
Hardware Debugger Guide — Alliance 3.1i Printed in U.S.A.

Hardware
Debugger Guide

Introduction

Getting Started

Design Preparation

Connecting Your Cable

Programming a Device or a
Daisy Chain

Debugging a Device

Customizing the Interface

Glossary of Terms

Console Commands

Hardware Debugger Guide

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A. Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CORE Generator, CoreGenerator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, MultiLINX,
PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O, Select-RAM, Select-RAM+,
Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-
Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx
Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;

R

Hardware Debugger Guide

5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending. Xilinx,
Inc. does not represent that devices shown or products described herein are free from patent infringement or from
any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or
correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1999 Xilinx, Inc. All Rights Reserved.

Hardware Debugger Guide — Alliance 3.1i v

About This Manual

This manual describes Xilinx’s Hardware Debugger program, a tool
used for configuring and debugging FPGA devices.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. These topics are covered in the Quick Start Guide.

Other publications you can consult for related information are The
Programmable Logic Data Book, Development System Reference Guide,
and Hardware User Guide.

Additional Resources
For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
page. You can also directly access some of these resources using the
provided URLs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Hardware Debugger Guide

vi Xilinx Development System

Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction,” defines the Hardware Debugger and
its operation.

• Chapter 2, “Getting Started,” briefly describes the interface and
summarizes the design and hardware requirements for running
the Hardware Debugger.

• Chapter 3, “Design Preparation,” is a step-by-step explanation of
how to prepare your design and create a configuration data file
for use with the Hardware Debugger.

• Chapter 4, “Connecting Your Cable,” describes the different
cables available for use with the Hardware Debugger and how to
connect them to your computer and target device. It also
describes the different software settings used to implement the
programming and debugging functions and explains how to test
the MultiLINX™ Cable and the XChecker™ Cable hardware.

• Chapter 5, “Programming a Device or a Daisy Chain,” explains
how to download a design to a single device and verify that the
design was sent in its entirety. It also explains how to configure
multiple devices.

• Chapter 6, “Debugging a Device,” explains how to display the
states of specific signals in a device that was programmed with a
design.

Data Book Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including read-
back, boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL

Hardware Debugger Guide vii

• Chapter 7, “Customizing the Interface,” explains how to use
macros, how to control the waveform display parameters, and
how to use the additional features to optimize your use of the
Hardware Debugger.

• Appendix A, “Glossary of Terms,” defines common terms used
in the context of the Hardware Debugger.

• Appendix B, “Console Commands,” interprets the syntax of the
commands that are displayed in the Console window each time
you execute a menu command. You can execute a command
directly by typing the appropriate syntax in the Console window
command bar. Console commands also constitute the building
blocks of macros.

Hardware Debugger Guide xi

Conventions

Typographical
This manual uses the following conventions. An example illustrates
each convention.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement.

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

Hardware Debugger Guide

xii Xilinx Development System

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

Square brackets also enclose footnotes in tables that are printed
out as hardcopy in DynaText.

• Braces “{ }” enclose a list of items from which you choose one or
more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

symbol editor_name [bus|pins]

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
Xilinx has created several conventions for use within the DynaText
online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click on the red-underlined text to
open the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click on the blue-underlined text to
open the specified cross-reference.

• There are several types of icons.

Iconized figures are identified by the figure icon.

Hardware Debugger Guide xiii

Iconized tables are identified by the table icon.

The Copyright icon displays in the upper left corner on the first
page of every Xilinx online document.

The DynaText footnote icon displays next to the footnoted text.

Double-click on these icons to display figures, tables, copyright
information, or footnotes in a separate window.

• Inline figures display within the text of a document. You can
display these figures in a separate window by clicking on the
figure.

Hardware Debugger Guide — Alliance 3.1i 1-1

Chapter 1

Introduction

This chapter provides an overview of the Hardware Debugger, and
includes the following sections.

• “Overview”

• “Architectures”

• “Hardware Debugger Features”

• “Design and Hardware Considerations”

Overview
The Hardware Debugger is a graphical interface that allows you to
download a design to a device, verify the downloaded configuration,
and display the internal states of the programmed device. Use the
program to perform the following tasks.

• Download a BIT file to an FPGA, or a PROM file to a daisy chain
of FPGAs.

• Verify the configuration data of a single device using the Multi-
LINX™ Cable or the XChecker Cable.

• Debug the internal logic states of a configured device using an
XChecker Cable.

The graphical based Hardware Debugger replaces the command line
based XChecker program.

Refer to the “Programming a Device or a Daisy Chain” chapter for
information on how to open, download, and verify your design.
Refer to the “Debugging a Device” chapter for information on how to
read back and debug your configured device.

Hardware Debugger Guide

1-2 Xilinx Development System

Note: Before invoking the Hardware Debugger, connect the configu-
ration cable to your computer and target board; you should also be
aware of the design and hardware issues described in the “Design
and Hardware Considerations” section in this chapter.

Architectures
You can use the Hardware Debugger with the following Xilinx
devices:

• XC3000A/L™

• XC3100A/L™

• XC4000E/L™

• XC4000EX™/XL™/XV™/XLA™

• XC5200™

• Spartan™/XL™

• Spartan2™

• Virtex™

• VirtexE ™

The Spartan, Virtex, XC3000, XC4000, and XC5200 families compose
the FPGA families. The Hardware Debugger does not support
CPLDs.

Hardware Debugger Features
You can use the Hardware Debugger to perform the following func-
tions.

• Configure one or more devices

• Verify configuration data for single devices

• Debug a single device in synchronous or asynchronous mode

• Generate multiple graphical and textual waveforms for probe
points

• Group signals for waveforms for later use

• Reuse debug settings from one session to another

Introduction

Hardware Debugger Guide 1-3

• Create macros (command scripts) by copying commands from
the Console window into a macro window and saving them as
macro files

• Examine real-time digital values of the XChecker pins

• Use the XChecker Cable to probe and display the values of
internal nodes of an FPGA device as listed in the table.

Design and Hardware Considerations
Before using the Hardware Debugger, review the requirements for
the design entry phase in the following table. These requirements are
described in detail in the “Design Preparation” chapter and the
“Connecting Your Cable” chapter.

Table 1-1 Probe Points in FPGA Devices

XC3000 XC4000 XC5200

CLB outputs CLB outputs —

IOB outputs IOB outputs —

— RAM/ROM bits internal ROM bits

Flip-flop outputs Flip-flop outputs Flip-flop outputs

Table 1-2 Requirements for Hardware Debugger Operations

Downloading Verification Debugging

File Types BIT, RBT, PROM BIT, LL

Design Symbols
for Virtex/
Spartan2 devices

No symbols required MSK, BIT, LL

Design Symbols
for XC4000/
XC5200 devices

No symbols required READBACK
STARTUPa

Hardware Debugger Guide

1-4 Xilinx Development System

Design Entry and Bitstream Generation
You need access to certain signals when you download and debug
your designs.

Configuration
options for
XC3000 devices

Enable pull-up resistor on
DONE/PROG pin

- Enable pull-up resistor on DONE/
PROG pin
- Set Readback Mode to Once or On
Command or use the -l option in BitGen

Configuration
options for
XC4000/XC5200
devices

Enable pull-up on DONE
pin

- Set readback clock to CClk
- Enable the Enable Bitstream Verifica-
tion and In-Circuit Hardware Debug-
ging option or use the -l option in
BitGen

Cable Type
MultiLINX, XChecker,
serial, or parallel cables

MultiLINX™, XChecker Cable

Pins Used

VCC
GND
CCLK
D/P (DONE)
DIN
PROG (XC4000/XC5200)
INIT
RST

VCC
GND
CCLK
RT
RD

VCC
GND
CCLK
RT
RD
TRIGa

CLKI b

CLKOb

Configuration
Mode

Slave (SelectMAP mode
is supported in the Hard-
ware Debugger with the
MultiLINX Cable.)

N/A N/A

a. Optional. Use the STARTUP symbol to connect the design’s global reset to the GSR
(XC4000) or GR (XC5200) pin on the XChecker Reset. An inverter must be inserted in
front of the GSR or GR pin to interface the active-Low XChecker reset with the active-
High GSR/ GR reset.
b. Optional

Table 1-2 Requirements for Hardware Debugger Operations

Downloading Verification Debugging

Introduction

Hardware Debugger Guide 1-5

For downloading, use any of the three configuration data file types
(BIT, RBT, or PROM) and any download cable. You do not need any
special symbols or configuration options to generate the configura-
tion data.

Note: To create a PROM file using multiple bitstreams, use the PROM
File Formatter. For more information, see the PROM File Formatter
Guide.

For single device verification or debugging, use a BIT file, enable
readback to generate an LL file in your design directory, and for
XC4000/XC5200 devices. For Virtex, Spartan2, generate a MSK file
for verification. Include the READBACK symbol in your design and
optionally, the STARTUP symbol. In addition, you must use an
XChecker Cable.

Hardware Considerations
This section describes some hardware issues you should be aware of
before using the Hardware Debugger.

Configuration Mode

When using the MultiLINX Cable the default mode is already set to
slave serial. For Virtex and Spartan II the configuration mode dialog
box will automatically pop up and ask the user for the proper config-
uration mode. This configuration mode dialog is only enabled for the
MultiLINX Cable.

When using other download cables to configure a device or daisy
chain of devices, you must set the device configuration mode to slave
serial. You must set M0, M1, and M2 to VCC, and if you intend to use
them as user I/Os, use 4.7 kilohm pull-ups. Refer to the Development
System Guide or The Programmable Logic Data Book for information on
setting the mode pins.

Target Board Selection

Your target board can be either a Xilinx FPGA demonstration board
or your own board. You can use the demonstration boards to test
most designs.

If you are using an FPGA demonstration board, set up the board as
explained in the Hardware Debugger Watch Tutorial. The Watch Tuto-

Hardware Debugger Guide

1-6 Xilinx Development System

rials including the Hardware Debugger are located on the
support.xilinx.com web page.

(Use the following URL: http://support.xilinx.com/support/
techsup/tutorials/index.htm).

You must set the board switches and connect the appropriate cable. If
you are using your own board, you must configure the board and
connect the appropriate cable. Refer to the “Connecting Your Cable”
chapter for information.

Single or Multiple Device Configuration

You can configure one device or a daisy chain. See the “XChecker
Operation Mode Connections” table in the “Connecting Your Cable”
chapter for information on pin connections.

The MultiLINX Cable must be configured only for download and
verify. Refer to the “MultiLINX™ Cable” chapter of the Hardware User
Guide for information on the MultiLINX pin connections.

To configure a single device, connect the pins as specified for that
particular device type. For a daisy chain of devices, connect the pins
of the lead device for downloading. Connect the pins of the slave
devices to the lead device as described in the The Programmable Logic
Data Book.

Cable Connections
You can perform three main operations using the Hardware
Debugger. Each operation requires a specific setup and, in the case of
verification and debugging, a particular download cable. Refer to the
“XChecker Operation Mode Connections” table in the “Connecting
Your Cable” chapter for cable connections information for each oper-
ation.

Downloading

Connect the cable header to the pin assembly on your target board
that is connected to the FPGA configuration pins. If you have an
XChecker Cable, connect a cable header connector to the outermost
slot of the XChecker Cable assembly.

Introduction

Hardware Debugger Guide 1-7

Verification

For this operation, you must use an XChecker Cable. Connect both
header connectors to the pin assembly on your target board.

Debugging

For this operation, you must use an XChecker Cable. Connect both
header connectors to the pin assembly on your target board. If you
are debugging in synchronous mode, you must connect the CLKI and
CLKO pins; you can disconnect them for asynchronous mode debug-
ging.

Note: The RST pin is only required for XC3000 downloading and
debugging. You do not need to connect it for XC4000 or XC5200
downloading. Optionally, you can use it as a system design reset for
XC4000 or XC5200 debugging.

Hardware Debugger Cable Support
The Hardware Debugger supports the following cables.

Hardware Debugger Platform Support
The Hardware Debugger supports the following platforms.

Table 1-3 Cable Support

Cable Name Download
Readback &

Verify
Debug

MultiLINXa X X

XCheckerb X X X

Parallel X

Serial X

a. MultiLINX supports Slave Serial and SelectMAP modes.
b. XChecker supports only Slave Serial Mode. XChecker can
support devices up to 256K bits.

Hardware Debugger Guide

1-8 Xilinx Development System

Table 1-4 Platform Support

Cable Platforms Ports

MultiLINX Sol/HP/WinNT/
Win95/Win98

RS-232,USBa

XChecker Sol/HP/WinNT/
Win95/Win98

RS-232

Parallel WinNT/Win95/Win98 Parallel

a. Only on Win 98/95C which has USB support.

Hardware Debugger Guide — Alliance 3.1i 2-1

Chapter 2

Getting Started

This chapter explains how to start the Hardware Debugger. It
describes the main screen and the three major tasks you can
complete: download a design, verify configuration data, and debug
the states of a configured device. In addition, it outlines the design
and hardware requirements for using the Hardware Debugger. This
chapter contains the following sections.

• “Starting the Hardware Debugger”

• “Exiting the Hardware Debugger”

• “Using the Interface”

• “Using Help”

Starting the Hardware Debugger
Note: Before using the Hardware Debugger, familiarize yourself with
the design and hardware issues described in the “Design and Hard-
ware Considerations” section of the “Introduction” chapter.

The Hardware Debugger runs on PCs and workstations. The
following table summarizes the various ways of starting this tool.

Starting the Hardware Debugger Workstation PC

From the Design Manager Yes Yes

From the Command Line Yes (UNIX) Yes (DOS)

As a Standalone Tool No No

Hardware Debugger Guide

2-2 Xilinx Development System

From the Design Manager
To start the Hardware Debugger from the Design Manager, follow
these steps.

1. To run the Hardware Debugger on a specific design, select the
desired revision in the Design Manager project view.

2. In the Design Manager toolbox, click the Hardware Debugger
button, shown in the following figure.

Standalone Tool
If you installed the Hardware Debugger as a standalone tool on a PC,
click the Hardware Debugger icon (shown in the previous figure) on
the Windows desktop or select hwdebugr.exe from the Windows 95®,
Windows 98®, or Windows NT® Start button.

From the Command Line
To start the Hardware Debugger from the UNIX® or DOS™ command
prompt, enter the following command.

hwdebugr

From the Foundation Project Manager
To launch the Hardware Debugger from the Foundation Project
Manager, follow these steps.

1. Select the Device Programming icon in the Programming box on
the Project Manger’s Flow tab.

Getting Started

Hardware Debugger Guide 2-3

2. From the Select Program box, choose the Hardware Debugger.

For more information about accessing and using the Hardware
Debugger from the Foundation Project Manager, see the “Verification
and Programming” chapter of the Foundation Series Guide.

Exiting the Hardware Debugger
To exit the Hardware Debugger, select File → Exit . If you have an
open waveform window, you are asked whether you want to save the
data before quitting the application.

Using the Interface
This section describes the Hardware Debugger interface.

Main Window
The main window is shown in the following figure. By default, this
window displays a title bar, menu bar, toolbar, and status bar. The
Debug Control Panel dialog box appears when your design is gener-
ated for verification. To hide the toolbar, status bar, or control panel,
select the appropriate commands from the View menu.

Hardware Debugger Guide

2-4 Xilinx Development System

Figure 2-1 Hardware Debugger Window

Title Bar

The title bar displays the program name followed by the name of the
currently loaded design.

Menu Bar

The menu bar, located at the top of the window, includes the File,
Edit, View, Download, Debug, Cable, Window, and Help menus. You
can also select menu commands by typing the letter underlined in the
menu name while holding down the Alt key.

Getting Started

Hardware Debugger Guide 2-5

Toolbar

The toolbar, located below the menu bar, consists of buttons that you
can use to execute commands. Place the mouse pointer over each
button to display the command associated with the button. The
command name appears as a “tool tip” and the status bar provides
more descriptive information.

