
JTAG
Programmer
Guide

Introduction

Hardware

JTAG Programmer Tutorial

Designing Boundary Scan
and ISP Systems

Boundary Scan Basics

JTAG Parallel Download
Cable Schematic

Troubleshooting Guide

Error Messages

Using the Command Line
Interface

Standard Methodologies for
Instantiating the BSCAN
Printed in U.S.A.

R

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard,
TRACE, XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx,
Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CoolRunner, CORE Generator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor,
MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O,
SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch,
Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL,
XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-
BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are
trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are
service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
Xilinx Development System

5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701;
5,892,681; 5,892,961; 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987;
5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958;
5,990,704; 5,991,523; 5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025;
6,002,282; and 6,002,991; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the
accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.

About This Manual

Note This Xilinx software release is certified as Year 2000 compliant.

Contents
• “Introduction” chapter describes JTAG Programmer software.

• “Hardware” chapter provides information for connecting and
using the XChecker Serial Cable or the Parallel Download Cable
for system operation.

• “JTAG Programmer Tutorial” chapter documents the basic tasks
needed to download programming to XC9500/XL/XV family
devices in-system.

• “Designing Boundary-Scan and ISP Systems” chapter documents
using the JTAG Programmer with FPGA devices.

• “Boundary Scan Basics” appendix contains reference information
about boundary scan basics.

• “JTAG Parallel Cable Schematic” appendix has schematics for the
XChecker Cable and the Parallel Download Cable.

• “Troubleshooting Guide” appendix contains troubleshooting
information.

• “Error Messages” appendix provides a list of error messages that
the JTAG Programmer may report. For most error messages a
workaround is suggested.
 v

• “Using the Command Line Interface” appendix documents the
basics of using the JTAG Programmer from a command line in a
workstation environment.

• “Standard Methodologies for Instantiating the BSCAN Symbol”
appendix contains programming examples.

Additional Resources

For additional information, go to http://support.xilinx.com.
The following table lists some of the resources you can access from
this Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/
index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contain device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/
index.htm
vi Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
each convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply
values

edif2ngd design_name

♦ References to other manuals
 vii

See the Development System Reference Guide for more informa-
tion.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “….” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.
viii Xilinx Development System

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.
ix

Chapter 1

Introduction

This chapter introduces you to the basic concepts of Xilinx JTAG
capabilities and Xilinx in-system programmable products. You can
use JTAG Programmer to download, read back and verify design
configuration data, to perform functional tests on any device, and to
probe internal logic states of a Xilinx XC9500, XC9500XL, XC9500XV,
Spartan or Virtex design. This chapter contains the following
sections:

• Device operation options available to users are:

• Required Files

JTAG Programmer software uses sequences of JTAG instructions to
perform the following programming and verification operations. The
user need only select the desired operation; the software will execute
all required JTAG commands transparently. For a description of JTAG
instructions supported by Xilinx devices, see Appendix A.

Device operation options available to users are:
Program. Downloads the contents of the JEDEC, BIT or Prom file to
the device programming registers.

Verify. Reads back the contents of the device programming registers
and compares them with the JEDEC, BIT or Prom file.

Erase. Clears device configuration information.

Functional Test. Applies user-specified functional vectors from the
JEDEC file to the device using the JTAG INTEST instruction,
comparing results obtained against expected values. Reports any
differences to the user.

Blank Check. Checks whether a device has been programmed or is
erased.
 1-1

Readback Jedec. Reads back the contents of device programming
registers and creates a new JEDEC/Prom file with the results.

Get Device ID. Reads the contents of the JTAG IDCODE register.
Displays contents for the user.

Get Device Checksum. Reads back the contents of device program-
ming registers and calculates a checksum for comparison against the
expected value.

Get Device Signature/Usercode. This value is selected by the user
during fitting. The specified value is translated to binary values in the
JEDEC file. During device programming these values are loaded into
the JTAG USERCODE register. This function reads the contents of the
USERCODE register and displays the result. For XC1800 Proms, 8
digit hex usercode can be specified at program time.

Bypass. Ignores this device when addressing devices in the JTAG
boundary scan chain. This option is only available through chain
operations.

Non-Volatile Device Data Security
Any Xilinx XC9500/XL/XV device selected for programming can be
secured with the Write Protect or Read Protect or both.

When enabled, Read Protect disables reading the programmed
contents of a device (the IDCODE and USERCODE registers remain
readable).

Write Protect allows only the reading of the programmed data. The
device contents cannot be altered or re-programmed.

When both Read Protect and Write Protect are enabled, the device can
be neither read nor re-programmed.

Security options do not affect the accessibility of the bypass or
boundary-scan register.

User Feedback
When using the graphical user interface, immediate feedback is
provided by a scrolling log file and alert boxes. Detailed information
regarding failure is located in the system log file, and is provided for
both the PC and workstation based tool.
1-2 Xilinx Development System

Required Files
You need to provide JEDEC files for each XC9500/XL/XV CPLD
device, BIT files for each Xilinx FPGA device (Virtex or Spartan) in
the JTAG programming chain, and BSDL files for the remaining
devices.

JEDEC Files
JEDEC files are XC9500/XL/XV CPLD programming files generated
by the Xilinx fitter. They are ASCII text files containing programming
information and, optionally, functional test vectors that can be used
to verify the correct functional behavior of the programmed device.
One JEDEC file is required for each XC9500/XL/XV device in the
JTAG programming chain.

Use the device properties (File → Properties) dialog to specify the
location of JEDEC files for each XC9500/XL/XV device. The name of
the JEDEC file is assumed to be <design name>.jed, but can be speci-
fied exactly by the user.

BSDL Summary
The Boundary-Scan Description Language (BSDL) files use a subset
of VHDL to describe the boundary scan features of a device. The
JTAG Programmer automatically extracts the length of the instruction
register from the BSDL file to place non-XC9500/XL/XV devices in
bypass mode. XC9500/XL/XV BSDL files are located automatically
by the JTAG Programmer.

Use the device properties dialog to specify the location of BSDL files
for non-XC9500/XL/XV devices. The name of the BSDL file is
assumed to be <device name>.bsd.

BIT Files
Bit files are Xilinx FPGA configuration files generated by the Xilinx
FPGA design software. They are proprietary format binary files
containing configuration information. One BIT file is required for
each Xilinx FPGA in the JTAG boundary-scan chain.

Use the device properties (File → Properties) dialog to specify the
location of the BIT files for each Xilinx FPGA device. The required
extension for BIT files is .bit.
1-3

MCS/EXO Prom Files
Prom files are prom programming files generated by the prom file
formatter. They are ASCII text files used to specify configuration
data. One Prom file is required for each Xilinx prom in the JTAG
boundary scan chain. Use the device properties (File → Properties)
dialog to specify the location of the MCS/EXO files for each Xilinx
prom. The required extension for MCS and EXO files is .mcs and .exo
respectively.
1-4 Xilinx Development System

Chapter 2

Hardware

This chapter gives specific information about using cables to down-
load from the JTAG Programmer to devices in-system.

This chapter contains the following sections:

• Download Cables

• “XChecker Hardware (Serial)”

• “Parallel Cable”

• “MultiLINX Cable”

• Power Up Sequencing

Download Cables
There are three cables available for use with the JTAG Programmer.
The first is an RS232 serial cable known as the XChecker Cable. The
second is the Parallel Download Cable which can be connected to a
PC’s parallel printer port. The third is the MultiLINX cable which can
be connected to a USB port (Windows 98 only) or serial port.

There are a few advantages to be considered in selecting a cable:

• The XChecker Cable or Multilinx Cable connects to the serial port
of both workstations and PCs.

• The Parallel Cable has better drive capability. The Parallel Cable
can drive up to 10 XC9500/XL/XV devices in a boundary-scan
chain, and the XChecker Cable can drive up to 4 XC9500/XL/XV
devices.

• The Parallel Cable is at least 5 times faster.

If you have a Parallel Download Cable proceed to Parallel Cable.
2-1

If you have a MultiLINX Cable proceed to MultiLINX Cable.

XChecker Hardware (Serial)
The XChecker hardware consists of a cable assembly with internal
logic, a test fixture, and a set of headers to connect the cable to your
target system.

