. Alternatively, you can run NGDBuild with the –sd option,
which allows you to specify explicitly the location of the directory
containing the CORE Generator EDN files.

Implementation Using Cadence Verilog-XL and MTI
Model Sim/VLOG

Make modifications to Cadence Verilog-XL and MTI ModelSim/
VLOG third-party vendor tools using the following procedure:

1. Comment out the instantiation template in the .VEO file.

2. Copy the .VEO file to module_name.v.

3. Connect the core to the parent design by editing the module
connections.

4. Replace the dummy signals in the CORE Generator module
instantiation section with the actual signals in the parent design
in order for the component to be connected.

The module declaration and component instantiation establishes
a link in the parent Verilog design to the EDIF implementation
netlist for the CORE Generator module. This link is necessary to
ensure that the design is implemented properly after the parent
Verilog design has been synthesized. The CORE's EDIF netlist is
merged in with the rest of the parent design by the Xilinx
NGDBuild tool during the translation phase of the design flow.
CORE Generator Guide 5-17

CORE Generator Guide
Understanding the VHDL HDL Design Flow
This section describes the procedure for behavioral simulation,
synthesis, and implementation of Verilog designs containing CORE
Generator modules using the following third party vendor tools:

Third Party Vendor Tools

Third party vendor tools consist of the following:

Synthesis

• Synopsys FPGA Compiler

• Synopsys FPGA Express

• Synplicity Synplify

• Exemplar Leonardo

Simulation

• MTI ModelSim/VLOG
5-18 Xilinx Development System

Understanding the HDL Design Flow
Describing the VHDL Design Flow Procedure
This next section describes the detailed procedure for behavioral
model delivery in the CORE Generator System using the VHDL
design flow procedure.

1. Generating the Module

To generate the module, start the Xilinx CORE Generator by
selecting

a) Project → New as shown in the following figure:

Figure 5-3 New Project Menu Screen

b) Select Project Option → Design Flow →VHDL→
Vendor

This specifies the synthesis vendor software to synthesize
your VHDL design. The appropriate EDIF bus delimiter
format required for this flow for proper integration with the
upper level parent implementation netlist is written out by
the synthesizer for your design. In Figure 5-4, the Design
Entry flow has been set to VHDL and the Vendor has been set
to Synopsys. As a result, the bus delimiter format is automat-
ically set to B<1>.
CORE Generator Guide 5-19

CORE Generator Guide
Figure 5-4 VHDL Behavioral Simulation Option
5-20 Xilinx Development System

Understanding the HDL Design Flow
The combination of these two settings forces the bus delim-
iter automatically to the setting of B<I>. The following table
displays the bus delimiter format settings for each vendor:

Table 5-3 Bus Delimiter Format

Vendor Description

Exemplar Leonardo Set Design Entry flow to
VHDL, and Vendor to
Exemplar. This sets the
EDIF bus delimiter
format to B(1).

Synopsys FPGA Compiler
Synopsys FPGA Express

Set DEsign Entry flow to
VHDL, and Vendor to
Synopsys. This sets the
EDIF bus delimiter
format to B<1>.

Synplicity Synplify Set Design Entry flow to
VHDL, and Vendor to
Synplicity. This sets the
EDIF bus delimiter
format to B(1).
CORE Generator Guide 5-21

CORE Generator Guide
2. Initiating VHDL Behavioral Simulation

All VHDL simulators require that the VHDL models be analyzed
into the simulator’s library scheme before simulation can actually
proceed. The source models are located in $XILINX/vhdl/src/
vendor CoreLib. In the specific case of Xilinx cores, the analyzed
behavioral models reside in xilinxcorelib.

a) Create the XilinxCoreLib library with MTI ModelSim/VHDL
selected, by entering the following command:

cd library_directory

vlib xilinxcorelib

Note The name of the analyzed library must be lowercase.

b) Establish a link to the compiled behavioral models. To use a
vendor’s library of compiled behavioral models in a design of
your own, a link must be established between your project
directory and the vendor’s library directory. In your project
directory, type the following:

vmap xilinxcorelib library_directory/xilinx
corelib

Map the logical name of xilinxcorelib to the
xilinxcorelib library declared in the previous line.