Status Bar

The status bar, located at the bottom of the Hardware Debugger
window, provides command and processing information. When you
select a menu command, a brief description of the command’s func-
tion appears in the status bar. As the software processes, status
messages are dynamically updated and displayed.

Control Panel

The Debug Control Panel is a dialog box that appears when your
design is generated for verification or readback. Use the commands
in the Control Panel to control aspects of the debugging session, such
as readback snapshots, signal and signal groups displayed, design
clocking, and design readback.

Commands and Dialog Boxes
You communicate with the Hardware Debugger by selecting
commands from the menus, the toolbar, or the Debug Control Panel.
Alternatively, you can run commands from the Console window.
Most commands display dialog boxes in which you specify informa-
tion and options.

Common Fields

The fields shown in the following table are common to most dialog
boxes.

Hardware Debugger Guide

2-6 Xilinx Development System

File Open/File Save Dialog Boxes

The standard file open and file save dialog boxes allow you to load a
project file, a saved waveform, or a saved macro. They also allow you
to save a waveform or a macro. This type of dialog box includes a file
browser.

Filter Dialog Boxes

Use Filter dialog boxes to specify criteria to select signals and groups
for debugging, as described in the following steps.

1. Specify the pattern of the signal names to include in your display
list by typing the characters in the field located in the Filter For
Signals group. The characters can be alphanumeric or blank char-
acters.

2. Include one or more wildcards (*) to perform a global search on
the specified string.

Precede the character string with a wildcard to retrieve all signal
names that end with the string of specified characters.

Append the wildcard to the character string to retrieve all signal
names that start with the specified character string.

3. Click Apply after specifying the filter criteria.

The available signals list displays only the signals that match the
selection criteria.

Table 2-1 Common Dialog Box Fields

Dialog Box Field Function

OK Closes the dialog box and implements the
intended action according to the settings in the
dialog box

Cancel Closes the dialog box without effecting any
action

Help Displays information on that particular dialog
box

Getting Started

Hardware Debugger Guide 2-7

4. To clear the filter, click Clear or backspace over the information
in the filter text box.

Selection Dialog Boxes

Use Selection dialog boxes to specify specific values and selections.

Selecting Commands and Dialog Box Options
To choose a menu item, a toolbar button, or a dialog box option, you
can use the mouse or the keyboard.

Using the Mouse

1. Move the mouse cursor over the object to select, and click the left
mouse button to select the object.

If you clicked on a toolbar button, a list box or a dialog box
appears. If you clicked on a menu, menu options are displayed.

2. To exit a dialog box without making a selection, click Cancel or
double-click the close box in the upper left corner of the dialog
box.

3. To obtain help, click Help in the dialog box.

Using the Keyboard

You can use the keyboard to select objects on your screen, such as a
dialog box button or a menu option.

1. To select a dialog box option, use the Tab key to position the
cursor on that object and highlight it. Press the Enter key to
process the selection.

To exit a dialog box without making a selection, press the Esc
key.

2. To choose a menu and display its commands, press the Alt key
and the appropriate underlined letter key corresponding to the
menu you want. For example, press Alt F to select the File
menu.

3. Use the arrow keys to scroll down the list of commands in a
menu or the options in a list box. Press Enter when the selection
you want to use is highlighted or, in the case of a menu item,

Hardware Debugger Guide

2-8 Xilinx Development System

press the underlined letter corresponding to the menu command.
For example, press the N key to select the New command of the
File menu.

Using Help
The Hardware Debugger includes a context-sensitive help and a Help
menu. You can obtain help on commands and procedures through
the Help menus or by selecting the Help toolbar button. In addition,
the dialog boxes associated with many commands have a Help
button that you can click to obtain context-sensitive help.

Help Menu
Use the following Help menu commands to get help.

• The Help Topics command opens the online help and lists the
various topics available for the Hardware Debugger. From the
Help Topics page, you can jump to command information or
step-by-step instructions for using the Hardware Debugger.
When you want to return to the help topic list, click the Help
Topics button.

• The Online Documentation command provides access to the
online documentation.

• The About Hardware Debugger command displays a popup
window that shows the version number of the Hardware
Debugger software and a copyright notice.

Toolbar Help Button
You can access context-sensitive help as follows.

1. Click the Help button in the toolbar.

The cursor changes to a question mark.

Getting Started

Hardware Debugger Guide 2-9

2. Click once with the left mouse button on the menu item or
toolbar button for which you want help.

The Hardware Debugger displays help for the selected command
or option.

Note: You can also press Shift F1 to obtain context-sensitive help.

F1 Key
Pressing the F1 key on a dialog box displays help on that dialog box.
Pressing the F1 key is the same as selecting Help → Help Topics, if no
dialog boxes are displayed.

Help Button in Dialog Boxes
Many of the dialog boxes in the Hardware Debugger have a Help
button that you can click to get help on the dialog box options. You
can also press Alt H or F1 on your keyboard with the cursor posi-
tioned over the dialog box to access the online help.

Hardware Debugger Guide — Alliance 3.1i 3-1

Chapter 3

Design Preparation

This chapter describes how to prepare a design for use with the
Hardware Debugger and how to generate the proper configuration
files. The first section covers the special components needed to
perform some of the Hardware Debugger operations. The second
section discusses the various file types used by the Hardware
Debugger and the options that must be specified to create these files
correctly. This chapter includes the following sections.

• “Creating a Design”

• “Generating Configuration Data Files”

Creating a Design
To create a design for use with the Hardware Debugger, follow the
design generation instructions for the type of operation you want to
complete for your specific device.

This section provides instructions on starting the Hardware
Debugger on the workstation or the PC.

Preparing a Design for Downloading
When using the Hardware Debugger to download a design only, you
do not need any special symbols in the design. You can use the
default values for all options.

Preparing a Design for Verification and Debugging
Readback is the process of reading a bitstream from an FPGA. The
bitstream contains configuration information and information about

Hardware Debugger Guide

3-2 Xilinx Development System

the state of the design. You can use the readback bitstream to verify
the configuration and probe the internal states of your design.

XC3000

An XC3000 design does not need to be modified at the schematic or
HDL level in order to perform readback. For XC3000 devices, a read-
back is initiated when a Low to High transition is applied to the M0/
RTRIG pin. After the readback begins, the serial readback data is
presented on the M1(RDATA) pin.

XC4000/XC5200

To provide more flexibility, the XC4000/XC5200 readback signals
(RTRIG and RDATA) can be assigned to any of the user program-
mable device pins as well as the M0 and M1 pins. Because the read-
back signals are user programmable, you must use the READBACK
component in the design when using the Hardware Debugger to
verify or debug an XC4000 or an XC5200 device.

To prepare the design for verifying or debugging, use the following
steps.

1. Include the READBACK symbol in the design schematic.

2. Connect IPAD, OPAD, IBUF, and OBUF primitives to the TRIG
and DATA pins of the READBACK macro as shown in the
“READBACK Symbol” figure. You can then lock the IPAD and
OPAD components to any of the user-programmable I/O loca-
tions.

Note: If you want TRIG and DATA to correspond to the mode pins
M0 and M1, replace the IPAD and OPAD primitives with the special
primitives MD0 and MD1.

Design Preparation

Hardware Debugger Guide 3-3

Figure 3-1 READBACK Symbol

3. If you plan to have the Hardware Debugger reset the flip-flops in
the design, include the STARTUP symbol and connect the GSR
(XC4000) or GR (XC5200) input pin to an unused input of the
target device. You will later connect the input to the RESET pin
on the XChecker cable.

Note: Because the XC4000/XC5200 reset is active-High and the
Hardware Debugger assumes active-Low, the signal sent from the
Hardware Debugger through the XChecker Cable or MultiLINX
Cable must be inverted as shown in the following two figures.

Figure 3-2 XC4000 STARTUP Symbol

X6112

Leave unconnected
default is CCLK

RIP
READBACK

DATACLK

TRIG

OBUF

I O
OPAD

OREAD_DATA

IBUF

I OREAD_TRIGGERI
IPAD

(MD0)

(MD1)

X7924

IBUF INV

RESET

GTS

CLK

Q2
Q3
Q1 Q4
DONE IN

RESET_NETI O I O
P56

IPAD

Use an inverter to change
the assertion level of the
GR net.

STARTUP

GSR

Hardware Debugger Guide

3-4 Xilinx Development System

Figure 3-3 XC5200 STARTUP Symbol

The inverter preceding the STARTUP symbol implements the active-
Low reset asserted by the Hardware Debugger.

Spartan
The Spartan device uses an internal configuration clock, CCLK, when
configuring in a master mode. The configuration rate option allows
you to select the rate for this clock. The default is Slow. Refer to the
“Spartan Configuration Options” section of the Design Manager/Flow
Engine Guide more information.

Generating Configuration Data Files
After the design is placed and routed, you must generate the configu-
ration data files. The Hardware Debugger can download to a chain of
multiple devices, known as a daisy chain, as well as to an individual
device. The Hardware Debugger can only verify the configuration
data and probe the internal states of a single device at a time. It is
possible to verify and debug a device configured on a daisy chain
only if you connect the XChecker cable directly to it. This process of
probing a configured device is also known as read capture.

To generate a bitstream, open the implementation revision from the
Design Manager. If you do not have a project for your design, use the
Design Manager to create a project for that design. If you have a
project for your design but the project has not been updated, go
ahead and implement the designs using the Design → New Version
command as explained in the “Implementing a Design from the
Design Manager” section of the Design Manager/Flow Engine Guide.

X7925

IBUF INV

RESET

GTS

CLK

Q2
Q3
Q1 Q4
DONE IN

RESET_NETI O I O
P56

IPAD

Use an inverter to change
the assertion level of the
GR net.

STARTUP

GR

Design Preparation

Hardware Debugger Guide 3-5

For detailed information on the various implementation and configu-
ration options, see the “Implementation Flow Options” chapter of the
Design Manager/Flow Engine Guide.

Creating Files for a Single XC3000 Device
To configure an XC3000 device, you need a bitstream. The Hardware
Debugger accepts a bitstream as a BIT file, an RBT file, or a PROM
file. To verify and/or debug a design, you must use a BIT file and
have a logic allocation file (design_name.ll) in your design directory.
The Design Manager generates these files by default.

Creating Downloadable Files (XC3000)

Follow these steps to prepare your XC3000 designs for downloading.

1. From the Design Manager, click the left mouse button on the
implementation revision, as shown in the following figure.

Hardware Debugger Guide

3-6 Xilinx Development System

Figure 3-4 XC3000 Implementation Revision in the Design
Manager

2. Select Design → Options .

The Options dialog box appears, as shown in the following
figure.

Design Preparation

Hardware Debugger Guide 3-7

Figure 3-5 Design Manager Options Dialog Box

3. In the Program Options field, select Default from the Configu-
ration drop down list.

4. Click the Edit Options button corresponding to the configura-
tion template.

The Configuration Options dialog box appears, as shown in the
following figure.

Hardware Debugger Guide

3-8 Xilinx Development System

Figure 3-6 Design Manager Configuration Options Dialog Box

5. In the Configuration tab, select Pullup next to the Done/
Program pin in the Configuration Pin Pullups group box to
enable a 2 to 8 kilohm pull-up resistor on the D/P pin.

6. Click OK to return to the Options dialog box or if you want to
enable the readback options, continue with the “Creating Files for
Verification and Debugging (XC3000)” section.

7. In the Options dialog box, click OK.

Design Preparation

Hardware Debugger Guide 3-9

8. In the Design Manager, now implement the design, Design →
Implement .

Creating Files for Verification and Debugging
(XC3000)

Follow these steps to implement XC3000 designs for verification and
debugging.

1. Follow steps 1 through 8 in the preceding “Creating Download-
able Files (XC3000)” section to enable a pull-up resistor for the
D/P pin for device configuration.

2. Select the Startup/Readback tab of the Configuration Options
dialog box. The Startup/Readback tab appears, as shown in the
following figure.

Hardware Debugger Guide

3-10 Xilinx Development System

Figure 3-7 Configuration Options Startup/Readback Tab

3. Enable the readback capability by choosing On Command for the
Readback option.

The software generates a logic allocation file (design_name.ll). The
Hardware Debugger uses the design_name.ll file to identify bits in
the readback bitstream that represent the values of design I/Os,
latches, and flip-flops.

4. Click OK in the Configuration Options dialog box to return to the
Options dialog box.

Design Preparation

Hardware Debugger Guide 3-11

5. In the Options dialog box, click OK.

6. In the Design Manager, now implement the design, Design →
Implement .

Creating Files for a Single XC4000, XC5200 or
Spartan Device

To configure an XC4000, XC5200 or Spartan device, you need a
bitstream, which can be either a BIT file, an RBT file, or a PROM file.
To verify and/or debug a design, you must use a BIT file and have a
logic allocation file (design_name.ll) in your design directory. Use the
Design Manager to generate the necessary configuration files.

Creating Downloadable Files (XC4000/XC5200/
Spartan)

Follow these steps to prepare your XC4000, XC5200 and Spartan
designs for downloading.

1. From the Design Manager, click the left mouse button on the
implementation revision, as shown in the following figure.

Hardware Debugger Guide

3-12 Xilinx Development System

Figure 3-8 XC4000 Implementation Revision in the Design
Manager

2. Select Design → Options .

The Options dialog box appears, as shown in the “Design
Manager Options Dialog Box” figure.

3. In the Program Options Field, select Default from the configu-
ration drop down list.

4. Click the Edit Options button corresponding to the configura-
tion template.

5. The Configuration Options dialog box appears, as shown in the
following figure.

Design Preparation

Hardware Debugger Guide 3-13

Figure 3-9 Design Manager Configuration Options Dialog Box

6. Select PullUp next to the DONE pin in the Configuration Pins
group box to enable a pull-up resistor for the DONE pin.

7. This step is optional. Select Perform CRC During Configura-
tion (default) to perform a cyclic redundancy check of your
bitstream during configuration.

CRC bits are checksum bits that the FPGA uses to verify that the
bitstream transmitted correctly.

8. This step is optional. Select Produce ASCII Configuration
File to create a rawbits text (RBT) file, which is an ASCII repre-
sentation of your configuration bitstream.

Hardware Debugger Guide

3-14 Xilinx Development System

You can use the RBT file for download or to visually inspect your
bitstream.

9. Click OK to return to the Options dialog box or if you want to
enable the readback options, continue with the “Creating Files for
Verification and Debugging (XC4000/XC5200)” section.

10. In the Options dialog box, click OK.

11. In the Design Manager, now implement the design, Design →
Implement .

Creating Files for Verification and Debugging
(XC4000/XC5200/Spartan)

Follow these steps to implement XC4000, XC5200 and Spartan
designs for verification and debugging.

1. Follow steps 1 through 11 in the preceding “Creating Download-
able Files (XC4000/XC5200/Spartan)” section to enable a pull-up
resistor for the D/P pin for device configuration.

2. In the Configuration Options dialog box, select the Readback tab.
The Readback tab of the Configuration Template dialog box
appears, as shown in the following figure.

Design Preparation

Hardware Debugger Guide 3-15

Figure 3-10 Configuration Options Readback Tab

3. Select CCLK as the readback clock.

4. Select Enable Bitstream Verification and In-Circuit
Hardware Debugging .

This option generates the logic allocation file (design_name.ll). The
Hardware Debugger uses the design_name.ll file to identify bits in
the readback bitstream that represent the values of design I/Os,
latches, and flip-flops.

Note: You cannot probe I/Os when working with an XC5200 device.

5. Click OK to return to the Options dialog box.

Hardware Debugger Guide

3-16 Xilinx Development System

6. In the Options dialog box, click OK.

7. In the Design Manager, now implement the design, Design →
Implement .

Creating Files for Verification (Virtex)
For more information about creating files for verification using Virtex
devices, read the Virtex Configuration and Readback Application
Note (http://www.xilinx.com/apps/xapp.htm#xapp138).

Creating Files for Multiple Devices (Daisy Chains)
To configure a daisy chain of devices, you need a PROM file.