Using the XChecker hardware requires either a standard DB-9 or DB-
25 RS-232 serial port. If you have a different serial port connection,
you need to provide the appropriate adapter. “XChecker Hardware
and Accessories” shows the XChecker cable hardware and accesso-
ries.

The XChecker cable can be used with a single CPLD or several
devices connected in a boundary-scan chain to download and read-
back configuration and boundary-scan data.
2-2 Xilinx Development System

Hardware
Figure 2-1 XChecker Hardware and Accessories

VCCVCC

GND

CCLK

D/P

DIN

PROG

INIT

RST

TRIG

RD

RT

TDI

TCK

TMS

CLK1

CLK0

Connection to Host Computer

XChecker Cable

Flying Lead Connector 1

Header 1

Header 2

Flying Lead Connector 2

DB25 Adapter DB9 Socket Connector

+5V

Test Fixture

(Enlarged to
show plugs)

Connections to
Target System

Connections to
Target System

GND

X7248
2-3

Figure 2-2 XChecker Cable

Connecting for System Operation
Connect the XChecker cable to the host system and your target
system as shown in “XChecker Connections to JTAG Boundary-scan
TAP”.

XChecker Cable

Top View

Bottom View

Header 2 Header 1

Model : DLC4 CAUTION

SENSITIVE
ELECTRONIC

DEVICE

Power : 5V 100mA Typ.
Serial: DL - 1 2 3 4 5

RT
RD

TRIG

TDI
TCK
TMS
CLKI

CLKO

VCC

Made in U.S.A

GND

CCLK
D/P
DIN
PROG
INIT
RST

X7249
2-4 Xilinx Development System

Hardware
Figure 2-3 XChecker Connections to JTAG Boundary-scan TAP

Cable Connections
Connections between the cable assembly and the target system use
only 6 of the sixteen leads. For connection to JTAG boundary-scan
systems you need only ensure that the VCC, GND, TDI, TCK, TMS
and RD (TDO) pins are connected.

 Once installed properly, the connectors provide power to the cable,
allow download and readback of configuration data, and provide for
logic probe of device pins.

XCHECKER Flying Lead Connector Target System

X7976

TMS

TDI TDO

TCK

TMS

TDI TDO

TCK

TMS

TDI TDO

TCK

VCC
GND

TMS
TDI
RD

TMS

TDI

TCK

RD (TDO)
TCK
GND
VCC
2-5

“XChecker Cable Connections and Definitions” table describes the
pin connections to the target circuit board

Table 2-1 XChecker Cable Connections and Definitions

Name Function Connections

VCC Power – Supplies VCC (5
V, 100 mA, typically) to the
cable. Use adapter HW-
XCH3V for 3V devices.

To target system VCC

GND Ground – Supplies ground
reference to the cable.

To target system
ground

RD (TDO) Read Data – Read back
data from the target
system is read at this pin.

Connect to system
TDO pin.

TDI Test Data In – this signal is
used to transmit serial test
instructions and data.

Connect to system TDI
pin.

TCK Test Clock – this clock
drives the test logic for all
devices on boundary-scan
chain.

Connect to system TCK
pin.

TMS Test Mode Select – this
signal is decoded by the
TAP controller to control
test operations.

Connect to system TMS
pin.

CLKI Not used. Unconnected.

CLKO Not used. Unconnected.

CCLK Not used. Unconnected.

D/P Not used. Unconnected.

DIN Not used. Unconnected.

PROG Not used. Unconnected.

INIT Not used. Unconnected.

RST Not used. Unconnected.

RT Not used. Unconnected.

TRIG Not used. Unconnected.
2-6 Xilinx Development System

Hardware
Baud Rates
The XChecker Cable supports Baud rates as shown in Table 2-2.

Connecting the XChecker Cable
There are two simple steps for connecting the cable:

• Connecting the XChecker Cable

• Connection to Your Target System

Connecting the XChecker Cable

The XChecker cable connects to your system RS-232 serial port. You
may need a DB-9/DB-25 adapter, which accommodates most serial
ports, so that you can connect the XChecker cable to your host
system.

1. The JTAG Programmer software will automatically identify the
XChecker cable when correctly connected to your computer. If
you choose to, you may also select this connection manually. To
set up a serial port manually:

Output → Cable Setup

2. Select XChecker, then click on OK. If you are using the XChecker
Cable you may also select a BAUD rate. seeTable 2-2.

Connection to Your Target System

The following steps insure proper connection to your target system.

1. You need appropriate pins on the target system for connecting
the target system board to the header connection on the cable.
These connectors must be standard 0.025-inch square male pins
that have dedicated traces to the target system control pins. You
connect to these pins with the flying lead connectors.

Table 2-2 Valid Baud Rates

Platform 9600 19200 38400

IBM PC X X X

SUN X X X

HP 700 X X X
2-7

2. The XChecker cable draws its power from the target system
through VCC and GND. Therefore, power to XChecker, as well as
to the target system, must be stable. Do not connect any signals
before connecting VCC and ground.

3. If you are connecting the XCHecker Vcc to a 3V system, you will
need an adapter. Xilinx carries an adapter, part number HW-
XCH3V.

4. If your system‘s power is turned off before or during JTAG
Programmer operations, the cable will not operate. Your system’s
power should be on during JTAG Programming operations.

5. If the power has been momentarily interrupted, go to Output →
Cable Reset to reinitialize the XChecker cable. If you do not want
to operate at maximum Baud rate, go to the Cable Communica-
tion Setup dialog box (Output → Cable Setup...) and set a lower
rate.

Parallel Cable
The Parallel Download Cable consists of a cable assembly containing
logic to protect your PC‘s parallel port and a set of headers to connect
to your target system.

Using the Parallel Download Cable requires a PC equipped with an
AT compatible parallel port interface with a DB25 standard printer
connector. Figure 2-4 shows the Parallel Download Cable.
2-8 Xilinx Development System

Hardware
Figure 2-4 Parallel Download Cable and Accessories

The cable assembly contains logic designed to electrically isolate the
target system from the parallel port of your PC host system.

The parallel download cable can be used with a single CPLD or
several connected in a boundary-scan chain to download and read-
back configuration and boundary-scan data.

The transmission speed of the Parallel Download Cable is deter-
mined solely by the speed at which the host PC can transmit data
through its parallel port interface.

 shows top and bottom view of the Parallel Download Cable.

JTAG VCC
GND

TCK

TDO
TDI

TMS

JTAG Flying Lead Connector

Connections to
Target System

DB25 Plug Connector

Parallel Cable

X7251
2-9

Figure 2-5 Top and Bottom View of Parallel Download Cable

Connecting for System Operation
Connect the parallel cable to the host system and your target system
as shown in Figure 2-6.

Top View

Bottom View

JTAG Header
FPGA Header

Parallel Cable III CAUTION

SENSITIVE
ELECTRONIC

DEVICE

Model DLC5
Power 5V 10mA Typ.
Serial JT - 1 2 3 4 5

VCC

JT
AG FP

GA

GND

TCK

TDO
TDI

TMS

VCC

Made in U.S.A

GND
CCLK

D/P
DIN
PROG

X7252
2-10 Xilinx Development System

Hardware
Figure 2-6 Parallel Download Cable Connection to JTAG
Boundary-scan TAP

“JTAG Parallel Cable Schematic” appendix contains schematic
diagrams of the Parallel Download Cable.

Configuring the Parallel Download Cable
To configure your parallel download cable, follow these steps:

1. On PCs you can connect the parallel cable to your system’s
parallel printer port. The JTAG Programmer software will auto-
matically identify the cable when correctly connected to your PC.
If you choose to, you may also select this connection manually. To
set up a parallel port manually:

Output → Cable Setup

2. Select the Parallel box and match to the port you are using, then
click on OK.

Flying Lead Connectors
The flying lead connector has a 9-pin (6 signals, 3 keys) header
connector that fits onto the cable’s JTAG header. The pin order is

JTAG Flying Lead Connector Target System

X

TMS

TDI TDO

TCK

TMS

TDI TDO

TCK

TMS

TDI TDO

TCK

VCC
GND

TMS

TCK

JTAG

TMS

TDI

TDO
TDI

TCK
TDO
GND
VCC
2-11

listed in Table 2-3. These header connectors are keyed to assure
proper orientation to the cable assembly.