This command creates and also modifies the MTI
modelsim.ini file. This file is read by the ModelSim/VHDL
simulator and relates library names to physical locations on a
disk or network with the following command:

vmap xilinxcorelib full_path
_to_xilinxcorelib”
5-22 Xilinx Development System

Understanding the HDL Design Flow
3. Analyzing the Behavioral Models

Analyze the vendor’s VHDL models into this xilinxcorelib library
in the order specified in the vhdl_analyze_order file. The
following excerpt is an example of the vhdl_analyze_order:

#VHDL Simulation file list. Files are listed in
the order they should be

#analyzed in. If file F1.vhd is dependent on file
F2, then file F2 will be

#listed before F1.

#Note that all file names have been written in
lower case.

ul_tuils.vdh

mulVHT.vhd

mulVHT_comp.vhd

acc2sVHT.vhd

acc2sVHT_comp.vhd

To analyze the behavioral models in the xilinxcorelib library with
MTI ModelSim/VHDL, type the following:

vcom -work xilinxcorelib

<path_to_Xilinx_install_dir>/vhdl/src/Xilinx-

CoreLib/ul_utils.vhd

vcom -work xilinxcorelib

<path_to_Xilinx_install_dir>/vhdl/src/Xilinx-

Corelib/mulVHT.vhd

vcom -work xilinxcorelib

<path_to_Xilinx_install_dir>/vhdl/src/Xilinx-

CoreLib/mulVHT_comp.vhd

vcom -work xilinxcorelib

<path_to_Xilinx_install_dir>/vhdl/src/Xilinx-
CORE Generator Guide 5-23

CORE Generator Guide
Corelib/acc2sVHT.vhd

......

etc.

Note It is critical that you compile the models in the order speci-
fied above; for example, primitive models before macro level
models. Compiling the models in the wrong order leads to errors
in compilation.

4. Instantiating the Module

The following procedure, for instantiating a module, is the same
for all simulators.

a) Select Design Entry → VHDL

Both a VHDL template file component_name.VHO, and an
implementation netlist component_name.EDN are generated
whenever a CORE is generated when the VHDL option is
selected in the Project Options dialog box. The .VHO
template file includes the following items:

♦ Component declaration

♦ Component instantiation

♦ Configuration section

b) Connect the core to the parent design by editing the instantia-
tion block.

c) Modify the port connections in the instantiation template to
reflect the actual connections to the parent design. For more
details, see the example.

The component declaration and component instantiation
block establish a link in the VHDL code to the EDIF imple-
mentation netlist for the CORE Generator module. This link
is necessary to ensure that the design is implemented prop-
erly after the parent VHDL design has been synthesized. The
VHDL instantiation core of the parent design core serves as a
placeholder for the core. After the parent design has been
synthesized, the core’s EDIF netlist is merged by the Xilinx
tools with the rest of the parent design.
5-24 Xilinx Development System

Understanding the HDL Design Flow
Note The component instantiation contains dummy signal names
that must be replaced with the actual signal names in the parent
design. The corresponding pins on the core are connected to the
actual signal names.

The library declaration and the configuration section in the
.VHO VHDL template file are both needed for behavioral
simulation only. Notice that both constructs are demarcated
in the .VHO file with —synopsys translate_off and —
synopsys translate_on markers which tell the synthesis
tool to ignore the code in between the markers when synthe-
sizing the design. This allows the same code to be used for
behavioral simulation and for design synthesis.

The —synopsys translate_off and the —synopsys
translate_on compiler directives are supported by
Synopsys FPGA Compiler, Foundation Express, FPGA
Express, Exemplar and Synplicity synthesizers.

The specific purpose of the configuration section is to estab-
lish a link between the parent design and the core's simula-
tion model. A separate, module_name.VHD .VHD file for the
CORE Generator module is not needed in the project direc-
tory.

The configuration section is used only for behavioral simula-
tion, and has no impact on the synthesis or the implementa-
tion processes. The configuration statement needs to have the
following items to support behavioral simulation of the core:

♦ Component declaration for the core

♦ Library declaration for xilinxcorelib or the appropriate
VendorCoreLib library

♦ VHDL Configuration statement

All of these components need to be added to the parent
design. The corresponding configuration section for the core
from the template file must be embedded in that configura-
tion statement.

A parent design may contain multiple cores. For each core
that is instanced in the parent design, a corresponding
unique configuration section must be inserted into the parent
design's configuration declaration.
CORE Generator Guide 5-25

CORE Generator Guide
This next example illustrates the use of the .VHO template file
in a parent design. In this example, an 8-bit registered adder,
myadder8, is generated by the CORE Generator System and
is instantiated in a parent design. The files of interest are the
instantiation template file, myadder8.vho, and the parent
design, myadder8_top.vhd.