1. Produce the configuration data (BIT files) for each device, refer-
ring to the appropriate single device section.

2. Concatenate the device BIT files using the PROM File Formatter.
For more information, refer to the PROM File Formatter Guide.
Ensure that the PROM file contains the bitstreams in the same
order as the devices on the target board.

Note: You can use a PROM file to download a daisy chain; however,
you cannot use it to verify or debug a daisy chain.

Hardware Debugger Guide — Alliance 3.1i 4-1

Chapter 4

Connecting Your Cable

This chapter describes the various download cables and the opera-
tions you can perform with each cable. It also explains how to
connect your cable to your computer and target board, and how to
set the target board’s configuration mode.

Additionally, this chapter explains which connections are needed to
download, verify, and debug. Information on diagnostics and trou-
bleshooting for the MultiLINX™ Cable and the XChecker™ Cable is
also included. This chapter contains the following sections.

• “Cable Support”

• “Cable Basics”

• “Cable Descriptions”

• “Cable Limitations”

• “Cable Baud Rates”

• “Connecting Cable to Host System”

• “Setting Up the Hardware”

• “Connecting Cable to Target System”

• “Setting the Cable Options”

• “Resetting the Cable”

• “MultiLINX Diagnostics”

• “XChecker Diagnostics”

• “Troubleshooting the MultiLINX Cable”

• “Troubleshooting the XChecker Cable”

Hardware Debugger Guide

4-2 Xilinx Development System

Cable Support
The Hardware Debugger supports the following cables.

Cable Basics
The Hardware Debugger communicates with your device via a cable.
The cable can be a MultiLINX, XChecker, Parallel, or Serial cable. You
can use any one of the four cables to download configuration data to
a device or daisy chain of devices, but you can use the MultiLINX
Cable to verify and the XChecker Cable to verify and debug.

The MultiLINX Cable supports all devices and has a fast USB
communication port. The MultiLINX Cable supports Slave Serial and
SelectMAP modes.

Perform the following steps when connecting your cable.

1. Determine the most suitable cable to use based on the tasks you
want to perform.

2. Connect the cable to your host system.

Table 4-1 Cable Support

Name Function Platform

MultiLINX Cable
(Model: DLC6)

Download, Read-
back & Verify

PCa

XChecker Cable
(Model: DLC4)

Download, Read-
back & Verifyb

PC,
Workstation

Parallel Cable III
(Model: DLC5)

Download
Only

PC

Serial Cable Download
Only

PC,
Workstation

a. The MultiLINX Cable is only supported by the Hardware
Debugger on PCs using Window 98/ NT with USB port support.
b. Limitations: You can us the XChecker with devices smaller then
256K bits. The XChecker is not recommended for use with larger
devices.

Connecting Your Cable

Hardware Debugger Guide 4-3

3. Configure the target board to accept the needed cable connec-
tions.

4. Set your FPGA to slave serial mode configuration using the mode
pins.

5. Connect the cable to your target system.

6. Power up the target board.

7. Start the Hardware Debugger.

8. Set the cable options from the Cable menu.

Cable Descriptions
This section describes the cables supported by the Hardware
Debugger. There are four different types of cables: MultiLINX,
XChecker, Parallel, and Serial.

For detailed cable information, refer to the “Cable Hardware”
chapter of the Hardware User Guide.

MultiLINX
You can use the MultiLINX Cable to download and verify. The Multi-
LINX Cable hardware communicates with the host over the
Universal Serial Bus (USB) at up to 12M bits/sec, or at variable baud
rates over an RS-232 interface at up to 57600 bits/sec.

For detailed MultiLINX Cable information, refer to the “MultiLINX™
Cable” chapter of the Hardware User Guide. You can access the
following mentioned application notes with descriptions of device-
specific design techniques and approaches from the support page at
(http://support.xilinx.com/xapp/xapp168.pdf).

The “Getting Started with the MultiLINX Guide” application note is
a quick reference to everything you need to know to use the Multi-
LINX Cable.

• Describes using a USB port, Mixed Voltage environments,
connections for all the supported Modes.

• Describes how to setup a Prototype application for use with the
MultiLINX Cable.

Hardware Debugger Guide

4-4 Xilinx Development System

• Describes all the cables, their capabilities, and associated soft-
ware tools.

Communication between the host system and the MultiLINX Cable is
dependent on host system capability. The following table lists the
valid baud rates for the supported platforms.

XChecker Cable
You can use the XChecker Cable to download, verify, and debug. The
XChecker Cable assembly houses the following internal circuitry.

The XChecker Cable requires a standard DB-9 or DB-25 RS-232 serial
port and may require a DB9/DB25 adapter. The cable has 14 signal
connections, plus VCC and GND. It comes with two header connec-
tors and two flying lead connectors. The following figure shows top
and bottom views of the cable.

Table 4-2 Valid Baud Rates

Baud Rates

Cable PC WorkStation

MultiLINX Cable
(USB)

1M-12M (Currently
USB is supported
only on Win98/95C.)

USB is currently not
supported on the
WorkStation.

MultiLINX Cable
(RS-232)

9600, 19200, 38400,
and 57600

9600, 19200, and
38400

Xilinx FPGA Functions as an interface between the
XChecker software and the target FPGA.

Static RAM Stores the configuration data for download
and readback.

Oscillator circuit Provides a system clock to facilitate down-
load and readback of configuration data.

Connecting Your Cable

Hardware Debugger Guide 4-5

Figure 4-1 XChecker Cable

You can use the XChecker Cable with a single FPGA or several
connected in a daisy chain to download configuration data. When
used to read back data or as a logic probe, the XChecker Cable can
only be used with one device at a time. The XChecker Cable transmits
configuration data to all target FPGAs at 921 kHz.

Communication between the host system and the XChecker Cable is
dependent on host system capability. The following table lists the
valid baud rates for the supported platforms.

X2580

TM

CAUTION

SENSITIVE
ELECTRONIC

DEVICE

RT
RD

TRIG

TDI
TCK
TMS
CLKI

CLKO

VCC
GND

CCLK
D/P
DIN
PROG
INIT
RST

Model: DLC4
Power: 5V 100mA Typ.
Serial: DL- 12345

TM

Made in U.S.A.

Header 2

Header 1

Top View

Bottom View

XChecker Cable

Hardware Debugger Guide

4-6 Xilinx Development System

Additional XChecker Hardware

The XChecker hardware is the cable assembly with internal logic as
described in the previous section, a test fixture, and a set of headers to
connect the cable to your target system. In addition, a 3 V Adapter for
use with low-voltage parts is available as optional equipment. The
following figure shows the XChecker Cable hardware and accesso-
ries.

Table 4-3 Valid Baud Rates

 Baud Rate

Platform 9600 19200 38400 115200

Sun X X X

HP X X X X

PC X X X X
X indicates supported baud rate.

Connecting Your Cable

Hardware Debugger Guide 4-7

Figure 4-2 XChecker Hardware and Accessories

The optional 3 V adapter accepts VCC supply voltages from the
target system from +2.9 V to +5.25 V. The 3 V adapter contains a
voltage step-up circuit that generates the 5 V supply voltage needed
by XChecker.

Because the 3 V adapter can accept input voltages up to 5.25 V, there
is no need to remove the adapter when moving the XChecker Cable
between low-voltage systems and higher 5 V systems. Except for the
voltage conversion, the 3 V adapter is completely invisible to the
XChecker hardware or the target system.

Parallel Cable
You can use a parallel cable to download configuration data. The
Xilinx parallel cable has a 6-lead flying header connector with VCC,
GND, CCLK, D/P, PROG, and DIN, and also includes a 25-pin male
connector.

X1724a

XChecker
Cable Assembly

Flying Lead
Connector 1

Flying Lead
Connector 2

DB-25 Connector DB-9 Connector

Connection to Host Computer

Connection to Target System

Test Fixture
Enlarged to show

mating plugged slots
May be required to connect

to host computer

Row 1

Row 2

+5VGnd

Connect to
FPGA

Demo Board

Hardware Debugger Guide

4-8 Xilinx Development System

Note: The parallel cable is supported on the PC only.

Serial Cable
You can use a serial cable to download configuration data. This cable
has a 6-lead header connector with VCC, GND, CCLK, D/P, PROG,
and DIN, and also includes a female RS-232 serial connector.

Cable Limitations
The MultiLINX Cable should be compatible in supporting Readback
& Verify for all the FPGAs supported by the XChecker Cable. In addi-
tion to the supported devices, the MultiLINX Cable will support the
devices that were not supported by the XChecker Cable since the
MultiLINX Cable has no RAM size limitations. These devices include
those devices in 4000E, 4000XL, and SPARTAN whose bitfile size is
more than 256K bits. The MultiLINX Cable will also support Read-
back & Verify functions in the new Virtex family.

XChecker Hardware Drawbacks
• Cannot support readback for devices whose bitfile size is more

than 256K bits.

• Only supports RS-232.

• Has less user control (only 2 sets of 8 flying wires each).

MultiLINX Hardware Advantages
• Fast download, readback and debug using the USB port up to

12M bits/sec.

• More configuration modes are supported.

• Supports both RS-232 ports and USB ports.

• Compatible with the currently supported devices for Readback &
Verify.

• Supports new devices that are not supported by XChecker due to
RAM size limitation.

• Works at low voltages (3.3V).

• Supports both Slave Serial and SelectMAP configuration modes.

Connecting Your Cable

Hardware Debugger Guide 4-9

Cable Baud Rates
The supported Baud Rates for all four cables are shown in the
following table.

Connecting Cable to Host System
To install the cable, you must first connect it to the host system.

MultiLINX Cable
If you have a MultiLINX Cable, connect it to the USB or RS-232 port.
A DB-9/DB-25 adapter may be required to connect the cable to your
serial port. If you have a different serial port connection, you need to
use the appropriate adapter.

Parallel Cables
If you have a parallel cable, connect it to the parallel port.

Serial and XChecker Cables
Connect your serial or XChecker Cable to your system’s RS-232 serial
port. A DB-9/DB-25 adapter may be required to connect the cable to

Table 4-4 Cable Baud Rates

Cable PC WorkStation

MultiLINX Cable
(USB)

1 M-12 M USB is currently not
supported on WorkSta-
tion.

MultiLINX Cable
(RS-232)

9600, 19200, 38400,
and 57600

9600, 19200, and 38400

XChecker Cable 9600, 19200, 38400,
and 115200

9600, 19200, and 38400

Serial Cable 9600, 19200, and
38400

9600, 19200, and 38400

Parallel Cable 9600 Not supported on the
WorkStation.

Hardware Debugger Guide

4-10 Xilinx Development System

your serial port. If you have a different serial port connection, you
need to use the appropriate adapter.

Setting Up the Hardware
When using the MultiLINX Cable the default mode is slave serial. For
PROM files and Virtex bitfiles, the Communication Setup dialog box
will popup when download is attempted.

When using the XChecker, parallel, or serial cables you must set up
the configuration mode of the devices being configured as slave
serial. You must set M0, M1, and M2 to VCC. If you intend to use
them as user I/Os, use 4.7 kΩ pull-ups. Refer to Development System
Reference Guide and The Programmable Logic Data Book for information
on how to set the mode pins.

Connecting Cable to Target System
This section covers cable connection to the target device. You need
appropriate pins on the target system for connecting the target
system board to the header connectors on the cable.

Warning: The cable draws its power from the target system through
VCC and GND. Therefore, power to the cable, as well as to the target
FPGA, must be stable. Do not connect any signals before connecting
VCC and GND. The input/output pins of the internal XChecker
FPGA should always be at a potential that is lower or equal to their
respective rail voltage to avoid internal damage.

MultiLINX Cable Connectors
The MultiLINX Cable supports four types of flying lead connectors.
For detailed information on the MultiLINX Flying Wires and cable
modes refer to the “MultiLINX™ Cable” chapter of the Hardware User
Guide.

XChecker Cable Connectors
The XChecker Cable supports two types of connectors. You can
connect to the pins of your target FPGA with a flying lead connector
and to the FPGA demonstration boards with a header connector.

Connecting Your Cable

Hardware Debugger Guide 4-11

• Flying lead header connectors have eight standard individual
female connectors on one end that connect with 0.025 inch square
male pins. Each lead is labeled to identify the pin.

• Header connectors are standard 9-pin (8 signals, 1 key) header
connectors that fit 0.025 inch square male pins. The pin layout is
shown in the “XChecker Cable” figure. The header connectors
are keyed to ensure that they are properly inserted into the cable
assembly.

Each type of connector, has two different subconnectors. One is
keyed for downloading signals; the second is keyed for readback
signals. Header 1 is the download subconnector and fits on the outer-
most subconnector socket. Header 2 is the readback subconnector
and fits on the inner subconnector socket.

XChecker Cable Pins

Refer to the tables in this section for information on how to connect
the signal pins for specific applications. The “XChecker Operation
Mode Connections” table shows the necessary connections for each
application type, and the “Cable Connections and Definitions” table
describes the pins and how to connect them.

Note: Not all of the signal pins are required for each function.

Table 4-5 XChecker Operation Mode Connections

Cable
Header

Pin Name Download Verification
Synchronous
 Logic Probe

Asynchronous
Logic Probe

1 VCC X X X X

1 GND X X X X

1 CCLK X X X X

1 D/P X

1 DIN X

1 PROG
(XC4000 only)

X

1 INIT
(XC3000/
XC4000 only)

X

Hardware Debugger Guide

4-12 Xilinx Development System

1 RST Opt Opt Opt Opt

2 RT X X X

2 RD X X X

2 TRIG Opt Opt

2 TDI

2 TCK

2 TMS

2 CLKI Opt

2 CLKO X
X = Connect as specified in the “Cable Connections and Definitions” table.

Opt = Optional

Table 4-6 Cable Connections and Definitions

Signal
Name

Function XC3000 XC4000 XC5200

VCC Power — Supplies VCC to cable (5 V,
100 mA, typically)

Connect to target system.

GND Ground — Supplies ground reference to
cable

Connect to target system ground.

CCLK Configuration Clock — Provides config-
uration clock to target system during
configuration and readback

Connect to target system Configu-
ration Clock. Ensure all devices are
in slave serial mode if using down-
load cable to download.

D/P Done/Program — Signals the end of
configuration (For XC3000 devices,
a High-to-Low transition on D/P
coupled with a High to Low on Reset,
causes the device to reprogram.)

Connect to
D/P pin
with a 10-
50 kΩ
pull-up
resistor.

Connect to target
system DONE pin and
rely on internal 2-8 kΩ
pull-up resistors.

Table 4-5 XChecker Operation Mode Connections

Cable
Header

Pin Name Download Verification
Synchronous
 Logic Probe

Asynchronous
Logic Probe

Connecting Your Cable

Hardware Debugger Guide 4-13

DIN Data In — Provides configuration data
to target system during configuration
and is tristated at all other times

Connect to target system’s lead
device DIN pin.

PROG
(XC4000
 Only)

Program — 300ns or greater Low pulse
causes device to reprogram (A Low
indicates the device is clearing its
configuration memory.)

N/A Connect to target
system PROG with 10-
50 kΩ pull-up resistor.

INIT Initialize — Indicates start of configura-
tion for XC3000/XC4000 parts.
A logical zero on this pin during
configuration indicates a data error

Connect to target system INIT with
a 10-50 kΩ pull-up resistor.

RST Reset — During configuration, a Low
pulse causes XC3000A devices to
restart configuration
After configuration, this pin can drive
Low to reset target FPGA internal
latches and flip-flops
RST is the active high for XC4000/
XC5200 devices

Connect to
target
FPGA
RESET
pin with
10-50 kΩ
pull-up
resistor.

User-programmable
connection; requires a
10-50 kΩ pull-up
resistor

RT Read Trigger — XChecker output
Hardware Debugger provides
Low-to-High transition on RT to
initiate readback

Connect to
M0/
RTRIG
with 10-
50 kΩ
pull-up
resistor.