The flying lead connector has six individual female connectors on one
end that fit onto standard 0.025ð square male pins. Each lead is
labeled to identify the proper pin connection.

When you layout the printed circuit board for use with JTAG in-
system programming and testing, a few adjustments will make the
process of connecting and downloading easier.

• Provide pins on your printed circuit board for VCC, GND, TCK,
TDO, TDI and TMS.

• These pins must be standard 0.025” square male pins that have
dedicated traces to the target system control pins. You connect to
these pins with the flying lead connector.

• Place pins on board so that flying leads can reach them. The
length of our flying leads is six inches. While pins may be a
couple inches apart, do not have any two JTAG pins more than
six inches apart.

• Keep header pins on your board a minimum of 0.10” apart.

Table 2-3 Parallel Cable Connections and Definitions

Name Function Connections

VCC Power – Supplies VCC (5
V, 3.3V, or 2.5V, 10 mA,
typically) to the cable.

To target system VCC

GND Ground – Supplies ground
reference to the cable.

To target system
ground

TCK Test Clock – this clock
drives the test logic for all
devices on boundary-scan
chain.

Connect to system TCK
pin.

TDO Read Data – Read back
data from the target
system is read at this pin.

Connect to system
TDO pin.
2-12 Xilinx Development System

Hardware
TDI Test Data In – this signal is
used to transmit serial test
instructions and data.

Connect to system TDI
pin.

TMS Test Mode Select – this
signal is decoded by the
TAP controller to control
test operations.

Connect to system TMS
pin.

Table 2-3 Parallel Cable Connections and Definitions

Name Function Connections
2-13

Figure 2-7 JTAG Cable and Leads (parallel cable shown)

MultiLINX Cable
You can use the MultiLINX Cable to download and verify. The Multi-
LINX Cable hardware communicates with the host over the
Universal Serial Bus (USB) at up to 12M bits/sec, or at variable baud
rates over an RS-232 interface at up to 57600 bits/sec.

The MultiLINX Cable should be compatible in supporting Readback
& Verify for all the FPGAs supported by the XChecker Cable. In addi-
tion to the supported devices, the MultiLINX Cable will support the

JTAG VCC
GND

TCK

TDO
TDI

TMS

JTAG Flying Lead Connector

Connections to
Target System

DB25 Plug Connector

Parallel Cable

X7251
2-14 Xilinx Development System

Hardware
devices that were not supported by the XChecker Cable since the
MultiLINX Cable has no RAM size limitations. These devices include
those devices in 4000E, 4000XL, and SPARTAN whose bitfile size is
more than 256K bits. The MultiLINX Cable will also support Read-
back & Verify functions in the new Virtex family.

You can access the following mentioned application notes with
descriptions of device-specific design techniques and approaches
from the support page at (http://support.xilinx.com/support/
searchtd.htm).

 “Getting Started with MultiLINX Guide” application note is a quick
reference to everything you need to know to use the MultiLINX
Cable; using a USB device, Mixed Voltage environments, connections
for all the supported Modes.

“Integrating MultiLINX Cable with Target System Design” applica-
tion note describes how to setup a Prototype application for use with
the MultiLINX Cable.

“Xilinx Cable Overview and Roadmap” application note describes all
the cables, their capabilities, and associated software tools.

MulitLINX Baud Rates
Communication between the host system and the MultiLINX Cable is
dependent on host system capability. The following table lists the
valid baud rates for the supported platforms.

MultiLINX Hardware Advantages
The MultiLINX cable has the following advantages:

Table 2-4 Valid Baud Rates

Baud Rates

PC Cable WorkStation

MultiLINX Cable
(USB)

1M-12M (Currently
USB is supported
only on Win98/95C.)

USB is currently not
supported on the
WorkStation.

MultiLINX Cable
(RS-232)

9600, 19200, 38400,
and 57600

9600, 19200, and
38400
2-15

• Fast download, readback and debug using the USB port up to
12M bits/sec.

• More configuration modes are supported.

• Supports both RS-232 ports and USB ports.

• Compatible with the currently supported devices for Readback &
Verify.

• Supports new devices that are not supported by XChecker due to
RAM size limitation.

• Works at low voltages (3.3V).

• Supports both Slave Serial and SelectMAP configuration modes.

MultiLINX Power Requirements
The MultiLINX Cable gets its power from the User’s circuit board.
The cable power does not come from the USB port (nor the RS-232
port). The red (PWR) and black (GND) wires from Flying Wire Set #1
are connected to the VCC (red wire) and Ground (black wire) lines of
the circuit board that is powering the Xilinx device.

The minimum input voltage to the cable is 2.5 V (.8 A). The maximum
input voltage is 5 V (.4 A).

MultiLINX Signals
The MultiLINX Cable uses the following pin connections for use in
JTAG programming:

Name Function Connections

VCC Power – Supplies VCC (5
V, 3.3V, or 2.5V, 10 mA,
typically) to the cable.

To target system VCC

GND Ground – Supplies ground
reference to the cable.

To target system
ground

TCK Test Clock – this clock
drives the test logic for all
devices on boundary-scan
chain.

Connect to system TCK
pin.
2-16 Xilinx Development System

Hardware
Power Up Sequencing
The following considerations should be followed when powering up
the JTAG Programmer.

1. Connect your cable to your host computer.

2. Turn the power to your target system off, if possible.

3. The power for the drivers is derived from the target system.
Connect the cable’s GND wire to the corresponding signal on the
target board. Next, connect VCC to the corresponding signal on
the target board.

4. Download cables will not operate if the target system‘s power is
turned off before or during JTAG Programmer operations. Make
certain that this power connection is on and stable. Your system’s
power should be on during JTAG Programmer operations.

5. JTAG Programmer will always initiate operations using a JTAG
TAP controlled reset sequence. This performs the exact same
operation as the assertion of the TRST pin; it initializes all
devices‘ JTAG state machines and internal registers.

6. Next connect the JTAG TAP inputs. Connect TCK, TDI, TMS and
TDO to the target board. TRST is not supported by the XC9500/
XL/XV JTAG Download Cables. If any of your JTAG parts have a
TRST pin, it should be connected to VCC.

7. Power up the target system.

RD (TDO) Read Data – Read back
data from the target
system is read at this pin.

Connect to system
TDO pin.

TDI Test Data In – this signal is
used to transmit serial test
instructions and data.

Connect to system TDI
pin.

TMS Test Mode Select – this
signal is decoded by the
TAP controller to control
test operations.

Connect to system TMS
pin.

Name Function Connections
2-17

8. Cable protection ensures that the parallel port cannot be
damaged through normal cable operation. For increased safety,
please check that the power to the system controller is on before
the target system is powered up.
2-18 Xilinx Development System

Chapter 3

JTAG Programmer Tutorial

This chapter will take you through the basic steps involved in
programming Xilinx devices in-system using the JTAG Programmer
graphical user interface. This chapter contains the following sections:

• Cable Setup

• Selecting a Port for the Cable

• Creating New Chain Descriptions

• Configuring a Device In-System

• Options Specific to Proms

• Generating SVF Files

Cable Setup
To setup your system to download configurations in-system you
must first connect the JTAG Programmer parallel download, Multi-
LINX, or the XChecker cable. Cable setups and power sequencing are
described in chapter 2, Hardware.

Selecting a Port for the Cable
Note If you do not want to use a cable, select SVF Output and skip
this section.

1. You may select a serial or parallel port for your cable from the
JTAG Programmer Interface. To set up a port:

Output → Cable Setup

2. The Cable Communication Setup dialog box will appear.
3-1

Figure 3-1 Communications Dialog Box

3. Select the cable you are using and match to the port you are
using, then click on OK. If you are using the XChecker Cable or
the MultiLINX cable on the serial port you may also select a
BAUD rate. See Table 2-2, Valid Baud Rates.

4. Alternatively, you may use the Output → Cable Auto Connect to
allow the software to automatically identify and connect to
whichever download cable is installed.

5. Upon selecting any device operation, the JTAG Programmer will
automatically connect to whichever cable is installed and
powered up, with the following priority: Parallel, MultiLINX,
XCHecker.

6. If you accidentally or purposely power down your system while
running JTAG Programmer, remember to select Output → Cable
Reset to reinitialize the cable after re-applying power.
3-2 Xilinx Development System

Creating New Chain Descriptions
A Chain Description File (CDF) is a file that contains all the informa-
tion needed by the JTAG Programmer to download your designs to
devices in a JTAG chain in-system.