Code Example 4 VHDL Template File myadder8.vho

--
-- This file was created by the Xilinx CORE Generator --
-- tool, and is (c) Xilinx, Inc. 1998, 1999. No part --
-- of this file may be transmitted to any third party --
-- (other than intended by Xilinx)or used without a --
-- Xilinx programmable or hardwire device without --
-- Xilinx’s prior written permission. --
--
-- The following code must appear in the VHDL
-- architecture header:
--- Begin Cut here for COMPONENT Declaration -- COMP_TAG
component myadder8

port (
a: IN std_logic_VECTOR(7 downto 0);
b: IN std_logic_VECTOR(7 downto 0);
c: IN std_logic;
ce: IN std_logic;
ci: IN std_logic;
clr: IN std_logic;
s: OUT std_logic_VECTOR(8 downto 0));

end component;
-- COMP_TAG_END ---- End COMPONENT Declaration ---------

-- The following code must appear in the VHDL
-- architecture body. Substitute your own instance name
-- and net names.
---Begin Cut here for INSTANTIATION Template -- INST_TAG
your_instance_name : myadder8

port map (
a => a,
b => b,
c => c,
ce => ce,
ci => ci,
5-26 Xilinx Development System

Understanding the HDL Design Flow
clr => clr,
s => s);

-- INST_TAG_END ------ End INSTANTIATION Template -------
-- The following code must appear above the VHDL
-- configuration declaration. An example is given at
-- the end of this file.

--- Begin Cut here for LIBRARY Declaration --- LIB_TAG
-- synopsys translate_off

Library XilinxCoreLib;
-- synopsys translate_on

-- LIB_TAG_END ------- End LIBRARY Declaration ----------
-- The following code must appear within the VHDL
-- top-level configuration declaration. Ensure that
-- the translate_off/on compiler directives are correct
-- for your synthesis tool(s).
--- Begin Cut here for CONFIGURATION snippet --- CONF_TAG
-- synopsys translate_off

for all : myadder8 use entity XilinCoreLib.adreVHT(behavioral)
generic map(

Signed => 1,
Input_Width => 8);

end for;
-- synopsys translate_on
-- CONF_TAG_END ----- End CONFIGURATION snippet --------
--
-- Example of configuration declaration...
--
--
-- <Insert LIBRARY Declaration here>
--
-- configuration <cfg_my_design> of <my_design> is
-- for <my_arch_name>
-- <Insert CONFIGURATION Declaration here>
-- end for;
-- end <cfg_my_design>;
--
-- If this is not the top-level design then in the next
-- level up, the following text should appear
CORE Generator Guide 5-27

CORE Generator Guide
-- at the end of that file:
--
-- configuration <cfg> of <next_level> is
-- for <arch_name>
-- for all : <my_design> use configuration
-- <cfg_my_design>;
-- end for;
-- end for;
-- end <cfg>;
--

The next section consists of the parent design,
myadder8_top.vhd. The component declaration, the instanti-
ation (with dummy signal names replaced with actual signal
names), and the configuration section were cut and pasted
from myadder8.vho.

Code Example 5 VHDL Parent Design File myadder8_top.vhd

library IEEE;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_1164.all;
ENTITY myadder8_top IS

PORT (ap : IN std_logic_vector(7 downto 0);
bp : IN std_logic_vector(7 downto 0);
ck: IN std_logic ;
cep: IN std_logic;
cip: IN std_logic;
clrp: IN std_logic;
sp: OUT std_logic_VECTOR (8 downto 0));

END myadder8_top;
ARCHITECTURE use_core of myadder8_top IS

--
---- The MYADDER8 core is used in this design. The core
---- must be declared via a ’component declaration’;
---- myadder8.vho provides the component declaration
---- which is cut-and-pasted into the design as
---- shown below.
--
component myadder8

port (
a: IN std_logic_VECTOR(7 downto 0);
5-28 Xilinx Development System

Understanding the HDL Design Flow
b: IN std_logic_VECTOR(7 downto 0);
c: IN std_logic;
ce: IN std_logic;
ci: IN std_logic;
clr: IN std_logic;
s: OUT std_logic_VECTOR(8 downto 0));

end component;