User-programmable
connection; requires
10-50 kΩ pull-up
resistor

Table 4-6 Cable Connections and Definitions

Signal
Name

Function XC3000 XC4000 XC5200

Hardware Debugger Guide

4-14 Xilinx Development System

RD Read Data — XChecker input
Hardware Debugger receives the
readback data through the RD pin after
readback is initiated.

Connect to
M1/
RDATA
through
pull-up
resistor in
slave
serial
configura-
tion
mode;
requires a
10-50 kΩ
pull-up
resistor if
using I/O
pad as
input or
output

User-programmable
connection; requires
10-50 kΩ pull-up
resistor if using I/O
pad as input or output

TRIG System Trigger — XChecker input
High on this pin signals the XChecker
electronics to initiate a readback and
causes the RT pin to go High

Connect to target system readback
trigger and to an external pin if
using an external signal to trigger
readback.

TDI
TCK
TMS

Reserved
(These pins can be used for JTAG
Programmer device configuration.)

N/A

Table 4-6 Cable Connections and Definitions

Signal
Name

Function XC3000 XC4000 XC5200

Connecting Your Cable

Hardware Debugger Guide 4-15

Note: XChecker does not drive the configuration mode pins (M0, M1,
M2) during configuration. You must specify the logic levels for these
pins externally.

Serial and Parallel Cables
Connect all the pins of your serial or parallel cable for downloading
using the guidelines in the “XChecker Operation Mode Connections”
table and the “Cable Connections and Definitions” table.

Connecting the 3 Volt Adapter to the XChecker Cable
If you are using a 3 V target board instead of a 5 V target board, you
must connect the 3 V adapter to the XChecker Cable. The 3 V adapter
supports VCC supply voltages from your target system that range
from 2.9 V to 5.25 V. An internal voltage “step-up” circuit generates
the 5 V voltage supply needed by the XChecker Cable.

Aside from the voltage conversion, the 3 V adapter is completely
transparent to the XChecker hardware and the target system. There-
fore, you do not need to remove the 3 V adapter when moving the
XChecker Cable between 3 V and 5 V systems.

The 3 V adapter includes the J1 and J2 connectors.

CLKI Clock Input — Transmits your system
clock to the XChecker electronics
Clock must be between 120 kHz and 10
MHz
Connect this pin to target system clock
to synchronize the readback trigger
with target system clock

Connect to source of target system
clock for synchronous debugging.

CLKO Clock Output — Drives target system
clock
Clock can come from either the CLKI
pin, or it can be internally generated by
the XChecker Cable when CLKI is
unconnected

Connect to destination of target
system clock for synchronous
debugging.

Table 4-6 Cable Connections and Definitions

Signal
Name

Function XC3000 XC4000 XC5200

Hardware Debugger Guide

4-16 Xilinx Development System

Note: For information on testing the operation of the 3 V adapter, see
the “Testing 3 V Adapter Operation” section.

Connecting the 3 Volt Adapter

Follow these steps to connect the 3 V adapter to the XChecker Cable.

Warning: Use standard electrostatic discharge (ESD) precautions
when connecting the adapter to your XChecker Cable. The adapter is
static sensitive and can be damaged by ESD energy.

1. Ensure that you are adequately grounded before connecting or
using the 3 V adapter.

2. Refer to the following figure to position the adapter on top of the
XChecker assembly, aligning the adapter 18-pin female connector
(J2) with the XChecker 18-pin male connector socket.

Ensure that the Xilinx logo on the XChecker case and the 3 V
adapter silkscreen are oriented the same way.

Figure 4-3 3 V Adapter Connected to XChecker Cable

3. Holding the adapter board by the edges, press it down until it
makes a solid connection to the XChecker Cable.

X4512

XCHECKER

3V ADAPTER

J2 J1

U
3

U
2

Connecting Your Cable

Hardware Debugger Guide 4-17

Using the 3 Volt Adapter with XC3000L and XC4000XL
Parts

To use the 3 V adapter with XC3000L and XC4000XL, follow these
steps.

1. Attach the 18-signal flying wire or header block to the J1
connector on the 3 V adapter.

XChecker operation is unchanged.

2. Attach the XChecker Cable (with the 3 V adapter) to your target
system.

The configuration of the XC3000L devices is the same as the XC3000,
XC3000A, and XC3100 devices.

The readback clock speed of the XC3000L devices has been slowed
because of lower VCC supply voltage. If the supply voltage of the
target system is lower than 3 V, you might see an error message
similar to the one shown below.

XCHECKER? verify

Design design_name has 128 probeable signals.

Readback 1847 bytes of configuration.

Verifying datafile design_name...MISMATCHED Total
of 405 bits mismatched.

Connecting for Download
To connect your cable for downloading only, connect your configura-
tion cable to your target FPGA device. Refer to the “XChecker Opera-
tion Mode Connections” table and the “Cable Connections and
Definitions” table for pin assignment information. The following
figure shows the XChecker Cable connected for downloading only.

Hardware Debugger Guide

4-18 Xilinx Development System

Figure 4-4 Downloading Configuration Data

Connecting for Verification
To connect your cable for downloading and verification, connect your
XChecker Cable to your target FPGA as shown in the following
figure. Refer to the “XChecker Operation Mode Connections” table
for pin assignment information.

X6357

VCC

GND

CCLK

D/P

DIN

PROG

INIT

RST

+

Note 1

Note 2

XChecker

Flying Leads

or

Header Connector

Target System

T
o

 H
o

st
 R

S
23

2
P

o
rt

Ta
De

Note 3

1. D/P XC4000\XC5200
2. PROG for XC4000\XC5200 only
3. INIT for XC3000\XC4000\XC5200 only

NOTES:

R

_

Connecting Your Cable

Hardware Debugger Guide 4-19

Figure 4-5 XChecker Cable Connections for Downloading and
Verification

You can also use XChecker to verify a previously configured FPGA.
To verify a previously configured FPGA, connect XChecker as shown
in the following figure.

X8255

VCC

GND

CCLK

D/P

DIN

PROG

INIT

RST

RT

RD

+5V
NOTES:

Note 1

1. D/P for XC4000\XC5200 only

XChecker

Flying Leads

or

Header Connector

Target System

T
o

 H
o

st
 R

S
23

2
P

o
rt

Target
Device

R

Hardware Debugger Guide

4-20 Xilinx Development System

Figure 4-6 XChecker Cable Connections for Verification Only

Connecting RT and RD

Connect the XChecker RT and RD pins to the FPGA RTRIG and
RDATA pins, respectively. If you used the symbols MD0 and MD1,
consult the device pinout tables in The Programmable Logic Data Book
for the exact locations of M0 and M1. If you used IPAD/OPAD prim-
itives, consult The Programmable Logic Data Book for IPAD and OPAD
listings or the I/O Pin Assignments Report available from the Design
Manager’s Report Browser.

Connecting for Synchronous Debugging
In synchronous mode debugging, you can control the target FPGA
clock through the XChecker Cable. You can control the number of
clock pulses applied and the frequency at which the clock cycles
occur. For synchronous debugging, connect the TRIG, RT, RD, CLKO

VCC
GND

CCLK

RT
RD

+5V

XChecker

Flying Leads
or

Header Connector

Target System

T
o

 H
o

st
 R

S
23

2
P

o
rt

Target
Device

X6354

R

R

Connecting Your Cable

Hardware Debugger Guide 4-21

and, optionally, CLKI pins of the XChecker Cable to the target FPGA,
as shown in the “XChecker Operation Mode Connections” table and
the “Cable Connections and Definitions” table. Also, refer to the
following figure for connection information. This XChecker Cable
configuration allows you to download, verify, and debug your design
in the synchronous mode.

Figure 4-7 XChecker Cable Connections for Synchronous
Debugging

Connecting the XChecker Clock

To allow the XChecker clock to control the target FPGA system clock,
connect XChecker’s CLKO pin to the pin that you assigned as the
FPGA’s clock pin. All the synchronous logic should be connected to
this clock source for synchronous debugging.

X6355

VCC
GND

CCLK
D/P
DIN
PROG
INIT
RST

RT
RD
TRIG

SYSTEM
CLOCK

+5V

Note 1

Note 2

2. PROG for XC4000\XC5200 only

XChecker

Flying Leads
or

Header Connector

Target System

T
o

 H
o

st
 R

S
23

2
P

o
rt

Target
Device

CLKI
CLKO

NOTES:

R

1. D/P for XC4000\XC5200

Hardware Debugger Guide

4-22 Xilinx Development System

The source of the CLKO clock signal is from an internally generated
XChecker clock oscillator or from an external clock oscillator that you
provide.

Internal Clock

To use the XChecker internal clock, connect the CLKO pin to the
target FPGA. Leave the CLKI pin unconnected. Then, select the
Debug → Settings → CLKO Clock Source command from the
Hardware Debugger menus and select the Use XChecker Clock
setting from CLKO Clock Settings dialog box.

External Clock

To use an external clock, connect the user clock to the XChecker CLKI
pin and connect the XChecker CLKO pin to the FPGA. Then, select
the Debug → Settings → CLKO Clock Source command and
select the Use CLKI setting from CLKO Clock Settings dialog box.

Connecting an External Trigger

To use an external trigger, such as the terminal count of a counter or
some other condition in your target board to initiate a readback,
connect the external trigger signal to the XChecker TRIG pin. TRIG is
active-High.

Note: You do not need the TRIG signal if you plan to use an internal
trigger, such as the Enter key on the keyboard to initiate a readback.

Connecting RT and RD

Connect the XChecker RT and RD pins to the FPGA RTRIG and
RDATA pins, respectively. If you used the symbols MD0 and MD1,
consult the device pinout tables in The Programmable Logic Data Book
for the exact locations of M0 and M1. If you used IPAD/OPAD prim-
itives, consult the I/O Pin Assignments Report available from the
Design Manager’s Report Browser.

Connecting for Asynchronous Debugging
This configuration allows the target system to run while a readback is
executed. You do not need to provide the system clock to XChecker,
because readback is executed independently of the system clock.

Connecting Your Cable

Hardware Debugger Guide 4-23

Connect the system clock so that it controls the device flip-flops
directly. Thus, the CLKI and CLKO pins on the XChecker Cable are
not used for asynchronous debugging.

Connect the external trigger and the RD and RT pins as explained in
the previous “Connecting for Synchronous Debugging” section.
Also, refer to the following figure for connection information.

Figure 4-8 XChecker Cable Connections for Asynchronous
Debugging

Setting the Cable Options
After connecting the cable to download, verify, or debug, power your
target board to enable the software to communicate with the cable
and start the Hardware Debugger. You must then set the cable
options with the following steps.

X6356

VCC

GND

CCLK

D/P

DIN

PROG
INIT

RST

RT

RD

TRIG

Target
Device

SYSTEM
CLOCK

+5V

Note 1

Note 2

1. D/P XC4000\XC5200
2. PROG for XC4000\XC5200 only

XChecker

Flying Leads
or

Header Connector

Target System

T
o

 H
o

st
 R

S
23

2
P

o
rt

NOTES:

R

Hardware Debugger Guide

4-24 Xilinx Development System

1. Select Cable → Communications to display the Communica-
tion Setup dialog box, shown in the following figure.

Figure 4-9 Communication Setup Dialog Box

2. In the Cable Type field, select the cable type that you installed for
downloading. The Parallel Cable is supported for the PC only.

3. In the Port Name list box, select the port to use for downloading
and readback. If the port name you want is not listed, select the
blank name from the list box and type in the new port name. This
list box saves up to two user-specified port names.

The Port Name list box contains a list of valid ports for the plat-
form, as shown in the following table. If you selected the Multi-
LINX Cable the USB port is displayed, If you selected a serial
cable or an XChecker Cable, the serial ports are displayed. If you
selected a parallel cable, the parallel ports are displayed.

Connecting Your Cable

Hardware Debugger Guide 4-25

4. In the Baud Rate list box, select a communications baud rate
between the cable and the host system. You cannot specify the
baud rate for a parallel cable.

Communication speed between the host system and the
XChecker Cable depends on host system capability. Refer to the
“Valid Baud Rates” table for a list of valid baud rates.

5. Select Auto -detection of cable if you want the software to
scan for the presence of a cable and automatically establish
communication. Cable information is presented in the status bar.

6. Click OK to accept the selections and close the dialog box.

Resetting the Cable
To reset internal logic of the cable after a power glitch select Cable →
Reset to reset the internal logic of the cable. The cable is reinitialized
and the proper baud rate is set.

Note: Reconfigure your target device if you experience a power
failure to the target device board. This can be done by reconnecting to
the cable. The Hardware Debugger reconfigures the cable FPGA if
needed, after the connection is established.

MultiLINX Diagnostics
To test the MultiLINX Cable, bring up the MultiLINX Cable Self
Check dialog box to perform a diagnostic of the cable.

Table 4-7 USB, Serial, and Parallel Ports

Platform USB Ports Serial Ports Parallel Ports

Sol none /dev/ttya, /dev/ttyb none

HP 10.x none /dev/tty0p0, /dev/
tty1p0

none

PC USB com1, com2, com3,
com4

lpt1, lpt2

Hardware Debugger Guide

4-26 Xilinx Development System

Testing the MultiLINX Cable
The MultiLINX Cable contains special hardware for the readback of
FPGA devices. To verify that the cable is in working order, follow
these steps.

1. Attach the test fixture (provided with your MultiLINX Cable) to
the MultiLINX Cable pins. The test fixture is a small printed
circuit card with a keyed header connector that fits onto the
MultiLINX Cable pins.

2. Start the Hardware Debugger software or, if the Hardware
Debugger was running when you installed the test fixture, select
Cable → Reset to establish communication with the cable.

3. Select Cable → Self Check to invoke the Cable Self Check
dialog box and perform a diagnostic of the MultiLINX Cable.

The Cable Self Check dialog box, shown in the following figure is
displayed.

Connecting Your Cable

Hardware Debugger Guide 4-27

Figure 4-10 Cable Self Check Dialog Box (MultiLINX Cable)

4. Choose the appropriate settings in the dialog box, such as the
number of cycles you want to run and types of tests you want to
perform.

5. Click OK to start the diagnostic.

Note: The MultiLINX Cable does not have a separate cable self check
test. The MultiLINX Cable does a BIST operation on power-up.

XChecker Diagnostics
XChecker includes a test fixture to test the XChecker Cable and 3 V
adapter to support 3 V target boards.

Hardware Debugger Guide

4-28 Xilinx Development System

Testing the XChecker Cable
The XChecker Cable contains special hardware for the readback of
FPGA devices. To verify that the cable is in working order, follow
these steps.

1. Attach the test fixture (provided with your XChecker Cable) to
the XChecker Cable pins. The test fixture is a small printed circuit
card with a keyed header connector that fits onto the XChecker
Cable pins.

2. XChecker draws power from your target system, not from the
host system. The test fixture has a red VCC power (+5 V)
connector and a black ground connector. Plug these connectors to
a 5 V DC power supply.

3. Start the Hardware Debugger software or, if the Hardware
Debugger was running when you installed the test fixture, select
Cable → Reset to establish communication with the cable.

4. Select Cable → Self Check to perform a diagnostic of the
XChecker Cable.

The Cable Self Check dialog box, shown in the following figure is
displayed.

Connecting Your Cable

Hardware Debugger Guide 4-29

Figure 4-11 Cable Self Check Dialog Box (XChecker Cable)

5. Choose the appropriate settings in the dialog box, such as the
number of cycles you want to run and types of tests you want to
perform. For more information, see the “Cable Self Check Dialog
Box” section of the “Menu Commands” chapter.

6. Click OK to start the diagnostic.

A dialog box appears with the following message.

“Connect cable and the test header, press OK to
start .”

7. Click OK.

The output is displayed under each test name in the Cable Self
Check dialog box. Overall test results are shown in the Cable Self
Check (Results) dialog box. For information on test failures, refer

Hardware Debugger Guide

4-30 Xilinx Development System

to the “Troubleshooting” section of the “Menu Commands”
chapter.

Testing 3 V Adapter Operation
To test the operation of the 3 V adapter, use the test fixture that is
shipped with the XChecker Cable, and follow these steps.