The device chain U1, U2, ... Un is a serial chain where U1 is the first
device TDI enters and Un is the last device. Un must deliver the TDO
(labelled RD on the XChecker and MultiLINX cables) signal back to
the cable. TMS and TCK signals enter all devices in parallel.

Figure 3-2 Device Chain

The chain description must contain all devices in the order that they
appear in the JTAG programming chain.

Alternatively, you can use the Initialize Chain operation to automati-
cally identify the devices in the system boundary-scan chain. You
must then associate JEDEC files for XC9500/XL/XV CPLD devices,
BIT files for Xilinx FPGA devices, MCS, HEX or EXO files for Xilinx
Prom devices. Use BSDL files or specify the instruction register level
for all other devices by using the device properties dialog box.

Configuring a Device In-System
If you have created programming files (.jed, .bit, .exo, .hex, or .mcs)
and are ready to download them to Xilinx devices in-system through
the JTAG chain, proceed as follows:

U1

TCK

U2 Un

TDI

TMS

TDO/RD

TDO

X8006
3-3

Note You will need a bitstream/configuration file to continue. If you
have not yet generated a bitstream, please refer to the Implementa-
tion Tools tutorial.

1. Make sure the cable is attached properly and the target board is
turned on.

2. Invoke the JTAG Programmer Download Software menu by
double-clicking the JTAG Programmer Download Software icon.

Figure 3-3 JTAG Programmer Icon

The JTAG Programmer will appear.

Figure 3-4 JTAG Programmer

3. Add a device for each part in your boundary-scan chain.
3-4 Xilinx Development System

Edit → Add Device

Or, if you have the cable set up and connected to a boundary-scan
chain, you can use the automatic device identification feature of
the JTAG Programmer to display the entire chain. To do this:

File → Initialize Chain

The programmer goes out and finds all the parts in the chain,
identifies them, and displays them in the JTAG Programmer. If
the programmer finds a device it can’t identify, it displays the
device as an unknown part and asks if you have a BSDL, BIT or
JEDEC file or not.

Figure 3-5 Automatic Device Identification

4. You need to specify a JEDEC file for each XC9500/XL/XV device
in the boundary-scan chain, a BIT file for each Xilinx FPGA
device, an MCS, HEX, or EXO file for each Xilinx Prom device,
3-5

and a BSDL file or appropriate template information for all other
devices in the boundary-scan chain. Highlight the first device in
the chain by clicking once on it and then select the JEDEC, BIT,
EXO, HEX, MCS or BSDL file corresponding to the device.

Edit → Properties

Alternatively, you may double-click on the device icon.

The Device Properties dialog box appears

Figure 3-6 Device Properties

5. Type in the path name or click once on the browse key and find
the appropriate file to assign to the highlighted part. Select
JEDEC files for each XC9500/XL/XV device in the chain, MCS,
HEX or EXO files for each Xilinx Prom device, BIT files for each
Xilinx FPGA device, and BSDL files for the remaining devices.
Repeat for each device in the chain.

For an XC1800 prom, click OK after selecting the file. The
programmer will display a list of available prom files (which will
be larger than the configuration data). Select the desired part and
click OK. This will complete the part selection.
3-6 Xilinx Development System

Figure 3-7 Device Chain (unprogrammed)

Define Device Manually
You man manually define a device using the Define Device dialog
box. This box allows you to define the following:

• Instruction Register Length: The length of the IEEE 1149.1
instruction register. This is the minimum information needed to
satisfy IEEE 1149.1 compliant devices.

• JTAG Idcode (hex): Not yet implemented.

• HighZ Instruction (binary): Not yet implemented.

• Device Name: Set the name for the device.

To access the Define Device dialog click File → Define Device. The
following dialog will appear:
3-7

Figure 3-8 Define Device Dialog Box

Programming Xilinx CPLD and FPGA Devices
There are two preferences available that you may want to select
before initiating a session. They are Concurrent Mode and Use
HIGHZ instead of BYPASS. These options are selected as follows:

File → Preferences

The Preferences dialog box will appear.
3-8 Xilinx Development System

Figure 3-9 Preferences

Concurrent Mode
The JTAG Programmer normally uses a sequential methodology
when accessing Xilinx CPLDs for ISP operations. It selects a device to
program and sets all other devices in the boundary-scan chain into
BYPASS mode. Concurrent Mode erases, programs and verifies
selected devices in the chain without placing these parts in BYPASS
mode. This has the advantage of saving time by executing operations
simultaneously.

For example, it takes few seconds to completely erase all the sectors
of a device. If you have several devices in a chain, these erase times
can add up. In concurrent mode the erasures can take place simulta-
neously, saving time.

Concurrent mode is applicable only to Xilinx CPLD devices. Since
Xilinx FPGA devices are SRAM based; their access method precludes
this kind of operation.

Use HIGHZ instead of BYPASS
The JTAG Programmer usually places parts in BYPASS mode when
other devices in the boundary-scan chain are being programmed.
This option places XC9500/XL/XV, Spartan-II and Virtex devices in
high impedance mode instead. If you suspect that noise is degrading
the integrity of ISP operations, use this mode to reduce the signal
activity level in the system.
3-9

If you decide to use HIGHZ instead of BYPASS you must be certain
that your design can tolerate XC9500/XL/XV or Virtex device pins
floating. If these pins connect to memory enable pins, for instance,
their floating values may inadvertently cause the devices to turn on,
potentially damaging their drivers or parts downstream from them.

Selecting Parts for Programming
If your boundary-scan chain consists of all Xilinx devices (FPGA,
CPLD and SPROM), then you can select all devices at once.

1. Use Edit → Select All, or highlight each device individually, then:

1. Operations → Program

2. The program options box appears. Select the desired program-
ming options, then click OK.

Figure 3-10 Options

3. When the programming operation is complete, the programming
status of each Xilinx programmable device is reported as shown:
3-10 Xilinx Development System

Figure 3-11 Programmed Chain

Selecting Operations

There are two ways to set up the chain for JTAG Programmer opera-
tions. The first is to highlight a part and select an operation for it
using the Operations menu. You select an operation from the menu,
then highlight the next part and select an operation for it, or you may
highlight all parts and select an operation for all parts.

The other way is to use the Chain Operations dialog box. This
presents you with a “spreadsheet” approach to boundary-scan chain.
This method allows you select and execute operations for all the parts
in the chain, all from the same dialog box. To access this dialog box:

Operations → Chain Operations...
3-11

Figure 3-12 Chain Operations

The dialog box appears. In the Operations column you may change
the operation of any part by clicking once on the current device to
highlight it, then clicking once on the down arrow adjacent to
Selected Device Operation. This will produce a pull-down menu
showing the operations you can set for that part.

Bypass is the only supported mode of Operation for non-Xilinx parts.
These parts will appear under Device Type. Note that Bypass is
selected as the default Operation of each foreign part.

Select the Execute button. Download will begin.

In either operation mode a pop-up menu appears and delivers
processing messages. When processing has completed, a message log
is available to examine the results of the execution.

Modifying a Chain
The Edit menu provides easy means for inserting and deleting parts
from a chain, as well as the means to assign a new JEDEC file to a
part.
3-12 Xilinx Development System

Adding a Device

To insert a device into the chain, use the Add Device command. First
make sure that the prompt is at the location in the chain where you
want to insert the device. If it is not, use either the mouse or the arrow
keys to move it. Then insert the device as follows:

Edit → Add Device

Changing a Part

To change the jedec file associated with a device in the chain, high-
light the device and select:

Edit → Properties

Use the browse key to select another jedec file or simply enter the
path and filename of the file. The program will associate the new file
with the device.

Each jedec assigns a device type to the device in the chain. If the jedec
file was not created for the actual device you have on your board, an
error will result when you attempt to program the device.

For an 1800 prom, clicking OK on the properties dialog displays a list
of 1800 parts which can fit the specified prom file. Select the desired
part name and click OK.

Deleting a Part

To delete an entry in the device chain, use the Cut command. All
devices move up one entry in the chain.