BEGIN
--
---- The core is instantiated into this design.
---- myadder8.vho provides an instantiation
---- template which must be modified
---- so that it reflects actual signals used in the
---- design, establishing the connectivity between the
---- core and other logic at this level. The instance
---- of the core must also be given an actual label to
---- replace the dummy "your_instance_name" tag. In this
---- example,it is replaced by "myadder8".
--
myadder8_1 : myadder8

port map (
a => ap,
b => bp,
c => ck,
ce => cep,
ci => cip,
clr => clrp,
s => sp);

end use_core;
library xilinxcorelib;
--
A partial configuration statement is found in
---- myadder8.vho.It contains information necessary to
---- link the behavior of the core with the its
---- instantiation. This configuration section from
---- myadder8.vho must be reproduced in this parent
---- design, embedded within the configuration statement
---- of parent design. NOTE: For each core that is
---- instantiated in this design, a unique partial
---- configuration statement must be included.
--
CORE Generator Guide 5-29

CORE Generator Guide
-- synopsys translate_off
CONFIGURATION cfg_myadder8_top OF myadder8_top IS

FOR use_core
for all : myadder8 use entity
XilinxCoreLib.adrevVHT(behavioral)

generic map(
signed => 1,

input_width => 8);
end for;

end for;
end cfg_myadder8_top;
-- synopsys translate_on

5. Creating the Testbench

Write a testbench file called, testbench.vhd to simulate a
parent design that contains the myadder8 core and includes an
instantiation of the parent design. The testbench also includes a
configuration statement that reminds the simulator to reference
the configuration statement in the parent design. The testbench
should also contain stimulus to activate the adder. The following
example displays a part of the testbench file used to simulate this
design. This example has one exception; that the section
containing simulation stimulus is omitted.

Code Example 6 VHDL Testbench File: testbench.vhd

library IEEE;
use IEEE.std_logic_1164.ALL;
ENTITY testbench is
END testbench;

ARCHITECTURE simulate OF testbench IS
--
---- The parent design, myadder8_top, is instantiated
---- in this testbench. Note the component
---- declaration and the instantiation.
--
COMPONENT myadder8_top

PORT (
ap : IN std_logic_vector(7 downto 0);
bp : IN std_logic_vector(7 downto 0);
ck: IN std_logic ;
5-30 Xilinx Development System

Understanding the HDL Design Flow
cep: IN std_logic;
cip: IN std_logic;
clrp: IN std_logic;
sp: OUT std_logic_VECTOR (8 downto 0));

END COMPONENT;

SIGNAL a_data_input : std_logic_vector(7 DOWNTO 0);
SIGNAL b_data_input : std_logic_vector(7 DOWNTO 0);
SIGNAL clock : std_logic;
SIGNAL clock_enable : std_logic;
SIGNAL carry_in : std_logic;
SIGNAL clear : std_logic;
SIGNAL sum : std_logic_vector (8 DOWNTO 0);

BEGIN
uut: myadder8_top

PORT MAP (
ap => a_data_input,
bp => b_data_input,
ck => clock,
cep => clock_enable,
cip => carry_in,
clrp=> clear,
sp => sum);

stimulus: PROCESS
 BEGIN

--
----Provide stimulus in this section. (not shown here)
--

wait;
end process; -- stimulus

END simulate;

---- The configuration, cfg_testbench, of the testbench,
---- reminds the simulator to refer to the configuration
---- statement in the parent design. Note that "work" was
---- was the default library into which the testbench
---- and the parent design were analyzed.

CORE Generator Guide 5-31

CORE Generator Guide
CONFIGURATION cfg_testbench OF testbench IS
FOR simulate

for all : myadder8_top
use configuration work.cfg_myadder8_top;
end for;

END for;
END cfg_testbench;

6. Performing Behavioral Simulation

Before Model Technology’s simulation tools can be used to simu-
late the design, the parent design and the testbench need to be
analyzed. These design files are analyzed with the vcom
command, into a local, default, work library, created using the
vlib command.

a) Analyze the parent design and testbench file. Select the MTI
ModelSim. and go to the project_directory and type the
following:

vlib work

vcom myadder8_top.vhd

vcom testbench.vhd

b) Invoke the simulator.

The simulator may now be invoked by typing in the
following command:

vsim cfg_testbench

The cfg_testbench needs to correspond to the name of the
VHDL configuration declared in the testbench. This loads the
testbench, the parent design, and the simulation model of the
myadder8 core, stored in the location referenced by xilinx-
corelib.
5-32 Xilinx Development System

Understanding the HDL Design Flow
7. Synthesizing the Design

You need to synthesize the parent design containing the core or
cores. Direct the synthesizer to treat each core as a black-box. The
logic for each core is specified only in its EDIF implementation
netlist component_name.EDN, not in any VHDL file. See the
following table for synthesis logic descriptions.