1. Plug the adapter into the XChecker case, as outlined in the
“Connecting the 3 Volt Adapter to the XChecker Cable” section.

2. Plug the test fixture into the male connector (J1) of the adapter.

The test fixture is a small printed circuit card with a keyed header
connector that fits onto the XChecker Cable pins.

3. XChecker draws power from your target system, not from the
host system. The test fixture has two connectors: a red VCC
power (+3 V) connector and a black ground connector. Plug these
connectors to a 3 V DC power supply.

4. Start the Hardware Debugger software or, if the Hardware
Debugger was running when you installed the test fixture, select
Cable → Reset to establish communication with the cable.

5. Select Cable → Self Check from the menu to perform a diag-
nostic of the XChecker Cable.

6. Click OK to start the diagnostic.

This command runs the diagnostics test. The test should produce
results that match those obtained by running the same diagnos-
tics test without the 3 V adapter connected to XChecker.

Note: The readback clock speed of the XC3000L devices has been
slowed because of lower VCC supply voltage.

If the supply voltage of the target system is lower than 3 V, you might
see an error message similar to the one shown below.

Design design_name has 128 probeable signals .

Readback 1847 bytes of configuration.

Verifying datafile design_name...MISMATCHED

Total of 405 bits mismatched.

Connecting Your Cable

Hardware Debugger Guide 4-31

If this occurs, correct the system voltage and download the design
again.

Troubleshooting the MultiLINX Cable
This section includes solutions to some common problems you might
encounter when configuring FPGAs with the MultiLINX Cable.

Warning: Connecting the MultiLINX leads to the wrong signal will
cause permanent damage to MultiLINX internal hardware. You must
connect PWR and GND to ground.

Troubleshooting the XChecker Cable
This section includes solutions to some common problems you might
encounter when configuring FPGAs with the XChecker Cable.

 Improper Connections
Warning: Connecting the XChecker leads to the wrong signal will
cause permanent damage to XChecker internal hardware. You must
connect VCC to +5 V and GND to ground.

Always make sure that XChecker leads are connected properly for
the specified mode of operation. Refer to the “Cable Connections and
Definitions” table and the “XChecker Operation Mode Connections”
table. Use the Cable → Logic Level of Pins command to display the
logic state of the leads. This helps determine connectivity between
the target system and the XChecker Cable.

For workstations (applies to Sun only), you must have read and write
permissions for the port to which you connect the XChecker Cable.
XChecker might issue a message stating that the cable is not
connected to port ttyx. If you see this message, follow this check list.

1. The board must have the power on because XChecker uses
power from the board.

2. Check the device driver with the following command string.

ls –l /dev/ttya /dev/ttyb

The result should be the following.

crw-rw-rw- 1 root12,0 month date time /dev/ttya

Hardware Debugger Guide

4-32 Xilinx Development System

crw-rw-rw- 1 root12,1 month date time /dev/ttyb

3. Reconnect the XChecker Cable to another valid port.

4. Read the /etc/ttyab file. There should be two lines, as follows.

ttya”/usr/etc/getty std.9600” unknown off
local secure

ttyb”/usr/etc/getty std.9600” unknown off
local secure

If you use a port to connect a modem for a remote login, you
cannot use that port. The port must be on. Consult your System
Administrator if the information the /etc/ttyab file differs from
what is listed in the previous list.

Improper or Unstable VCC
Warning: As with any CMOS device, the input/output pins of the
internal FPGA should always be at a lower or equal potential than the
rail voltage to avoid internal damage.

Never connect the control signals to XChecker before VCC and
ground are connected. Xilinx recommends the following sequence.

1. Turn off power to the target system.

2. Connect VCC, ground, and then the signal leads.

3. Turn on power to the target system.

Make sure VCC rises to a stable level within 10ms. After VCC stabi-
lizes, the level should be between 4.75 V and 5.25 V.

In the event of power glitches, reset the cable with the Cable → Reset
command to reconfigure the XChecker internal FPGA device and
then reconfigure the target device. For more information, see the
“Resetting the Cable” section.

Hardware Debugger Guide — Alliance 3.1i 5-1

Chapter 5

Programming a Device or a Daisy Chain

The Hardware Debugger enables you to program the logic of a
device. This chapter explains how to use the Download menu
commands to configure one or more devices. It contains the
following sections.

• “Downloading Basics”

• “Preparing for Download and Verification”

• “Opening a Design File”

• “Downloading to a Target Board”

• “Verifying Design Logic”

• “Downloading and Verifying a Design”

• “Configuring Multiple Devices”

Downloading Basics
Downloading is the process of programming a target device with the
logic functions contained in your design. Verification is the process of
reading back the downloaded configuration data and comparing it to
the original data to ensure data was downloaded correctly.

Before beginning downloading or verification, turn on the power to
your board.

Warning: You must connect VCC and ground before you connect the
control signals to the MultiLINX Cable and the XChecker Cable. The
input/output pins of their internal FPGA should always be at a
potential that is lower or equal to their respective rail voltage in order
to avoid internal damage.

Hardware Debugger Guide

5-2 Xilinx Development System

Preparing for Download and Verification
When you start the Hardware Debugger, the cable you installed is
automatically detected. To modify the Communications settings,
refer to the “Setting the Cable Options” section of the “Connecting
Your Cable” chapter.

Checking the Logic Level of Pins
The Logic Level of Pins command allows you to use the MultiLINX
Cable and the XChecker Cable to display the logic levels of the cable
pins and to probe digital signals on your board. It indicates the 1 or 0
value on each pin.

Steps 1 & 2 are specifically for the XChecker Cable, they are not
needed for the MultiLINX Cable. For the MultiLINX Cable just
connect the flying wires to the probe pins. There is no test header for
the MultiLINX Cable.

Warning: Do not connect the XChecker leads to signals of different
voltage levels than required to prevent damage to the XChecker
internal hardware.

1. Connect the flying lead or header connector to the XChecker
cable.

2. Attach the flying lead or header connectors to the pins or probe
points.

3. Select Cable → Logic Level of Pins .

Before configuration, the following should be true: INIT=1,
PROG=1, D/P=0, CCLK=1, and DIN=1.

4. Select Scan Status Constantly if you want the software to
continually scan and update the status of the cable pins.

5. If necessary, make changes to the pin configuration.

Opening a Design File
After powering your target board, starting the Hardware Debugger,
and setting the cable options, you are ready to open and download a
design file. You can open BIT, RBT, or PROM files. You must open a
BIT file if you want to verify and debug.

Programming a Device or a Daisy Chain

Hardware Debugger Guide 5-3

• BIT files and RBT files contain data for a single device. Use the
Design Manager to create them.

• PROM files (.mcs, .tek, or .exo) contain data to program daisy
chains. Use the PROM File Formatter to create them.

• Use the File → Open → Project command to open an existing
project file (design_name.xck) that contains your design file.

Note: For byte wide PROMs greater than 0xFFFF (for example, 64k
bytes) if the PROM start address is at an odd byte such as 0xFF, the
resulting PROM cannot be used as an input design file in the Hard-
ware Debugger for programming a FPGA device. Use either start
address zero or one, starting at even bytes such as 0x10, 0x100 and so
on while creating a PROM file.

1. Select File → New → Project or click the following toolbar
button.

The New Project dialog box appears.

2. In the Directories list box, select the desired directory.

3. In the List Files of Type field, specify the extension for the type of
file you want to open.

This extension is then displayed in the File Name list box. Only
the files that match this extension are displayed in the File Name
box.

4. In the File Name field, type the name of the design file you want
to open or click on the file name in the File Name list box.

5. Click OK.

If you do not have a logic allocation file (design_name.ll), a popup
dialog box appears, informing you that debugging is not
possible. The design_name.ll file is created during the implemen-
tation process if you have selected the appropriate readback
option. Click OK to proceed.

Hardware Debugger Guide

5-4 Xilinx Development System

After you choose a file to open, a project window appears that
shows the hierarchical structure of files for each project. Each
project contains bitstream, macro, and waveform data. The
device name is only included in this hierarchy when you open a
BIT file.

Downloading to a Target Board
After you set up the appropriate cable and open a file to download,
you can download the configuration data to a target board.

Note: If you plan to verify or debug a design, download a BIT file.
You cannot verify or debug PROM files or RBT files. For more infor-
mation, see the “Design Preparation” chapter.

1. Select Download → Download Design or click the following
toolbar button.

A download status window appears. This window includes a
status bar that is updated as the data blocks are transmitted.

2. If the design is downloaded successfully, a message appears
informing you that the device is configured and provides you
with the transmission time.

Verifying Design Logic
The Verify Bitstream command verifies a design that you down-
loaded using a BIT file. To verify or debug a device, meet the
following criteria.

• Use a BIT file as input.

• Generate a logic allocation (design_name.ll) file in the design
directory by doing one of the following.

• Use the -l option in BitGen.

• Enable the readback option as specified in the “Design Prepa-
ration” chapter.

Programming a Device or a Daisy Chain

Hardware Debugger Guide 5-5

• Use the -in option for the Virtex family also with BitGen to
generate a mask (design_name.msk) file.

• If you have an XC4000 or XC5200 design, do the following.

• Set the readback clock to CClk.

• Include the READBACK symbol in your design.

• Include the STARTUP symbol with an inverter on the RESET
pin if you plan to reset your design using the Pulse /RESET
button located on the Debug Control Panel.

• Use the XChecker Cable.

The XChecker must be configured for verification or debugging.
Refer to the “XChecker Operation Mode Connections” table and
the “Cable Connections and Definitions” table in the
“Connecting Your Cable” chapter for information.

• Use the MultiLINX Cable.

The MultiLINX Cable must be configured only for download and
verify. Refer to the “MultiLINX Device Configuration Modes”
table in the “MultiLINX™ Cable” chapter of the Hardware User
Guide.

During verification, the XChecker cable reads the configuration data
from the connected FPGA and verifies that it is the same as the down-
loaded configuration data. To verify your design logic follow these
steps.

1. Select Download → Verify Bitstream or click the following
toolbar button.

The device’s configuration is read back and compared to the
downloaded data to ensure that the device was properly config-
ured.

2. When verification is completed, a message lets you know
whether verification succeeded or failed. If verification failed, the
message also informs you of the number of mismatched bits.

Hardware Debugger Guide

5-6 Xilinx Development System

Downloading and Verifying a Design
To verify a device, the design and the XChecker cable must meet the
conditions described in the preceding section. To download and
verify your design follow these steps.

1. Select File → Open → Project and open a project that contains
a BIT file.

2. Select Download → Download and Verify or click the
following toolbar button.

3. When verification is complete, a message lets you know whether
verification succeeded or failed. If verification failed, the message
provides the number of mismatched bits.

Configuring Multiple Devices
You can use a PROM file to program several FPGAs at once.

Configuring a Daisy Chain of Devices
To configure a daisy chain of devices, connect the XChecker cable to
the lead device and ensure that all the devices in the daisy chain are
connected correctly.

1. Connect the device pins of the master device as specified for the
operation you want. Follow these steps.

2. Connect the DOUT output of each slave device to the DIN input
of the next device in the chain. Refer to The Programmable Logic
Data Book for more information on how to connect devices in a
daisy chain.

3. Select File → Open → Project to open a project that
contains a PROM file.

4. Select Download → Download Design or click the following
toolbar button.

Programming a Device or a Daisy Chain

Hardware Debugger Guide 5-7

The Download Status window appears with a status bar that is
updated as the data blocks are transmitted.

5. If the design is downloaded successfully, a message appears
informing you that the device is configured.

Verifying Individual Devices in a Daisy Chain
The Hardware Debugger and XChecker cable cannot read back or
verify a daisy chain of FPGA devices. They can only read back and
verify individual devices in a daisy chain.

To verify a device, the design must meet the conditions described in
the “Verifying Design Logic” section. To verify an individual device,
follow these steps.

1. Connect the XChecker cable directly to the readback pins of the
device you want to verify.

2. Select File → Open → Project to open a project that contains a
BIT file.

3. Select Download → Verify Bitstream or click the following
toolbar button.

4. When verification is complete, a message lets you know whether
verification succeeded or failed. If verification failed, the message
provides the number of mismatched bits.

Hardware Debugger Guide — Alliance 3.1i 6-1

Chapter 6

Debugging a Device

This chapter explains how to debug a configured FPGA in either
synchronous or asynchronous mode and how to save the readback
data in a file. It contains the following sections.

• “Debugging Basics”

• “Debugging a Configured FPGA”

• “Synchronous Mode Debugging”

• “Asynchronous Mode Debugging”

• “Creating and Modifying a Signal Group”

• “Creating and Modifying a Signal List”

• “Saving and Loading Readback Data”

Debugging Basics
Debugging refers to the process of reading back the internal states of
a configured device using an XChecker Cable to ensure that the
device is functioning as expected. After simulating a design to test it
using worst-case delays, debug the device to analyze its in-circuit
real-time behavior.

Note: The MultiLINX Cable does not currently support debug.

Debugging a Configured FPGA
After configuring a device, you can analyze its behavior by taking
snapshots of the device’s probe points. Flip-flops, RAMs, CLB
outputs, and IOBs are all probe points and are read back when a
snapshot of the device is taken. See the “Probe Points in FPGA
Devices” table of the “Introduction” chapter for more information.

Hardware Debugger Guide

6-2 Xilinx Development System

The two debugging modes for capturing the states of a device are
synchronous and asynchronous.

Synchronous
During synchronous debugging, the XChecker Cable is used to
control your system clock and the state of your design. This allows
you to probe the internal nodes at states that are known and stable. To
control the clock, you can use the XChecker internal clock, as
opposed to a system clock or a device clock. The XChecker Cable can
also interface with a system clock, enabling you to start and stop the
clock.

Asynchronous
During asynchronous debugging, the Hardware Debugger does not
control the clock and therefore does not control which states are
captured. Use asynchronous debugging if you have an onboard
microprocessor or equivalent device that allows you to control the
state of your FPGA.

Note: If the state is not static when the internal nodes are probed, the
values on some probes may reflect one state while values on other
nodes may reflect a later state. This occurs because the values of the
nodes can change during the time it takes for probing.

Debugging Overview
This section summarizes the debugging process. For more details,
continue with the “Synchronous Mode Debugging” section or the
“Asynchronous Mode Debugging” section. To perform debugging,
you must meet the criteria for verification and debugging listed in the
“Verifying Design Logic” section of the “Programming a Device or a
Daisy Chain” chapter.

After you download a BIT file using the Download → Download
Design command, you can read back the states of the configured
device using the Debug menu commands, as described in the
following steps.

1. Choose a debugging mode by selecting either Debug →
Synchronous Mode or Debug → Asynchronous Mode .

Debugging a Device

Hardware Debugger Guide 6-3

2. Set the appropriate options, such as the trigger type, the signals
to display, and, in the case of synchronous debugging, the clock
options, using the Debug → Settings submenu.

For more information on the commands in this submenu, see the
“Menu Commands” chapter.

3. Open a new waveform window by selecting File → New→
Waveform .

4. Click Display to select the signals for display.

5. Click Read to read the signals that you selected for display.

The signals are displayed in the active waveform window.

Debugging a Previously Debugged Design
To debug a previously debugged design, specify the debug mode
after opening the design. The Hardware Debugger loads the relevant
settings for the specified debugging mode. The data, summarized in
the following table, is saved in your project file, design_name.xck.

Table 6-1 Available Synchronous and Asynchronous Settings

Settings Synchronous Mode
Asynchronous

Mode

Trigger X X

Number of clock
cycles before and
between snapshots

X

Timeout X X

Reset before read-
back

X X

Clock X

Number of clocks X

Snapshots X

Groups and their
radix settings

X X

Displayed signals X X

Hardware Debugger Guide

6-4 Xilinx Development System

Synchronous Mode Debugging
You must first download your design before you can debug it. The
synchronous mode requires, the XChecker Cable, to conduct a
controlled readback of your design. In this debug mode, you control
the clock through the XChecker Cable.