Edit → Cut

Selecting the Entire Chain

To select the entire chain for an operation, use

Edit → Select All

To unselect the chain:

Edit → Unselect All

When operating in SVF mode, chain modifications are not allowed so
as to ensure that the resulting SVF is self-consistent.
3-13

Saving the Chain Description

To save a JTAG Programmer chain description for later use, create a
Chain Description File (.cdf) using:

File → Save

If the chain has not been previously saved, the Save As dialog box
will appear. This screen will allow you to select a directory and path
to place the file in. You can also name the file, but you should retain
the .cdf file extension. If you wish to save your file under another
name than already selected, use:

File → Save As...

To name your file, use the mouse to highlight Untitled or the old file
name on the File Name line, then type in the name you want and click
once on OK.

Saving a File

Debugging a Chain
The debugger provides you with a method to apply boundary-scan
test access port stimulus. This feature allows you to set TDI and TMS,
then pulse TCK a specified number times. You can monitor TDO, TDI
and TMS using an oscilloscope or logic probe to see if the boundary-
scan chain is operating correctly. The debugger also displays the
current TAP state and allows you to reset the chain to Run Test Idle.
3-14 Xilinx Development System

To access the debugger:

File → Debug Chain

The Boundary-Scan Chain Debug dialog box appears as shown in
Figure 3-13.

Figure 3-13 Debug

The features of this dialog box operate as follows:

• The first selection box allows you to set a logic state for TDI. This
state will not be set until you click on the Apply button.

• The second selection box allows you to set a logic state for TMS.
This state will not be set until you click on the Apply button.

• The third selection box allows you to set a number of pulses to
apply to TCK. These pulses will not be sent until you click on the
Apply button. If you want to see the pulses again, click the Apply
button as often as you want.

• The TAP State window displays the current state of the controller.

• The Return to RTI (Run Test Idle) button executes a Test Logic
Reset, then returns to Run Test Idle.
3-15

Data Security Selection
Any Xilinx CPLD device selected for programming can be secured
with the Write Protect or Read Protect or both.

When enabled, Read Protect disables reading the programmed
contents of a device (the Device ID and usercode/signature and
boundary scan register remain readable).

Write Protect allows only the reading of the programmed data. The
device contents cannot be altered or re-programmed.

When both Read Protect and Write Protect are enabled, the device can
be neither read nor re-programmed.

To enable either security function simply place a check in the corre-
sponding box when programming the device.

Figure 3-14 Data Selection (Program Options)

Data security operations can be overridden only by erasing the
device. For Read Protection override, you simply erase the part. For
Write Protection override, you must select the override write protect
option from the Erase Options dialog box.
3-16 Xilinx Development System

Figure 3-15 Data Selection (Erase Options)

Options Specific to Proms
Parallel load: This option is used to determine if the prom is to be
read out serially or in parallel on D0-D7 data lines. By default, the
prom is configured to be read out serially. By selecting the parallel
load option, the prom can be programmed to output data on lines D0-
D7 to be used to configure a Virtex device in the Select-map mode, or
a Spartan device in Express mode.

Load FPGA: By selecting this option the prom will automatically start
FPGA configuration at the end of programming (if the programming
is successful). This option sets the CF low for 300 ns, which in turn
causes the prog to be pulled low (on the FPGA) which initiates
configuration of the FPGA. This mechanism will only work if the
prom and the FPGA are connected as required for configuration
purposes.

Skip User Array: This option gives you the flexibility to alter miscel-
laneous bits (security, load FPGA, Select Map) without affecting the
contents of the user array. This makes it possible to set these options
after programming the user array. Note that because these parts are
Flash based, if you program these bits, you cannot reverse these bits
without erasing the entire array (consistent with the behavior of the
security option).
3-17

Generating SVF Files
Serial Vector Format (SVF) files are used when programming all
devices on automatic test equipment (ATE). The JTAG Programmer
allows you to create .svf files for use with ATE systems. One .svf file
is created for every device in your chain. To do this you need to create
a new SVF file:

Output → Create SVF File...

The SVF Options dialog will appear:

SVF Options

By default, SVF files are generated with instructions to begin execu-
tion by transitioning to the Test-Logic-Reset Tap controller state.
Some third part tools prefer that the SVF files not specify this transi-
tion, and always start in the Run-Test-Idle Tap controller state. You
can select the appropriate option using this dialog box. Click OK.

Then the Create a New SVF File dialog box will appear.
3-18 Xilinx Development System

Figure 3-16 Create an SVF File

Select a name and a directory to create the new file in, then click OK.
To append your vectors to an existing SVF file, use:

Output → Append to SVF File...

The Append to an Existing SVF File dialog box will appear.

Figure 3-17 Append to an SVF File

Select a file to append to and click OK.
3-19

Program, Verify, Erase, Functional Test, Get Device ID and Get Signa-
ture/Usercode are allowed operations in SVF mode.

After identifying the SVF file to be used for collection of SVF data,
operate on the devices in your boundary-scan chain in the manner
described previously. Remember that in SVF mode, chain editing
operations are not allowed to ensure that the resulting SVF file will be
self-consistent.

Xilinx provides software on the Xilinx Website that converts SVF files
into ATE vectors. Visit our site at www.xilinx.com for more informa-
tion.

Substituting with Version n Devices
If you generated SVF files for XC95108 or XC95216 Version 0 devices,
the files will work without modification on any later version devices.
If you wish, however, to take advantage of improved ISP capabilities
available on later version silicon devices, and you are certain that you
have such devices in your boundary-scan chain, then you can
generate version specific SVF files using the following techniques:

Using the Batch Tool (jtagprog)

Use the batch tool as follows:

1. Invoke the tool to generate SVF files:

1. jtagprog -svf

2. When specifying the part_type in the part command identify
Version 1 silicon by appending “_vn” to the part name (where n
is the version number device being used). For example, to specify
a chain of Version 1 XC95216s and XC95108s:

3. part xc95216_v1:design216a xc95108_v1:design108
xc95216_v1:design216b

4. Next, specify operations as usual to generate the required SVF
files.

Using the JTAG Programmer

In your $XILINX/data directory you will notice BSDL files with the
following names:

xc95108.bsd
3-20 Xilinx Development System

xc95108_v1.bsd

xc95216.bsd

xc95216_v1.bsd

The BSDL files with the “_v1” in their names describe the Version 1
silicon. Similarly, those with “_v2” are for Version 2 devices. To get
the software to use Version 1 BSDL files for all devices, you must
“trick” the application by renaming files as follows:

1. Rename xc95108.bsd to xc95108_v0.bsd

2. Rename xc95216.bsd to xc95216_v0.bsd

3. Rename xc95108_v1.bsd to xc95108.bsd

4. Rename xc95216_v1.bsd to xc95216.bsd

5. Invoke the JTAG Programmer and set it to generate SVF files as
described earlier in this section. When you use the JTAG
Programmer, it will default to using the xc95216.bsd and
xc95108.bsd files to describe the parts. This will allow access to all
Version 1 features.

6. When you are done programming, remember to change the file
names back so that the software will work correctly in non-SVF
modes:

7. Rename xc95108.bsd to xc95108_v1.bsd

8. Rename xc95216.bsd to xc95216_v1.bsd

9. Rename xc95108_v0.bsd to xc95108.bsd

10. Rename xc95216_v0.bsd to xc95216.bsd
3-21

Chapter 4

Designing Boundary-Scan and ISP Systems

This chapter gives design considerations for boundary-scan and ISP
systems. It contains the following sections:

• Connecting Devices in a Boundary-Scan Chain

• FPGA Device Considerations

Connecting Devices in a Boundary-Scan Chain
All devices in the chain share the TCK and TMS signals. The system
TDI signal is connected to the TDI input of the first device in the
boundary-scan chain. The TDO signal from that first device is
connected to the TDI input of the second device in the chain and so
on. The last device in the chain has its TDO output connected to the
system TDO pin. This configuration is illustrated in Figure 4-1.

Figure 4-1 Single Port Serial Boundary-Scan Chain

The boundary-scan standard requires pull-up resistance to be
supplied internally to the TDI and TMS pins by the chips, but no

U1

TCK

U2 Un

TDI

TMS

TDO/RD

TDO

X8006
4-1

particular value is required. This allows vendors to supply whatever
they choose and still remain in full compliance. Because of this, very
long boundary-scan chains, or chains using parts from multiple
vendors, may present significant loading to the ISP drive cable. In
these cases:

• Use the latest Xilinx download cables (parallel cables with serial
numbers greater than 5000, any X-Checker cable or MultiLINX
cable).