Table 5-4 Synthesis Logic Descriptions

Vendor Tool Special Instructions

Exemplar Leonardo
(v1998.2)

Do not read in a separate .V or EDIF
file for the CORE Generator module.
FPGA Express automatically treats
the module as a black box.

Synopsys FPGA Compiler Apply the dont_touch attribute to
the module via the Synopsys compile
script.
Syntax:
set_dont_touch<cell_instanc
e_name>

Synopsys FPGA Express Do not read in a separate .VHD or
EDIF file for the CORE Generator
module. FPGA Express automati-
cally treats the module as a black
box.

Synplicity Synplify Attach a black_box attribute to
component declaration for the CORE
Generator module. This attribute is
optional but prevents Synplicity from
issuing warnings about black box
modules.
CORE Generator Guide 5-33

CORE Generator Guide
Code Example 7 VHDL Black Box

-- VHDL black box attribute example
attribute black_box : boolean;
component myadder8

port (
a: IN std_logic_VECTOR(7 downto 0);
b: IN std_logic_VECTOR(7 downto 0);
c: IN std_logic;
ce: IN std_logic;
ci: IN std_logic;
clr: IN std_logic;
s: OUT std_logic_VECTOR(8 downto 0));

end component;
attribute black_box of myadder8 :
 component is true;

8. Writing out the Implementation Netlist

After the parent design has been synthesized, write out its imple-
mentation netlist using the synthesis tool. This formerly created
pin mismatch problems with the upper level EDIF written out by
some synthesis tools. Starting with the 1.5 release of the Xilinx
Implementation tools, EDIF2NGD automatically resolves connec-
tions between bus nets written out in bus format (for example,
address<7:0>) in a parent EDIF netlist, and bus nets written
out as individual bits in a lower level EDIF.

Table 5-5 Implementation Netlist Formats

Vendor Description

Exemplar Leonardo
v1998.2 or later

Writes out either XNF or EDIF netlists
for both XC4000 and Virtex designs.
EDIF format is preferred. No other
special instructions.

Synopsys FPGA Compiler No special instructions. FPGA
Compiler writes out an XNF file for 4K
designs, and EDIF for Virtex designs
5-34 Xilinx Development System

Understanding the HDL Design Flow
9. Implementing the VHDL Design

The implementation netlists for each of the cores in the parent design
are merged in with the main design when the NGDBuild program
(the Translate stage of the Xilinx Design Manager) is run on the top
level parent design during design implementation. To merge the
netlists successfully, verify that all of the CORE Generator .EDN EDIF
netlist(s) for the generated module or modules are located in the
same directory as the top level EDIF netlist for the synthesized
design. Alternatively, you can run NGDBuild with the –sd option,
specifying the location of the directory containing the CORE Gener-
ator EDN files.I

Synopsys FPGA Express No special instructions. FPGA Express
writes out an XNF file for 4K designs,
and EDIF for Virtex designs. EDIF
format is preferred. No other special
instructions.

Synplicity Synplify
v5.1.2 and later

Synplify writes out either XNF or EDIF
netlists for both XC4000 designs and
Virtex designs. It writes out only EDIF
for Virtex designs.

Table 5-5 Implementation Netlist Formats

Vendor Description
CORE Generator Guide 5-35

CORE Generator Guide
5-36 Xilinx Development System

Appendix A

Troubleshooting the Core Generator System

This section contains solutions and resources for using the CORE
Generator System.

Finding Solutions
Check the coregen.log file and module_name.xco file for diagnostic
information.

• (Windows) The coregen.log file is located in $XILINX/
coregen/tmp.

• (UNIX Workstations) This file is written to the current project
directory.

If your coregen.prj project information file becomes corrupted,
delete it and recreate the project in that directory by selecting the New
Project option in the CORE Generator System. A symptom of a
corrupted coregen.prj occurs when there are missing modules during
startup causing an error message on your UNIX workstation.

LD_LIBRARY errors. Verify that LD_LIBRARY_PATH
includes the path to %XILINX/bin/platform.