The snapshot and clock features, which are available when
performing synchronous mode debugging, enable you to define
specific clock patterns to gather the device states you want. For
example, if you are debugging a counter, you may want to check that
the combinational values generate the state value of 10. Set the
Number of Clocks Before First Snapshot to 10 and the number of
snapshots to 1 to capture state 10 of the device.

In addition, you can use the following options.

• Start Clock

This option establishes a free-running clock on the CLKO pin and
advances the states of the device forward.

• Stop Clock

This option stops the clock being applied on the CLKO pin.

• Reset FPGA

This option uses an active-Low pulse to set the device to its initial
state.

• Apply CLKO Clock(s)

This option moves the device forward the number of states set by
the Number of CLKO Clocks to Apply option.

Pin Assignments
Before using the synchronous mode, choose whether you want to use
an internal XChecker clock or an external clock connected to the
XChecker CLKI pin.

• To use the internal XChecker clock, connect the CLKO pin to the
FPGA system clock input pin in place of an oscillator, and leave
the CLKI pin unconnected.

Debugging a Device

Hardware Debugger Guide 6-5

• To use an external CLKI clock, connect the system clock to the
XChecker CLKI pin and connect the XChecker CLKO pin to the
FPGA system clock input pin.

Debugging in Synchronous Mode
To debug in synchronous mode, follow these steps.

1. Select Debug → Synchronous Mode or click the following
toolbar button.

The Debug → Settings commands and the Debug Control Panel
options, shown in the following figure, are set for synchronous
debugging.

Figure 6-1 Debug Control Panel (Synchronous Mode)

2. Select Debug → Settings → CLKO Clock Source or click the
Clocks button in the Debug Control Panel.

The CLKO Clock Settings dialog box appears as shown in the
following figure.

Hardware Debugger Guide

6-6 Xilinx Development System

Figure 6-2 CLKO Clock Settings Dialog Box

3. Click the appropriate radio button for the clock you want to use:
Use XChecker Clock or Use CLKI .

• If you select the XChecker Clock, set the clock frequency
(0.921, 2.764, 5.529, or 11.059 MHz).

• If you select the CLKI clock, the FPGA uses the system clock
connected to the XChecker CLKI pin. In this case, you cannot
set the clock speed. The list box for the clock frequency is
disabled.

4. After setting the desired clock settings, click OK.

The CLKO Clock Settings dialog box closes and the status bar
displays the clock settings.

5. Select Debug → Settings → Trigger or click the Trigger
button in the Debug Control Panel.

The Synchronous Trigger Settings dialog box appears, as shown
in the following figure. You can select the type of trigger you
want to initiate the readback.

Debugging a Device

Hardware Debugger Guide 6-7

Figure 6-3 Synchronous Trigger Settings Dialog Box

6. In the Trigger On list box, select External pin (active-High on
the TRIG pin of the XChecker Cable) or Enter Key to initiate a
readback, or you can initiate a readback Immediately after the
Read Snapshots command is executed.

7. In the Number of Clock Cycles field, specify the number of clock
cycles to apply before the first snapshot and between snapshots.
Use these options to cycle the device before the first snapshot and
between multiple snapshots.

8. Use the Timeout After option to specify the cutoff time for
trigger detection. If the trigger is not received within the specified
time, the readback is canceled.

9. Select Pulse RESET at First Snapshot to reset the device
each time you execute the Read Snapshots command.

10. After setting the desired trigger settings, click OK.

The Synchronous Trigger Settings dialog box closes and the
status bar displays the Trigger settings.

11. Select Debug → Settings → Display Signals or click the
Display button in the Debug Control Panel to choose the
signals and groups that you want to display.

Hardware Debugger Guide

6-8 Xilinx Development System

For details on how to select signals for display, see the “Creating
and Modifying a Signal List” section in this chapter.

12. Select Debug → Settings → Number of Snapshots to
Read or type a number in the Number of Snapshots field in
the Debug Control Panel.

The Snapshots Count dialog box appears, as shown in the “Snap-
shots Count Dialog Box” figure, allowing you to enter the
number of snapshots to read.

Figure 6-4 Snapshots Count Dialog Box

13. Enter the number of snapshots. Click OK.

The Snapshots Count dialog box closes and the status bar
displays the number of snapshots.

14. Select Debug → Read Snapshots or click Read in the Debug
Control Panel to read the states of the signals that you selected for
debugging.

The device being read back returns its configuration data and the
state of every probe point when a readback is triggered.

The software then extracts the signals you selected and displays
the signal values in a waveform, as shown in the following figure.

Debugging a Device

Hardware Debugger Guide 6-9

Figure 6-5 Waveform Window

Note: The readback data stream is linked to the active waveform
window only. After the connection is closed, the waveform window
is not updated with new information.

Cycling the Device
You can control the clock through the XChecker Cable by applying a
specific number of clocks to the device. When you apply clocks to
your device, you advance the state of your device.

Follow these steps to apply Clocks to your device.

1. Select Debug → Settings → Number of CLKO Clocks to
Apply and enter the number of clocks to apply or type a number
in the Number of Clocks field in the Debug Control Panel.

2. Select Debug → Apply CLKO Clock(s) to cycle the device the
number of clocks specified in the Number of Clocks to Apply
field. Alternatively, you can click Apply in the Debug Control
Panel.

Note: When the number of clocks to apply is set to 1, the Apply
Clocks command can be used to single step the device during
synchronous debugging.

Hardware Debugger Guide

6-10 Xilinx Development System

Resetting the FPGA
If you have not set the Pulse RESET at First Snapshot option in the
Trigger Settings dialog box, choose Debug → Reset FPGA to issue
an active-Low reset before issuing the Read Snapshots command.

Viewing Additional Signals
Follow these steps to view new signals on your waveform, you must
add these signals to the display list and read the device states again.

1. Use the Debug → Settings → Display Signals command
or click Display in the Debug Control Panel to add new signals
to the display list.

2. In the Display Signals dialog box, add the new signals to the
display.

3. Click OK.

4. Select Debug → Read Snapshots to read the states of the new
signals.

Viewing the Waveform in Text Mode
Select View → Text Data to display the snapshots in textual form.

Asynchronous Mode Debugging
Asynchronous mode debugging allows you to use any external clock.
Because the XChecker Cable does not control the system clock, any
number of clocks can occur between snapshots; and all snapshots are
asynchronous to the system clock.

Pin Assignments
In asynchronous mode, leave the XChecker CLKI and CLKO pins
unconnected since you do not use the XChecker Cable to control the
clock. Instead, you use an oscillator to drive the FPGA system clock
directly. Connect the system clock so that it controls the target device
flip-flops directly.

Debugging a Device

Hardware Debugger Guide 6-11

Debugging in the Asynchronous Mode
In asynchronous mode debugging, you use a free-running clock to
cycle the device as described in the following steps.

1. Select Debug → Asynchronous Mode or click the following
toolbar button.

The Debug → Settings commands and the Debug Control Panel
options, shown in the following figure, are used for asynchro-
nous debugging.

Figure 6-6 Debug Control Panel (Asynchronous Mode)

Note: Because the Hardware Debugger does not control the system
clock, the clock settings are disabled.

2. Select Debug → Settings → Trigger or click the Triggers
button in the Debug Control Panel.

The Trigger command invokes the Asynchronous Trigger
Settings dialog box, shown in the following figure, which enables
you to select the type of trigger you want to initiate the readback.

Hardware Debugger Guide

6-12 Xilinx Development System

Figure 6-7 Asynchronous Trigger Settings Dialog Box

3. In the Trigger On list box, select External pin (active-High on
the TRIG pin of the XChecker Cable) or Enter Key to initiate a
readback, or you can initiate a readback Immediately after the
Read Snapshots command is invoked.

4. Use the Timeout After option to specify the cutoff time for a
trigger to be detected. If the trigger is not received within the
specified time, the readback is canceled.

5. Select Pulse RESET at First Snapshot to reset the device
each time you execute the Read Snapshots command.

6. After setting the desired trigger settings, click OK.

The Asynchronous Trigger Settings dialog box closes and the
status bar displays the Trigger settings.

7. Select Debug → Settings → Display Signals or click
Display in the Debug Control Panel to choose the signals and
groups that you want to display.

For details on how to select signals for display, see the “Creating
and Modifying a Signal List” section in this chapter.

Debugging a Device

Hardware Debugger Guide 6-13

8. Select Debug → Reset FPGA or click Pulse /RESET on the
Debug Control Panel whenever you need to reinitialize the
device.

9. Select Debug → Read Snapshots to read the states of the
signals that you selected for debugging or click Read in the
Debug Control Panel.

The device being read back returns its configuration data and the
state of every probe point when a readback is triggered.

Note: The readback data stream is linked to the active waveform
window only. After the connection is closed, the waveform window
is not updated with new information.

Creating and Modifying a Signal Group
Use the Debug → Settings → Signal Groups command to create a
group of signals or to add or remove signals from a previously
defined group of signals. Use this option in conjunction with the
Debug → Settings → Display Signals command when you are in the
process of debugging a design.

Creating a Signal Group
Follow this procedure to create a signal group.

1. Select Debug → Settings → Signal Groups .

The Signal Groups command invokes the Signal Groups dialog
box, shown in the following figure, which enables you to select
the signal groups that you want to probe.

Hardware Debugger Guide

6-14 Xilinx Development System

Figure 6-8 Signal Groups Dialog Box

2. Click New.

3. Type the name of the group you want to create in the Name field
of the Group Name popup dialog box.

4. Use the Filter For Signals field to filter the signal names and make
signal selection easier. For example, if you specify the letter A
followed by a wildcard (*) all signal names that start with “A” are
filtered.

Click Apply to apply the filter to the signals displayed in the
Available Signals list box. To redisplay the complete signal list,
click Clear .

5. Select the signals you want to include in the group by high-
lighting the desired signals in the Available Signals list box and
selecting the > button to move the highlighted signals to the
Grouped Signals list box.

Debugging a Device

Hardware Debugger Guide 6-15

To remove signals from the Grouped Signals list box, select the
signals and click the < button.

To add or remove all the signals displayed in a list box, use the
<< or >> button.

To rearrange the order of the signals displayed in the Grouped
Signals list box, use the Up and Down buttons below the list box.

6. Click Save to save the new group.

7. Click Close to exit the Signal Groups window.

8. Refer to the “Creating and Modifying a Signal List” section for
information on how to include the groups you created in your
display list.

Modifying a Signal Group
The Signal Groups dialog box contains a list of previously defined
signal groups and a list of signals. Use this dialog box to add or
remove signals from a group as described in the following steps.

1. Select Debug → Settings → Signal Groups or click the
Groups button in the Debug Control Panel.

2. Click the down-arrow of the Groups drop-down list box and
select the desired group.

The signals currently included in the selected group are listed in
the Grouped Signals list box. The signals that are not included
are displayed in the Available Signals list box.

3. Add or remove the signals you want using the < or > button.

4. Use the Up or Down buttons to rearrange the order of the signals.

5. Click Save to save the new group.

6. Click Close to exit from the Signal Groups dialog box.

Note: To delete a group, go to the Signal Groups dialog box, select
the existing group from the Groups drop-down list box, and click
Delete .

Hardware Debugger Guide

6-16 Xilinx Development System

Creating and Modifying a Signal List
The signal list can consist of signals, groups, and RAM bits. Use the
Display Signals dialog box to create the list of signals to be displayed,
including any signal groups that you have created.

Open the Display Signals dialog box and select the signals to include
in the Displayed Signals list. The Displayed Signals list is a list of
signals, groups, and RAM bits you select for probing with the Hard-
ware Debugger.

Note: To display a new signal group, you must first define it in the
Display Groups dialog box before adding it to the Displayed Signals
list. Refer to the procedure in the “Creating a Signal Group” section.

1. Select Debug → Settings → Display Signals or click the
Display button in the Debug Control Panel.

The Display Signals dialog box, shown in the following figure,
appears.

Debugging a Device

Hardware Debugger Guide 6-17

Figure 6-9 Display Signals Dialog Box

2. Click Signals , Groups , or RAM Bits to display the list of avail-
able signals, signal groups, or RAM bits.

3. Use the Filter for Signals field to make signal selection easier. For
example, if you specify the letter “A” followed by a wildcard (*)
all signal names that start with “A” are filtered

Click Apply to apply the filter to the Signals displayed in the
Available Signals list box. To redisplay the complete signal list,
click Clear .

4. In the Available Signals list box, highlight one or more of the
signals, groups, or RAM bits you want to probe.

5. Click the > button to move the highlighted signals to the
Displayed Signals list box.

Hardware Debugger Guide

6-18 Xilinx Development System

To remove signals from the Displayed Signals list box, select the
signals and click the < button.

To add or remove all the signals displayed in a list box, use the <<
or >> button.

To rearrange the order of the signals displayed in the Displayed
Signals list box, use the Up and Down buttons below the list box.

6. Click OK to exit from the Display Signals dialog box.

The current waveform is automatically updated with the new
signals, which appear as cross-hatched hexagons.

Saving and Loading Readback Data
After generating a readback sequence of your signals, you can save
the readback data you generated. Saving readback data is useful for
multiple design analyses, for comparison, and design optimization.

You can view previously saved readback data textually or as wave-
forms. When the file is first opened, the data is displayed in a wave-
form. To view the data textually, use the View → Text Data command.

Saving Readback Data
Follow this procedure to save readback data.

1. Click on the waveform that you want to save and choose File →
Save or click the following toolbar button.

The Save As dialog box appears.

Debugging a Device

Hardware Debugger Guide 6-19

Figure 6-10 Save As Dialog Box

2. In the File Name field, type or select the name of the file you
want to save. By default, the .wvf extension is appended to the
file name.

If you want to change the path for your readback data, select the
desired directory in the Directories field.

3. Click OK to save the data.

Viewing Previously Saved Readback Data
Follow these steps to view previously saved readback data.

1. Select File → Open → Waveform to view previously saved
readback data.

2. In the Open dialog box, specify the file name and click OK.

The data is displayed in the format in which it was saved.

3. To view the data textually, select View → Text Data or click the
following toolbar button.

Hardware Debugger Guide

6-20 Xilinx Development System

4. To view the data graphically, select View → Waveform Data or
click the following toolbar button.

Hardware Debugger Guide — Alliance 3.1i 7-1

Chapter 7

Customizing the Interface

This chapter describes how to customize the Hardware Debugger.
You can optimize its use by creating macros using predefined settings
and changing the display parameters. This chapter describes these
tasks in the following sections.

• “Using Macros”

• “Controlling the Waveform Display Parameters”

Using Macros
The Hardware Debugger allows you to define macros to automate
tasks. After you have completed a procedure, you can capture the
steps you want to include in your macro by selecting the commands
from the Console window, copying them into a macro window, and
saving the macro.

Alternatively, you can type the commands directly in a macro
window. For information about the available commands and syntax,
refer to the “Console Commands” appendix.

Creating a Macro
Follow these steps to create a macro.

1. Select File → New→ Macro .

A macro window appears, as shown in the following figure.

Hardware Debugger Guide

7-2 Xilinx Development System

Figure 7-1 New Macro Window

2. Select View → Console to display the Console window and
view the commands that have been executed.

The Console window appears.

Figure 7-2 Console Window

3. Click the left mouse button at the beginning of the first command
that you want to copy. Holding down the Shift key, click the left
mouse button at the end of the last command you want to copy.

4. Copy the steps you want from the Console window by selecting
Edit → Copy.

Customizing the Interface

Hardware Debugger Guide 7-3

5. Select the macro window.

6. Paste the commands into the macro window by selecting Edit
→ Paste .

7. Repeat steps 3 through 6 to copy non-consecutive lines into the
macro.

8. Use comments to note options and strategies, by preceding your
comment text with the # character. Comments in a macro file
always start with the # character on the line.

9. Save the macro using the File → Save or click the following
toolbar button.

Editing an Existing Macro
To edit an existing macro, follow these steps.

1. Select File → Open → Macro from the menu and open the
macro you want to modify from the list of macros in the Open
Macro File dialog box.