• Consider including buffers on TMS or TCK signals interleaved at
various points on your JTAG circuitry to account for unknown
device impedance.

• Some users have noted that their designs appear to experience
erase time or programming time extension as the design
progresses, particularly for long chains. This is probably due to
switching noise.

• Put the rest of the JTAG chain into HIGHZ mode by selecting the
HIGHZ preference on JTAG Programmer when programming a
troublesome part.

• If free running clocks are delivered into boundary-scan devices, it
may be necessary to disconnect or disable their entry into these
devices during ISP or boundary-scan operations.

• Charge pumps, the heart of the XC9500/XL/XV ISP circuitry,
require a modest amount of care. The voltages to which the
pumps must rise are directly derived from the external voltage
supplied to the VCCINT pins on the XC9500/XL/XV parts.
Because these elevated voltages must be within their prescribed
values to properly program the CPLD, it is vital that they be
provided with very clean (noise free) voltage within the correct
range. This suggests the first two key rules:

• Make sure VCC is within the rated value for the devices you are
using.

• Provide both 0.1 and 0.01 uF capacitors at every VCC point of the
chip, and attached directly to the nearest ground.

FPGA Device Considerations
JTAG Programmer supports the configuration of Xilinx FPGA
devices through the boundary-scan test access port (TAP). In order to
4-2 Xilinx Development System

enable boundary-scan-based configuration capabilities for FPGA
devices, you must design your systems and prepare your configura-
tion bitstreams in the following manner.

Bitstream Considerations
 JTAG Programmer only accepts FPGA configuration files in the
binary bitstream format (.bit). It does not allow configuration using
the ASCII raw bits (.rbt) format.

Express mode bitstreams cannot be used to configure devices via
boundary-scan.

If you are using XC4000, Spartan or SpartanXL, make certain that the
boundary-scan (BSCAN) symbol has been included in your design. If
it has not then the bitstream will also not be usable for boundary-scan
based configuration. Standard examples for instantiating the BSCAN
symbol in FPGAs are included in Appendix F.

 Keep your device bitstream files separate for each device in the
boundary-scan chain. JTAG Programmer requires you to assign a
single bit file to each device. It cannot manipulate composite bit files.

Virtex Considerations
 When generating bitstreams for Virtex devices, always select the
option to choose the JTAG clock as the startup clock.

XC4KXLA, XV, Spartan XL Considerations

When generating bitstreams for these devices, always select the
option to enable BSCAN status.

Device Set-up
Xilinx recommends that all the mode pins of the devices be tied low
before starting the configuration. This is recommended for all
XC4000, XC5000 and Spartan device families.

 In order to enable the boundary-scan circuitry in the device, you
must install a pull down resistor on the INIT pin. The value of the
pull down should be selected so as to draw the INIT pin to approxi-
mately 0.5V. Typically a pull down of approximately 1KOhm should
accomplish this.
4-3

 Verifying Device Configuration
The XC4000 (not the XLA and XV), XC5000 and Spartan (not the
SpartanXL or Spartan-II) devices freeze if data errors occur during
boundary-scan configuration. The only method for unlocking the
frozen device is to reset the power to the device or pulse the
PROGRAM pin low. (This latter method would have to be accom-
plished manually since the download cables (when being used for
boundary-scan operations), do not have control over the PROGRAM
pin. Although this situation is rare, it is possible to design your
system so as to detect if that condition has occurred. The JTAG
Programmer software allows you to check for this in three ways:

1. Assume successful verification - since it is a low probability
event, simply configure the device and run. The drawback is that
the failure of the device is then only detected at run-time.

2. Readback verify the configuration memory - after configuring,
readback the contents of the configuration memory and check
against the source bitstream file. If the device has frozen, the
returned bits will be incorrect. Since bit files can be large, this
might be time consuming.

3. Tie a free pin on the device to ground - after configuring, the soft-
ware will perform an EXTEST instruction to read the device pin
value. If the device has locked up, the pin value will not be read
correctly.

Device Behavior Notes
Any verify operation executed immediately after configuration
without boundary-scan functionality enabledwill fail because the test
access port no longer exists. Always remember to instantiate the
BSCAN symbol for reliable operation of your XC4000, XC5200,
Spartan and SpartanXL devices.

The implementation of boundary-scan based configuration of FPGAs
precludes the use of concurrent ISP. For this reason, the concurrent
mode preference is disabled (or ignored) when FPGAs are selected to
be operated upon.
4-4 Xilinx Development System

Appendix A

Boundary Scan Basics

This appendix discusses IEEE Standard 1149.1 instructions.

Boundary Scan/IEEE Standard 1149.1
Design complexity, difficulty of loaded board testing, and the limited
pin access of surface mount technology led industry leaders to seek
accord on a standard to support the solution of these problems.

JTAG Boundary Scan, formally known as IEEE Standard 1149.1, is
primarily a testing standard created to alleviate the growing cost of
designing and producing digital systems. The primary benefit of the
standard is the ability to transform extremely difficult printed circuit
board testing problems (that could only be attacked with ad-hoc
testing methods) into well-structured problems that software can
handle easily and swiftly.

The standard defines a hardware architecture and the mechanisms
for its use to solve the aforementioned problems.

What can it be used for?
Although primarily a testing standard for on-chip circuitry, the prolif-
eration of the standard has opened the door to a wide variety of
applications. The standard itself defines instructions that can be used
to perform functional and interconnect tests as well as built-in self
test procedures.

Vendor-specific extensions to the standard have been developed to
allow execution of maintenance and diagnostic applications as well
as programming algorithms for reconfigurable parts. It is the latter
that have been implemented (in addition to all the mandatory opera-
A-1

tions of the standard and some optional ones) in the FastFLASH
family.

How does it work?
The top level schematic of the test logic defined by IEEE Std 1149.1
includes three key blocks:

The TAP Controller

This responds to the control sequences supplied through the test
access port (TAP) and generates the clock and control signals
required for correct operation of the other circuit blocks.

The Instruction Register

This shift register-based circuit is serially loaded with the instruction
that selects an operation to be performed.

The Data Registers

These are a bank of shift register based circuits. The stimuli required
by an operation are serially loaded into the data registers selected by
the current instruction. Following execution of the operation, results
can be shifted out for examination.

JTAG Test Access Port

The JTAG Test Access Port (TAP) contains four pins that drive the
circuit blocks and control the operations specified. The TAP facilitates
the serial loading and unloading of instructions and data. The four
pins of the TAP are: TMS, TCK, TDI and TDO. The function of each
TAP pin is as follows:

TCK - this pin is the JTAG test clock. It sequences the TAP controller
as well as all of the JTAG registers provided in the XC95108.

TMS - this pin is the mode input signal to the TAP Controller. The
TAP controller is a 16-state FSM that provides the control logic for
JTAG. The state of TMS at the rising edge of TCK determines the
sequence of states for the TAP controller. TMS has an internal pull-up
resistor on it to provide a logic 1 to the system if the pin is not driven.

TDI -this pin is the serial data input to all JTAG instruction and data
registers. The state of the TAP controller as well as the particular
A-2 Xilinx Development System

instruction held in the instruction register determines which register
is fed by TDI for a specific operation. TDI has an internal pull-up
resistor on it to provide a logic 1 to the system if the pin is not driven.
TDI is sampled into the JTAG registers on the rising edge of TCK.

TDO - this pin is the serial data output for all JTAG instruction and
data registers. The state of the TAP controller as well as the particular
instruction held in the instruction register determines which register
feeds TDO for a specific operation. Only one register (instruction or
data) is allowed to be the active connection between TDI and TDO for
any given operation. TDO changes state on the falling edge of TCK
and is only active during the shifting of data through the device. This
pin is three-stated at all other times

JTAG TAP Controller
The JTAG TAP Controller is a 16-state finite state machine, that
controls the scanning of data into the various registers of the JTAG
architecture. The state of the TMS pin at the rising edge of TCK is
responsible for determining the sequence of state transitions. There
are two state transition paths for scanning the signal at TDI into the
device, one for shifting in an instruction to the instruction register
and one for shifting data into the active data register as determined
by the current instruction.