To debug startup problems, edit coregen.bat and add –v (verbose
mode) and –d (debug mode) options to the java.exe command line in
coregen.bat. The –v option causes the CORE Generator System to
display a detailed report of all data files being loaded and miscella-
neous operations. The –d option causes the CORE Generator System
to report specific debug-related information.
CORE Generator Guide — 3.1i A-1

CORE Generator Guide
Additional Resources
For general information on Cores, use the following website:

http://www.xilinx.com/ipcenter

Use our web-based search engine to search the Xilinx Answers Data-
base. Please use the following Website:

http://www.support.xilinx.com/support/
searchtd.htm

This database contains information on all known problems with
Xilinx hardware and software. Xilinx Applications Engineers add to
this knowledge base daily.

To ensure that you have the latest Xilinx Software Service Packs, use
the following path:

http://www.support.xilinx.com/support/techsup/
sw_updates

For the latest news on the CORE Generator System, including
announcements about new IP modules and technical tips, look at the
following Website:

http://www.xilinx.com/support/techsup/journals/
coregen

AllianceCORE Modules
Contact the appropriate third party AllianceCORE provider as indi-
cated on the CORE Generator datasheet for that module.

Obtaining Customer Support
You can obtain customer support by calling Xilinx support at

1-800-255-7778 or 1-408-559-7778

or by opening a Web case at

http://www.xilinx.com/techsup/tappinfo.htm
A-2 Xilinx Development System

	CORE Generator Guide
	About This Manual
	Manual Contents
	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction
	CORE Generator System
	CORE Generator Components
	New and Updated Cores
	System Requirements and Installation Information
	Additional Resources

	Getting Started
	Starting the CORE Generator System
	CORE Generator System Installation Requirements
	Setting Preferences

	Setting Up Projects
	Creating a New Project

	Opening an Existing Project
	Selecting Design Entry Options
	Schematic Design Environment
	HDL Synthesis Design Environment

	Selecting Target XILINX FPGA Family Options
	Changing Project Design Entry Options
	Installing Setup Files
	coregen.prj
	corelib.xml
	.coregen.prf

	Using the Web Browser and the PDF Viewer

	Using the CORE Generator
	Using the CORE Browser
	Customizing a Core
	Displaying the CoreViewer
	Naming CORE Generator Modules
	Using the Generate, Cancel, and Data Sheet Buttons
	Illegal or Invalid Values
	.COE Files

	Specifying Command Files
	coregen.ini/coregen_user_name.ini
	User-Generated Command Files
	XCO Files
	coregen.log

	Generating Cores in Batch Mode
	Defining CORE Generator Command Line Options
	–b command_file_name
	–i coregen_ini_file_name
	–p project_path
	–q polling_dir_path
	–h
	Listing the CORE Generator Commands
	Listing the CORE Generator Global Properties
	Listing Project Properties

	Updating Cores in the CORE Generator
	Downloading New Cores
	Updating a Core Version in an Existing Project
	Understanding the Update Project Cores Menu
	Removing Cores

	Using the get_models Command

	Integrating CORE Generator into Applications
	Polling Mode
	Output Polling Files
	Input Polling Files
	ASY and XSF Files

	Listing Inputs and Outputs Files

	Understanding CORE Generator Design Flows
	Understanding CORE Generator Design Flow Basics
	Describing the CORE Generator Schematic Design Flow
	Starting a Schematic Design Flow with Viewlogic
	Creating a Viewlogic Project
	Creating Output Files
	Foundation Design Flow
	Foundation ISE Design Flow
	Mentor Design Flow
	Cadence Design Flow

	Describing the HDL Behavioral Model Delivery System Features
	XilinxCoreLib Simulation Library
	coredb
	Instantiation Template Files
	Support for Unused Optional Pins
	verilog_analyze_order File
	vhdl_analyze_order File

	Using the CORE Generator Verilog Design Flow Procedure
	Using Instantiation Templates
	Using a .VEO Instantiation Template File
	Verilog Instantiation Template for an 8-Bit Adder

	Using the CORE Generator VHDL Design Flow Procedure
	Using a .VHO Instantiation Template File
	VHDL Instantiation Template for an 8-Bit Adder

	Understanding the HDL Design Flow
	Using the HDL Behavioral Model Delivery System
	Understanding the Verilog HDL Design Flow
	Describing the Verilog Design Flow Procedure
	Implementation Using Cadence Verilog-XL and MTI Model Sim/VLOG

	Understanding the VHDL HDL Design Flow
	Describing the VHDL Design Flow Procedure

	Troubleshooting the Core Generator System
	Finding Solutions
	Additional Resources
	AllianceCORE Modules

	Obtaining Customer Support