2. In the Macro window, select commands by double-clicking the
left mouse button to select a word. You can also select an entire
block of text by pressing the left mouse button and dragging the
mouse to the end of the region you want to copy.

3. Use the Cut , Copy, and Paste commands from the Edit menu
to copy the selected information and paste it at the new insertion
point.

4. Select File → Save to save the change or click the following
toolbar button.

Hardware Debugger Guide

7-4 Xilinx Development System

Running a Macro
To run a macro, follow these steps.

1. Open the macro by selecting File → Open → Macro .

2. Select File → Run Macro or click the following toolbar button.

Saving the Console Log to a File
You can check the command history for a debug session by opening
the Console window. You can also save the command history, or
command log, to a text file.

1. Select the contents of the Console window by clicking the left
mouse button at the top of the window and dragging the cursor
down to the end of the window.

To select the entire log, select the top part of the log, then click on
the scroll bar to scroll down to the bottom of the page. At the
bottom of the page, press the Shift key while you click the mouse
button again to complete the selection.

2. Select Edit → Copy to copy the selected contents of the Console
window to the clipboard.

3. Open a new file in a text editor and paste the contents of the clip-
board into the file.

The contents of the Console window appear inside the file.

4. Save the file using the appropriate text editor command.

Controlling the Waveform Display Parameters
This section describes the features available for customizing your
waveform window. After generating a waveform, you can modify its
format by changing the display mode from graphics to text, modi-
fying the radix of your groups, and changing the color of the wave-
form window background and signals. In addition, you can change

Customizing the Interface

Hardware Debugger Guide 7-5

the size of the waveform and the position of the windows on the
screen.

Waveform Window (Textual View)
In the text mode, the waveform window displays a textual represen-
tation of the device states you specified for viewing, as shown in the
following figure. This view is a tabular display of the readback infor-
mation.

Figure 7-3 Active Waveform Window (Textual View)

The textual waveform window contains the following areas.

Signals

This column shows the names of the displayed signals and signal
groups.

Hardware Debugger Guide

7-6 Xilinx Development System

Cycle

The data in this column reflect the position of the vertical cursor in
the text data window. The header shows the number of the selected
snapshot. The column shows the readback values of the selected
signals and signal groups.

Text Data Window

This column contains the following areas.

• Cycle Scale

This area, above the text data area, shows the snapshot counts,
number of applied clock cycles, and reset states.Each snapshot
count appears as a red triangle. The number of clock cycles
applied between consecutive snapshots appears above each
snapshot mark.Each Reset state appears as a blue diamond with a
vertical line.

• Text Data

This display area shows text data for the readback values of
signals and signal groups.

Waveform Window (Graphical View)
In the graphical mode, the waveform window displays a graphical
representation of the signals you specified for viewing, as shown in
the following figure.

Customizing the Interface

Hardware Debugger Guide 7-7

Figure 7-4 Active Waveform Window (Graphical View)

The Graphical Waveform window includes the following areas.

Signals

This column shows the names of the displayed signals and signal
groups.

Cycle

The data in this column reflect the position of the vertical cursor in
the waveform data window. The header shows the number of the
selected snapshot. The column shows the readback value of the
selected signals and signal groups.

Waveform Data Window

This column contains the following areas.

• Cycle Scale

Hardware Debugger Guide

7-8 Xilinx Development System

This area, above the waveform data area, shows the snapshot
counts, number of applied clock cycles, and reset states.

Each snapshot count appears as a red triangle. The number of
clock cycles applied between consecutive snapshots appears
above each snapshot mark.

Each Reset state appears as a blue diamond with a vertical line.

• Waveform Data

This display area shows waveforms for the readback values of
signals and signal groups.Each signal appears as a semi-rectan-
gular wave. Each signal group appears as a complete hexagonal
wave.

Note: To start readback from the beginning, you can perform a wave-
form reset by using the Debug Reset Control. To clear, click right
mouse.

Changing the Size of the Waveform
Use the options listed under the View menu to change the size of the
waveform on your screen or to update your screen.

• Select View → Zoom In or click the Zoom In toolbar button to
increase the size of your waveform.

• Select View → Zoom Out or click the Zoom Out toolbar button to
decrease the size of your waveform.

• Select View → Zoom To Fit or click the Zoom To Fit toolbar
button to fit all of the waveform cycles into the current window.

Customizing the Interface

Hardware Debugger Guide 7-9

• Select View → Zoom Reset or click the Zoom Reset toolbar
button to return the display to the default state.

• Select View → Refresh to redraw the elements on your screen
and update the current waveform using the latest debugging
modifications.

Controlling the Position of the Windows
To change the way the windows are displayed on your screen, follow
these guidelines. The window that is in focus processes the
commands you invoke.

• Select Window → Arrange to arrange the iconized windows as
non-overlapping tiles at the bottom of the main window.

• Select Window → Cascade to display each window on top of the
preceding window in a cascading arrangement.

• Select Window → Tile Horizontally to arrange the windows
horizontally.

• Select Window → Tile Vertically to arrange the windows
vertically.

Changing the Radix of Displayed Signal Groups
Use the View → Group Radix command to display or change the
radices of your signal groups. Possible radices include binary, octal,
decimal, and hexadecimal. The radix is applied to all groups.

1. Select View → Group Radix from the menu.

2. Click on the desired radix.

Hardware Debugger Guide

7-10 Xilinx Development System

Changing the Color of the Waveform Window
You can change the color of the signals and background of the wave-
form window.

1. To modify a signal color, click on the signal in the waveform
window that you want to modify.

2. Select View → Color Signals .

3. From the Color dialog box, select a color or create a custom color
to select.

4. Click OK to apply the color change.

5. To modify the background color, click on the waveform window
that you want to modify.

6. Select View → Background Color .

7. From the Color dialog box, select a color or create a custom color
to select.

8. Click OK to apply the color change.

Removing a Signal
Use the popup menu commands in the Waveform window to remove
signal waveforms.

1. Select the signal on the waveform.

2. Select Delete Signals from the popup menu.

Hardware Debugger Guide — Alliance 3.1i A-1

Appendix A

Glossary of Terms

This appendix contains definitions and explanations for terms
commonly used in the Hardware Debugger program.

asynchronous debugging
A debugging mode in which you capture data without controlling
your system clock through the Hardware Debugger.

BIT file
A synonym for a configuration bitstream file.

bitstream (BIT file)
A data stream, also called BIT file, that contains location information
of logic on a device, that is, the placement of CLBs, IOBs, TBUFs,
pins, and routing elements. The bitstream also includes empty place-
holders that are filled with the logical states sent by the device during
a readback. Only the memory elements, such as flip-flops, RAMs, and
CLB outputs, are mapped to these placeholders, because their
contents are likely to change from one state to another. When down-
loaded to a device, a bitstream programs the device.

A bitstream file has a .bit extension.

CCLK pin
The pin of the configuration cable that connects the configuration
clock to the device.

Hardware Debugger Guide

A-2 Xilinx Development System

CFG_DONE pin
This pin has the same functionality as the ~PROGRAM pin on the
XC4000, XC5200, and Spartan FPGAs. The CFG_DONE pin is a
MultiLINX Target Interface Pin.

CFG_RDY pin
When asserted, this pin indicates that the FPGA is ready to receive
configuration data. When de-asserted, the pin indicates that either the
FPGA is in the power-up mode, or a configuration error has occurred.
This pin has the same functionality as the INIT pin on the Spartan,
XC3000, XC4000, and XC5200 FPGAs. The CFG_RDY pin is a Multi-
LINX Target Interface Pin.

CFG_RESET pin
This pin has the same functionality as the ~PROGRAM pin on the
XC4000, XC5200, and Spartan FPGAs. The CFG_RESET pin is a
MultiLINX Target Interface Pin.

CLKI pin
XChecker and MultiLINX cables clock input pin. This pin connects
the system clock to the XChecker Cable. The frequency of this clock
must be in the range of 120 kHz to 10 MHz. Connecting the system
clock to the CLKI pin allows the Hardware Debugger to control the
system clock so that snapshots are captured while the design is in a
known state. If the clock source is external, the clock signal is
connected to the CLKI pin; if it is internal, the clock signal is gener-
ated by the XChecker Cable electronics.

CLKO pin
XChecker and MultiLINX cables clock output pin. This pin connects
to the destination of the target system clock. Connecting the CLKO
pin to the system clock allows the Hardware Debugger to control the
system clock so that snapshots are captured while the design is in a
known state.

Glossary of Terms

Hardware Debugger Guide A-3

console log
A record of the commands that you executed during a Hardware
Debugger session.

control panel
A dialog box in the Hardware Debugger that consists of buttons and
fields for debugging purposes. The control panel is displayed if the
Hardware Debugger detects that readback is enabled for a design.
The control panel commands offer an alternative to the Debug menu
commands.

CS/CS0 pin
CS on the Virtex; and CS0 on the XC4000 and XC5200 FPGAs. The
CS/CS0 pin represents a chip select to the target FPGA during config-
uration. The CS/CS0 pin is a MultiLINX Target Interface Pin.

CS1 pin
Chip Select to the XC4000 and XC5200 FPGAs during configuration.
The CS1 pin is a MultiLINX Target Interface Pin.

CS2 pin
Chip Select to the XC3000 FPGA while using the Peripheral configu-
ration mode. The CS2 pin is a MultiLINX Target Interface Pin.

debugging
The process of reading back or probing the states of a configured
device to ensure that the device is behaving normally while in circuit.

DIN pin
The Data In pin of the configuration cable connects to the DIN pin of
your target device. In serial mode, the DIN pin loads the bitstream
data to the target FPGA.

Hardware Debugger Guide

A-4 Xilinx Development System

DONE pin (XC4000/XC5200)
This pin connects to the DONE pin of your target FPGA. It indicates
the completion of the configuration process. During configuration,
this pin is Low. After configuration, this pin is High.

downloading
Configuring or programming a device by sending bitstream data to
the device.

D/P pin (XC3000)
The dual function Done/Program pin of your configuration cable.
The pin connects to the D/P pin on your target device. As an input,
D/P=0 is used to initiate a device reconfiguration. As an output, D/
P=1 signals the end of configuration.

D0-D7 pins
An 8 bit data bus supporting the Express, and SelectMAP configura-
tion modes. The D0-D7 pins are MultiLINX Target Interface Pins.

external clock
The clock connected to the XChecker CLKI pin that the Hardware
Debugger uses for synchronous mode debugging. To use an external
clock, connect the system clock to the XChecker Cable using the CLKI
pin and connect the XChecker CLKO pin to the system clock loads.

GND pin
Ground (0 volt) pin of the configuration cable. This pin connects to
the Ground pin of a power supply.

group
A combination of signals that have a common output. In the case of a
counter, for example, the different signals that produce the actual
counter values can be grouped under the same name and share a
common representation.

Glossary of Terms

Hardware Debugger Guide A-5

INIT pin
Initialization pin on your configuration cable. This pin is connected
to the INIT pin of your target device indicating when a device is
ready to receive configuration data after power up. During configura-
tion, INIT=0 indicates a configuration error.

internal clock
The clock provided by the XChecker Cable. This clock is generated in
the XChecker Cable electronics and is output on the CLKO pin. It is
available in synchronous mode and is controlled from the Hardware
Debugger.

(.ll) file
The logic allocation file, which indicates the bitstream position of
elements that can be probed, such as latches, flip-flops, and IOB
inputs and outputs. The Hardware Debugger uses this file to locate
signal values inside a readback bitstream. This file is created during
the implementation process if readback is enabled.

(.msk) file
The mask file, (.msk) file indicates which bits are configuration bits
and which ones are not. This file is needed to do a verify operation on
a Virtex family device using the MultiLINX Cable. This file is gener-
ated during the implementation process (BitGen) if readback is
enabled in the “Configuration Template”.

main window
The background against which other windows are displayed in the
Hardware Debugger.

menu bar
The area located at the top of the Hardware Debugger window. It
includes the File, Cable, Download, Debug, View, Window, and Help
menus. Refer to the “Menu Commands” chapter for information on
the menu commands.

Hardware Debugger Guide

A-6 Xilinx Development System

number of clock cycles
The number of clocks that occur between snapshots. When capturing
multiple snapshots during synchronous mode debugging, the
number of snapshots is used as a trigger for capturing each snapshot.

probing
The process of examining the signal states of an FPGA device.

PROG pin
The Program pin of your configuration cable provides a reprogram
pulse to XC4000 and XC5200 devices when connected to the PROG
pin of the device.

PROM file
A PROM file is the file output by the PROM File Formatter, which can
be used to program one or more devices. The PROM File Formatter
supports the following PROM file formats: MCS (Intel MCS-86), EXO
(Motorola EXORMacs), TEKHEX (Tektronix hexadecimal), and HEX.

RBT file
A raw BIT format file, the ASCII version of the BIT file.

readback
The process of reading the logic downloaded to an FPGA device.
There are two types of readbacks.

• A readback with a filter that extracts the configuration bits to
verify that a design was downloaded correctly.

• A readback with a filter that extracts the state of design storage
elements, CLB outputs, and IOB outputs to ensure that the device
is behaving as expected.

Glossary of Terms

Hardware Debugger Guide A-7

RD(TDO) pin
The readback data pin of the XChecker Cable and the MultiLINX
Cable. This pin connects to the RDATA pin of the device. When
connected, the pin reads data from the programmed target device.

RDWR pin
The RDWR pin is used as an active high READ and an active low
WRITE control signal to the Virtex FPGA. The RDWR pin is a Multi-
LINX Target Interface Pin.

RDY/BUSY pin
Use the BUSY pin overfertilize devices and the RDY/~BUSY pin on
the XC3000, XC4000, and XC5200 FPGAs. The RDY/BUSY pin is a
MultiLINX Target Interface Pin.

RS pin
Read Select control for the Asynchronous Peripheral configuration
mode on XC4000 and XC5200 FPGAs. The RS pin is a MultiLINX
Target Interface Pin.

RST pin
The Reset pin of the XChecker Cable and the MultiLINX Cable
connects to the RST pin of the target device. This pin is driven Low
by the Hardware Debugger after configuration to initialize the target
XC3000 FPGA internal latches and flip-flops. After configuration, this
pin can be used as an active-Low reset when debugging XC4000 and
XC5200 devices.

For XC4000 and XC5200 devices, the FPGA expects an active-High
reset, but the Hardware Debugger produces an active-Low reset
pulse. Users should invert the reset pulse before driving the GSR pin
on the STARTUP symbol.

RT pin
The readback trigger pin of the XChecker Cable and the MultiLINX
Cable. This pin connects to the device RTRIG pin. When the

Hardware Debugger Guide

A-8 Xilinx Development System

XChecker Cable drives this pin High, the pin initiates a readback on
the target FPGA.

snapshot
Readback data that contains the values of all storage elements, CLB
outputs, and IOB inputs and outputs of a design at a point in time.

In the waveform window, each snapshot is marked by a red triangle.

states
The values stored in the memory elements of a device (flip-flops,
latches, RAMs, CLB outputs, and IOBs) that represent the state of that
device for a particular readback. To each state there corresponds a
specific set of logical values.

status bar
The field located at the bottom of the Hardware Debugger window. It
provides information about the commands that you are about to
select or that are already being processed.

synchronous debugging
A debugging mode in which you use the XChecker Cable to control
your system clock so that snapshots can be captured while the design
is in a known state.

TCK pin
In the Hardware Debugger, an XChecker Cable and MultiLINX Cable
pin reserved for future use. It can be used as a digital probe point
using the Cable → Logic Level of Pins command.

TDI pin
In the Hardware Debugger, an XChecker Cable and MultiLINX Cable
pin reserved for future use. It can be used as a digital probe point
using the Cable → Logic Level of Pins command.

Glossary of Terms

Hardware Debugger Guide A-9

TMS pin
In the Hardware Debugger, an XChecker Cable and MultiLINX Cable
pin reserved for future use. It can be used as a digital probe point
using the Cable → Logic Level of Pins command.

toolbar
A field located under the menu bar at the top of the main window. It
contains a series of buttons that execute some of the most frequently
used commands. These buttons constitute an alternative to the menu
commands.