JTAG TAP Controller States

Test-Logic-Reset. This state is entered on power-up of the device
whenever at least five clocks of TCK occur with TMS held high. Entry
into this state resets all JTAG logic to a state such that it will not inter-
fere with the normal component logic, and causes the IDCODE
instruction to be forced into the instruction register.

Run-Test-Idle. This state allows certain operations to occur
depending on the current instruction. For the XC9500/XL/XV family,
this state causes generation of the program, verify and erase pulses
when the associated in-system programming (ISP) instruction is
active.

Select-DR-Scan. This is a temporary state entered prior to performing
a scan operation on a data register or in passing to the Select-IR-Scan
state.
A-3

Select-IR-Scan. This is a temporary state entered prior to performing
a scan operation on the instruction register or in returning to the Test-
Logic-Reset state.

Capture-DR. This state allows data to be loaded from parallel inputs
into the data register selected by the current instruction on the rising
edge of TCK. If the selected data register does not have parallel
inputs, the register retains its state.

Shift-DR. This state shifts the data, in the currently selected register,
towards TDO by one stage on each rising edge of TCK after entering
this state.

Exit1-DR. This is a temporary state that allows the option of passing
on to the Pause-DR state or transitioning directly to the Update-DR
state.

Pause-DR. This is a wait state that allows shifting of data to be tempo-
rarily halted.

Exit2-DR. This is a temporary state that allows the option of passing
on to the Update-DR state or returning to the Shift-DR state to
continue shifting in data.

Update-DR. This state causes the data contained in the currently
selected data register to be loaded into a latched parallel output (for
registers that have such a latch) on the falling edge of TCK after
entering this state. The parallel latch prevents changes at the parallel
output of these registers from occurring during the shifting process.

Capture-IR. This state allows data to be loaded from parallel inputs
into the instruction register on the rising edge of TCK. The least two
significant bits of the parallel inputs must have the value 01 as
defined by IEEE Std. 1149.1, and the remaining 6 bits are either hard-
coded or used for monitoring of the security and data protect bits.

Shift-IR. This state shifts the values in the instruction register towards
TDO by one stage on each rising edge of TCK after entering this state.

Exit1-IR. This is a temporary state that allows the option of passing
on to the Pause-IR state or transitioning directly to the Update-IR
state.

Pause-IR. This is a wait state that allows shifting of the instruction to
be temporarily halted.
A-4 Xilinx Development System

Exit2-IR. This is a temporary state that allows the option of passing
on to the Update-IR state or returning to the Shift-IR state to continue
shifting in data.

Update-IR. This state causes the values contained in the instruction
register to be loaded into a latched parallel output on the falling edge
of TCK after entering this state. The parallel latch prevents changes at
the parallel output of the instruction register from occurring during
the shifting process.

JTAG Instructions Supported in FastFLASH Parts
JTAG Programmer software uses sequences of these JTAG instruc-
tions to perform programming and verification operations selected
by the user. However, execution of individual JTAG instructions is
not supported by this software.

Mandatory Boundary Scan Instructions
BYPASS. The BYPASS instruction allows rapid movement of data to
and from other components on a board that are required to perform
test operations.

SAMPLE/PRELOAD. The SAMPLE/PRELOAD instruction allows a
snapshot of the normal operation of a components to be taken and
examined. It also allows data values to be loaded onto the latched
parallel outputs of the boundary scan shift register prior to the selec-
tion of other boundary-scan test instructions.

EXTEST. The EXTEST instruction allows testing of off-chip circuitry
and board level interconnections.

Optional Boundary Scan Instructions
INTEST. The INTEST instruction allows testing of the on-chip system
logic while the components are already on the board.

HIGHZ. The HIGHZ instruction forces all drivers into high imped-
ance states.

IDCODE. The IDCODE instruction allows blind interrogation of the
components assembled onto a printed circuit board to determine
what components exist in a product.
A-5

USERCODE. The USERCODE instruction allows a user-program-
mable identification code to be shifted out for examination. This
allows the programmed function of the component to be determined.

FastFLASH Reconfiguration Instructions
ISPEN. The ISPEN instruction activates the FastFLASH part for in-
system programming.

FPGM. The FPGM instruction is used to program the fuse locations at
a specified address.

FERASE. The FERASE instruction is used to perform an erase of a
block of fuse locations.

FVFY. The FVFY instruction is used to read the programming of the
fuse locations at a specified address.

ISPEX. The ISPEX instruction loads the programmed values into the
device memory. It then activates the device to operate according to
the programmed values.

FPGMI. The FPGMI instruction is used to program fuse locations
sequentially from a preset starting address.

FVFYI. The FVFYI instruction is used to read the programming of
fuse locations sequentially for a preset starting address.

FBULK. The FBULK instruction is used to perform an erase of either
all function blocks or all Fastconnect blocks of a device.
A-6 Xilinx Development System

Appendix B

JTAG Parallel Cable Schematic

This appendix contains a schematic of the Parallel Download Cable.
It is included in case you want to build your own download cables.
schematic, Figure B-1, is our current version of the Parallel Download
Cable. If you want to build a parallel cable, this is the recommended
schematic.

Note You must use recommended lengths for parallel cables. Xilinx
cables are typically six feet (about two meters) in length.
B-1

Figure B-1 Parallel Download Cable

VCC SENSE
VCC

GND

TCK

TDI

TDO

TMS

VCC

GND

CCLK

D/P

DIN

PROG

1

2

4

7

6

9

1

2

3

4

5

5

3

6

7

8

9

8

100

100

100

100

100
100pF

100pF

100pF

100pF

5.1K

1K .01uF

1N5817
JTAG Header

DB25 MALE
CONNECTOR

FPGA Header

100

300

300

300

300

300

DONE

PROG

DIN

TMS_IN

CTRL

CLK

GND

GND

D6

BUSY

PE

SHIELD

15

13 U1
14

7

32

5

12

9

1

6

4

11

13

8

10

U1

U1

U1

U1

6

2

4

5

3

20

25

8

11

12

U2

U2

U2

U1 = 74HC125
U1 = 74HC125

Serial JT -05000 and above
for EPP parallel ports.

100

U2

1

1N5817

U2
14

7

2

6 5

8

4

9

10

1211

13
B-2 Xilinx Development System

Appendix C

Troubleshooting Guide

This chapter is a simple guide to understanding the more common
issues you might encounter when configuring CPLDs with JTAG
Programmer. These issues are likely to fall into three groups; commu-
nication, improper connections, and improper or unstable VCC.

• Communication

This section describes several issues that involve the integrity of
the bitstream that JTAG Programmer transmits to the target
CPLDs, and the correct connection of the boundary-scan chain.

• Improper Connections

This section involves assigning configuration pins to invalid
signals or voltage levels.

• Improper or Unstable VCC

This section describes several causes of incorrect configuration
sequences and incorrect responses from the target system.

• Boundary Scan Chain Errors

If you experience a consistent error that identifies a break in your
boundary-scan chain, go to this section.

• System Noise

If you experience intermittant problems characteristic of system
noise, go to this section.

Communication
Observing the following guidelines should minimize the communi-
cation difficulties that can occur between the cable hardware and the
target system.
C-1

• Do not attach extension cables to the target system side of the
cable; this can compromise configuration data integrity and
cause checksum errors.

• Attach the cable configuration leads firmly to the target system.

• After connecting the target system, specify the chain configura-
tion using the part command. Then use the "partinfo -id
part_name" command to read the IDCODE from each part in the
system. This will verify the integrity of the boundary-scan chain.
If you are using the Graphical User Interface:

• Operations → Get Device ID

• Use the verify feature to assure integrity of the configuration
data. You can do this from the command line with the –v option
or in the interactive mode by specifying the verify command.

• When using the JTAG Programmer software with the cable on a
PC to download, the process may stop with data communications
errors. This is caused by serial port communication inefficiencies
in the Windows environment. To set your PC to better handle
serial communications at 38400 baud, add (or modify) the
following lines to the 386Enh section of your SYSTEM.INI file.
This file is located in the Windows directory of your system.

• COM1Buffer=32768

• COM2Buffer=32768

• COMBoostTime=10240

Improper Connections
Check the following:

• Always make sure that cable leads are connected properly.