TRIG pin
The external trigger pin of the XChecker Cable and the MultiLINX
Cable. This pin is connected to an external signal used as a trigger. A
Low to High transition on this pin signals the cables to initiate a read-
back.

trigger
A signal that tells the Hardware Debugger to read a snapshot.

VCC pin
Power (5 volt) pin of the XChecker Cable. This pin connects to the
power pin of a 5 volt power supply.

verification
The process of reading back the configuration data and comparing it
to the original downloaded design to ensure that all of the design
was received by the device.

waveform
The graphical representation of one or more readbacks. Usually, you
select a set of signals and a set of readbacks for display. Each read-
back represents a particular state of the memory elements of the
device.

Hardware Debugger Guide

A-10 Xilinx Development System

WS pin
Write Select control for the Asynchronous Peripheral configuration
mode on XC4000 and XC5200 FPGAs during configuration. The WS
pin is a MultiLINX Target Interface Pin.

Hardware Debugger Guide — Alliance 3.1i B-1

Appendix B

Console Commands

Console commands are entered from the Console window. You can
use console commands as an alternative to menu commands.
Console commands do not display the dialog and message boxes
associated with the menu commands. To get command feedback, you
can use the Force command. Additionally, you can also turn on the
Show Command Status check box in the Console window. This
chapter contains the following sections.

• “Conventions”

• “Alphabetical Listing of Commands”

To automate design debugging, you can copy commands from the
Console window into a macro window to build macros. See the
“Using Macros” section of the “Customizing the Interface” chapter
for information.

Note: Do not use console commands until you are familiar with the
graphical user interface commands because console commands must
be executed in a particular order.

Conventions
The following is a summary of the syntax used for Console
commands.

• When an option occurs without parentheses “()” next to the
command name in the syntax, it is required. When it appears in
square brackets “[],” the variable is optional.

• When two or more options occur between braces “{ },” they must
be entered with the command. If the options are separated by a
vertical bar “|,” you must choose one of the possible parameters.
If one term is divided into a subset of parameters that can be

Hardware Debugger Guide

B-2 Xilinx Development System

entered separately or together, each subparameter occurs
between square brackets.

Alphabetical Listing of Commands
The following summarizes the console commands discussed in this
chapter.

Note: The Clock, Display, Group, Readfpga, and Setmode commands
are not available when using the MultiLINX Cable.

Baud Sets the baud rate

Cable Sets the cable options

Clock Sets the clock options

Display Selects the signals to debug

Download Programs target device with the current
design

Exit Exits the Hardware Debugger

Force Displays or hides the message boxes

Group Defines groups of signals for debugging

Open Loads the configuration data

Port Selects the communications port

Readfpga Reads the device states using the speci-
fied debugging settings (snapshot
number, signals, and groups)

Reset Reinitializes the target device

Run Executes the macro in the current macro
window

Setmode Selects the debugging mode, synchro-
nous or asynchronous

Trigger Selects the source of the readback trigger

Verify Verifies the design was downloaded
correctly

Console Commands

Hardware Debugger Guide B-3

Baud
Use this command to set the cable baud rate

Syntax

baud rate

Parameters

This command has one parameter.

rate specifies the rate at which the data is transferred between the
computer and the serial or XChecker Cable and MultiLINX Cable;
this parameter can be set to {9600 | 19200 | 38400 | 15200}

Note: The 115200 baud rate is valid only on HP and PC platforms.
For the MultiLINX Cable replace “115200” with “57600”.

Examples

Following is an example of how to specify the Baud command.

baud 38400

Abbreviations

You can abbreviate the Baud command as follows

Cable
Use this command to set the cable options and to specify the type of
cable.

Syntax

cable {option | name}

Parameters

The variables of the Cable command are further divided into the
following parameters.

baud bau

Hardware Debugger Guide

B-4 Xilinx Development System

• option {–reset | –check | –pins}

• –reset reprograms the XChecker cable.

• –check tests the cable operation.

• –pins checks the logic levels of the XChecker pins.

• name {multilinx | xchecker | serial | parallel}

• multilinx establishes communication with the MultiLINX
cable

• xchecker establishes communication with the XChecker
cable.

• serial establishes communication with a serial cable.

• parallel establishes communication with a parallel cable.

Examples

Following are examples of how to specify the Cable command.

cable –pins

cable –xchecker

Abbreviations

You can abbreviate the Cable command and its options as follows.

Clock
The Clock command is a synchronous mode debugging option. It
enables you to specify the clock options, namely the clock type and
speed. It also enables you to specify the number of clocks to apply to
the target device during debugging.

cable cab

–reset –rs

–check –chk

–pins –pn

Console Commands

Hardware Debugger Guide B-5

Syntax

The syntax of the Clock command is the following.

clock {[source][speed] | apply_clocks | control_option}

Parameters

The variables of the Clock command are further divided into the
following parameters.

• source {–internal | –external}

• –internal sets the clock source to XChecker internal clock

• –external sets the clock source to external/user clock

• speed –speed {1|3|5|11}

• –speed sets the speed of the clock.

• apply_clocks –apply {number}

• –apply cycles the device forward the number of clocks you
specify

• control_option {–stop | –resume}

• –stop interrupts the clock source

• –resume resumes the clock source

Examples

Following are examples of how to specify the Clock command.

clock –internal –speed 3

clock –apply 4

clock –stop

Abbreviations

You can abbreviate the Clock command and its options as follows.

clock clk

–internal –int

Hardware Debugger Guide

B-6 Xilinx Development System

Display
The Display command specifies which nets to debug.

Syntax

The syntax of the Display command is the following.

display operation list_of_signals

Parameters

The variables of the Display command are further divided into the
following parameters.

• operation {–del | –add}

• –del deletes the specified list of signals and/or group names
from the display list

• –add adds the specified signals and group names to the
display list

• list_of_signals { [list_of_sinals] [group_names] | *}

• list_of_signals is the list of signals you wish to probe

• group_names is the list of defined signal groups you wish to
probe

• * is the complete list of signals and groups in your design if
you are adding signals. It refers to the signals in the display
list if you are removing signals.

Examples

Following are examples of how to specify the Display command.

display –add A B C D E F G ALUOUT SWITCHES

display –del *

–external –ext

–apply –ap

–stop –st

–resume –res

Console Commands

Hardware Debugger Guide B-7

Abbreviations

You can abbreviate the Display command as follows.

Download
Use the Download command to program a device by downloading
the current design to that device.

Syntax

The syntax of the Download command is the following.

download [–verify]

Parameters

The Download command has one parameter.

-verify reads back the data that was downloaded to the target device
and compares it to the original data.

Examples

Following is an example of how to specify the Download command.

download –verify

Abbreviations

You can abbreviate the Download command as follows.

Exit
The Exit command enables you to exit the Hardware Debugger
program.

display dply

download dn

–verify –v

Hardware Debugger Guide

B-8 Xilinx Development System

Syntax

The syntax of the Exit command is the following.

exit

Parameters

The Exit command has no parameters.

Examples

Following is an example of how to specify the Exit command.

exit

Abbreviations

You can abbreviate the Exit command as follows.

Force
The Force command enables you to display or hide information
dialog boxes while a macro is running.

Syntax

The syntax of the Force command is the following.

force setting

Parameters

The parameters of the Force command are the following.

setting {–on | –off}

• –on displays the information dialog boxes

• –off hides the information dialog boxes

Examples

Following is an example of how to specify the Force command.

exit ex

Console Commands

Hardware Debugger Guide B-9

force –on

Abbreviations

You can abbreviate the Force command and its options as follows.

Group
The Group command enables you to specify signal groups to debug
as entities. It also allows you to delete existing groups of signals.

Syntax

The syntax of the Group command is the following.

group {del_group | new_group}

Parameters

The variables of the Group command can be divided into the
following parameters.

• del_group is –del groupname list_of_signals

• –del deletes the specified signals from the specified group
name

• groupname is the name of the group you are defining

• list_of_signals is the list of signals you are adding or removing
from the group

• new_group is groupname list_of_signals and adds the specified
signals and group names to the display list

• groupname is the name of the group you are defining

• list_of_signals is the list of signals you are adding or removing
from the group

force for

–on –o

–off –f

Hardware Debugger Guide

B-10 Xilinx Development System

Examples

Following is an example of how to specify the Group command.

group aluout ALU0 ALU1 ALU2 ALU3 ALU4

group –del aluout ALU2

Abbreviations

You can abbreviate the Group command as follows.

Open
The Open command opens a file for downloading.

Syntax

The syntax of the Open command is the following.

open file

Parameters

The variables of the Open command can be divided into the
following parameters.

file {\file_path\file_name} or file {/file_path/file_name}

• file_path is the drive and directory in which your design is
located

• file_name is the name of the design you want to open

Examples

Following is an example of how to specify the Open command.

open C:\TMP\4KACALC\CALC4K.BIT

Abbreviations

You can abbreviate the Open command as follows.

group gp

Console Commands

Hardware Debugger Guide B-11

Port
The Port command enables you to select the communications port
you need for your cable.

Syntax

The syntax of the Port command is the following.

port port_name

Parameters

The parameters of the Port command are the following.

port_name is

{auto} for auto-detection of cable

{com1 | com2 | com3 | com4} for XChecker or serial cables on
PC platforms

{/dev/tty00 | /dev/tty01} for XChecker or serial cables on HP
platforms

{/dev/ttya | /dev/ttyb} for XChecker or serial cables on Sun
platforms

{lpt1 | lpt2 | lpt3 | lpt4} for parallel cable only

Examples

Following are examples of how to specify the Port command.

port com1

port lpt2

Abbreviations

You can abbreviate the Port command as follows.

open op

port po

Hardware Debugger Guide

B-12 Xilinx Development System

Readfpga
The Readfpga command enables you to capture snapshots of the
states of a device.

Syntax

The syntax of the Readfpga command is the following.

readfpga snapshots

Parameters

The parameters of the Readfpga command are snapshots {1–65534}

Examples

Following is an example of how to specify the Readfpga command.

readfpga 4

Abbreviations

You can abbreviate the Readfpga command as follows.

Reset
The Reset command enables you to reset the FPGA. The reset signal is
active-Low.

Syntax

The syntax of the Reset command is the following.

reset

Parameters

There are no parameters for the Reset command.

Examples

Following is an example of how to specify the Reset command.

readfpga rea

Console Commands

Hardware Debugger Guide B-13

reset

Abbreviations

You can abbreviate the Reset command as follows.

Run
The Run Command executes the macro defined in the current macro
window.

Syntax

The syntax of the Run command is the following.

run file_name

Parameters

The Run command has one parameter.

file_name is the name of the design you want to run

Examples

Following is an example of how to specify the Run command.

run calc4k.bit

Abbreviations

You can abbreviate the Run command as follows.

Setmode
The Setmode command enables you to set the debugging mode.

Syntax

The syntax of the Setmode command is the following.

reset res

run rn

Hardware Debugger Guide

B-14 Xilinx Development System

setmode debugmode

Parameters

The parameters of the Setmode command are the following.

• debugmode {–sync | –async}

• –sync turns on the synchronous mode debugging

• –async turns on the asynchronous mode debugging

Examples

Following is an example of how to specify the Setmode command.

setmode –sync

Abbreviations

You can abbreviate the Setmode command and its options as follows.

Trigger
The Trigger command specifies the source of the readback trigger.

Syntax

The syntax of the Trigger command is the following.

trigger {timing | clocksettings | option}

Parameters

The parameters of the Trigger command are the following.

• timing {–immediately | –external | –enterkey} sets the trigger
type

• clocksettings –clock {before_first_snapshot between_snapshots}
specifies the clock patterns to apply to the target device.

setmode md

–synch –s

–async –as

Console Commands

Hardware Debugger Guide B-15

• option {–timeout num | –reset}

• {–timeout num} specifies the cutoff time for a trigger to be
received

• –reset reinitializes the target device

Examples

Following is an example of how to specify the Trigger command.

trigger –immediately –clock 2 2 –timeout 10–reset

Abbreviations

You can abbreviate the Trigger command as follows.

Verify
The Verify command enables you to verify that the design was down-
loaded correctly.

Syntax

The syntax of the Verify command is the following.

verify

Parameters

The Verify command has no parameters.

Examples

Following is an example of how to specify the Verify command.

verify

Abbreviations

You can abbreviate the Verify command as follows.

trigger tr

verify ver

	Title Page
	Trademarks
	About This Manual
	Conventions
	Introduction
	Overview
	Architectures
	Hardware Debugger Features
	Design and Hardware Considerations
	Cable Connections
	Hardware Debugger Cable Support
	Hardware Debugger Platform Support

	Getting Started
	Starting the Hardware Debugger
	Exiting the Hardware Debugger
	Using the Interface
	Main Window
	Commands and Dialog Boxes
	Selecting Commands and Dialog Boxes

	Using Help

	Design Preparation
	Creating a Design
	Generating Configuration Data Files
	Creating Files for a Single XC3000 Device
	Creating Files for a Single XC4000, XC5200 or Spartan Device
	Creating Files for Verification (Virtex)
	Creating Files for Multiple Devices (Daisy Chains)

	Connecting Your Cable
	Cable Support
	Cable Basics
	Cable Descriptions
	MultiLINX
	XChecker Cable
	Parallel Cable

	Cable Limitations
	XChecker Hardware Drawbacks
	MultiLINX Hardware Advantages

	Cable Baud Rates
	Connecting Cable to Host System
	Setting Up the Hardware
	Connecting Cable to Target System
	MultiLINX Cable Connectors
	XChecker Cable Connectors
	Serial and Parallel Cables
	Connecting the 3 Volt Adapter to the XChecker Cable
	Connecting for Download
	Connecting for Verification
	Connecting for Synchronous Debugging
	Connecting for Asynchronous Debugging

	Setting the Cable Options
	Resetting the Cable
	MultiLINX Diagnostics
	XChecker Diagnostics
	Testing the XChecker Cable
	Testing 3V Adapter Operation

	Troubleshooting the MultiLINX Cable
	Troubleshooting the XChecker Cable

	Programming a Device or a Daisy Chain
	Downloading Basics
	Preparing for Download and Verification
	Opening a Design File
	Downloading to a Target Board
	Verifying Design Logic
	Downloading and Verifying a Design
	Configuring Multiple Devices
	Configuring a Daisy Chain of Devices
	Verifying Individual Devices in a Daisy Chain

	Debugging a Device
	Debugging Basics
	Debugging a Configured FPGA
	Synchronous
	Asynchronous
	Debugging Overview
	Debugging a Previously Debugged Design

	Synchronous Mode Debugging
	Pin Assignments
	Debugging in Synchronous Mode
	Cycling the Device
	Resetting the FPGA
	Viewing Additional Signals
	Viewing the Waveform in Text Mode

	Asynchronous Mode Debugging
	Pin Assignments
	Debugging in the Asynchronous Mode

	Creating and Modifying a Signal Group
	Creating a Signal Group
	Modifying a Signal Group

	Creating and Modifying a Signal List
	Saving and Loading Readback Data
	Saving Readback Data
	Viewing Previously Saved Readback Data

	Customizing the Interface
	Using Macros
	Creating a Macro
	Editing an Existing Macro
	Running a Macro
	Saving the Console Log to a File

	Controlling the Waveform Display Parameters
	Waveform Window (Textual View)
	Waveform Window (Graphical View)
	Changing the Size of the Waveform
	Controlling the Position of the Windows
	Changing the Radix of Displayed Signal Groups
	Changing the Color of the Waveform Window
	Removing a Signal

	Glossary of Terms
	Console Commands
	Conventions
	Alphabetical Listing of Commands
	Baud
	Cable
	Clock
	Display
	Download
	Exit
	Force
	Group
	Open
	Port
	Readfpga
	Reset
	Run
	Setmode
	Trigger
	Verify