• Connecting the cable leads to the wrong signal will cause perma-
nent damage to cable internal hardware. On a parallel cable, you
must connect VCC to +5 V, +3.3V or +2.5V, and GND to ground.
On an XCHecker cable, you can connect VCC directly to 5V and
GND to ground, but need an adapter to connect VCC to 3.3V or
2.5V. The part number is HW-XCH3V.

• For workstations, you must have read and write permissions to
the port to which you connect the cable. JTAG Programmer might
C-2 Xilinx Development System

issue a message stating that the cable is not connected to port
ttyx. When you see this message, follow the check list below:

• The board must have the power on, since the cable uses power
from the board.

• Check the device driver using the following command string:

• ls –l /dev/ttya /dev/ttyb

• The result should be the following:

• crw-rw-rw- 1 root12,0 month date time /dev/ttya

• crw-rw-rw- 1 root12,1 month date time /dev/ttyb

• Reconnect the cable to another valid port.

• Read the /etc/ttytab file. There should be two lines, as follows:

• ttya‘‘/usr/etc/getty std.9600’’ unknown off local secure

• ttyb‘‘/usr/etc/getty std.9600’’ unknown off local secure

• If you use a port to connect a modem or a remote login, you
cannot use that port. The port must be on. Consult your System
Administrator if the information the /etc/ttytab file is different
than what is listed in the aforementioned list.

Improper or Unstable VCC
If you are having problems with unstable VCC, try the following:

Never connect the control signals to the cable before VCC and
ground. Xilinx recommends the following sequence:

• Turn off power to the target system.

• Connect VCC ground, and then the signal leads,

• Turn on power to the target system.

• The XChecker Cable has an internal FPGA. As with any CMOS
device, the input/output pins of the internal FPGA should
always be at a lower or equal potential than the rail voltage to
avoid internal damage.

• Make sure VCC rises to a stable level within 10ms. Stable VCC
should be between 4.75 V and 5.25 V.

• In the event of power glitches, reset the cable by selecting:
C-3

• Output → Cable Reset

Boundary Scan Chain Errors
If you experience a consistent error that identifies a break in your
boundary-scan chain but are unable to identify such a discontinuity
then execute the following steps:

Create a command file to be used with the batch version of the JTAG
Programmer (jtagprog). In this batch file specify your boundary-scan
chain configuration using the part command and about 500 idcode
queries as follows:

part xc9572:design72 xc95108:design108

partinfo -id design108

partinfo -id design108

partinfo -id design108

.

.

.

partinfo -id design108

quit

Save the file as test.cmd and then invoke the tool as follows:

jtagprog -batch test

The tool will execute the device id command 500 times before quit-
ting. While this is going on use the oscilloscope to probe the pins of
the boundary scan test access port (TAP) at the system entry point
and at each individual part.

The boundary scan integrity check sequences the TAP through a
TRST sequence (TMS set to 1, TCK pulsed 5 times) and then transi-
tions all devices to the RunTest/Idle state (TMS set to 0, TCK pulsed
once). Then, all parts are run through a CAPTURE -IR sequence while
TDI is set to 1 (1s will be shifted in). If you look in the device BSDL
files you will see the expected capture sequence defined in the
“instruction capture” field. For all XC9500/XL/XV parts this
sequence is a “1” followed by seven zeros. You should therefore see
C-4 Xilinx Development System

the “1” on TDO after the falling edge of the 4th TCK pulse after the
TRST sequence. On the next TCK pulse TDO should return to zero.

The CAPTURE -IR sequence consists of the following (starting from
RunTest/Idle), as illustrated in Figure C-1.

TMS set to 1; TCK pulsed twice.

TMS set to 0; TCK pulsed twice.

TCK pulsed (number of bits in instruction register -1) times.

TMS set to 1; TCK pulsed twice.

TMS set to 0; TCK pulsed once.

Figure C-1 Sample Expected Waveform

Check for the following:

The expected number of TCK pulses occur.

The same TMS sequence occurs for each part.

The TDO is not shorted or floating between parts, or floating at the
system interconnect point.

Make certain that all 4 TAP signals are getting into each part (Note
that both TDI and TMS have internal pull-ups on them which could
keep the device in TRST mode if TMS is not properly connected).

You may also use the Debug Chain dialog and a logic probe or oscil-
loscope to transition the TAP state machine directly and observe
results.

1 00 0 0 0 0 0 1 00 0 0 0 0 0

2 3 4 5 6 7 8

TCK

TMS

TD0

TD1 ALWAYS "1"
X8083

2 3 4 5 6 7 81 1
C-5

System Noise
You can check for system noise by running the IDCODE looping
instruction. The IDCODE should read correctly 100% of the time. If
by test you find that the instruction is working less than 100% of the
time, you may be experiencing system noise. To use IDCODE
looping:

Operations → Idcode looping

This will display the Edit window. Enter the number of loops you
desire and click OK.

To remedy a problem with system noise, select Use HIGHZ instead of
BYPASS from the Preferences dialog box. This places devices into tri-
state mode and reduces susceptibility to system noise. To find this
box use:

File → Preferences

The Preferences dialog box will appear. Place a check in the box adja-
cent to Use HIGHZ instead of BYPASS.
C-6 Xilinx Development System

Appendix D

Error Messages

This section describes the error messages that JTAG Programmer may
generate. Following each error message, there is a suggested
workaround.

Error Messages
Command file bat file.cmd is not found.

Make sure that the command file you specified is in the current direc-
tory or the environment search path. Make sure that the command
file has the ".cmd" extension

Internal Error — Command table syntax error Cmd=valid_command.

This is an internal program error that normally should not occur. Try
entering the command sequence again. If the error persists, try rein-
stalling your JTAG Programmer software. If the error reappears, call
Xilinx Technical Support. Be prepared to duplicate the error and
reference specific files or examples.

Cannot open output file file_name.

Check available disk space. Current directory or file must have write
permission.

Cannot create output file file_name.

Check available disk space. Current directory or file must have write
permission.

Cannot open input file file_name.

Make sure the file_name file exists in your working directory or in the
environment search path. Current directory or file must have write
permission.
D-1

File file_name is not found.

The file_name file does not exist in the current directory or search
path. Make sure that the file_name file exists in your working direc-
tory or in the environment search path.

Help file jtagprog.hlp is not accessible

Make sure that the XILINX environment variable points to the instal-
lation directory in the PC. Also make sure that jtagprog.hlp is in the
installation\MSG directory. If you cannot find jtagprog.hlp in the
installation\MSG directory, you must reinstall the JTAG Programmer
software.

No help for command command entered.

Help is not available for the specified command. Refer to the Interac-
tive Mode Commands section in Appendix E for help.

Cannot save configuration to file_name.pro.

Check available disk space. Current directory or file must have write
permission.

Invalid command at line line number.

Check the file xchecker.pro in your current directory for illegal
commands. Delete the xchecker.pro file. JTAG Programmer creates a
new profile when you exit from the session.

Ambiguous command.

Enter the minimum unique characters that identify the command or
enter complete commands with no abbreviations.

Invalid command.

The command you entered is illegal. Refer to the Interactive Mode
Commands section in Appendix E for help.

Invalid number of arguments.

Refer to the Interactive Mode Commands section in Appendix E for
help.

Invalid option selected option.

Refer to the Command-Line Options and the Interactive Mode
Commands sections in Appendix E for help.

Invalid value given to parameter.
D-2 Xilinx Development System

Refer to the Command-Line Options and the Interactive Mode
Commands sections in Appendix E for help.

Value is required for command entered.

Refer to the Interactive Mode Commands section in Appendix E for
help.

System Error Messages

System error codes are usually a string of messages generated by
your operating system.

System file error code.

System error codes are usually a string of messages generated by
your operating system.

Cable is not initialized.

Reissue the Reset command with the –c option, or cycle power to the
XChecker cable and then issue the Reset command with the –c
option. See the Improper or Unstable VCC section in Appendix E.

Cable is not located.

No cable has been recognized at any port. Make sure there is power
to your board and to the XChecker cable. If you are using the test
fixture, you must connect VCC and ground to it. The XChecker cable
draws power from your target system, not from your host computer.
Also make sure the RS-232 connector is firmly attached.

Invalid port name.

Refer to the XChecker Hardware section in Appendix E for help.

Invalid baud specified.

Refer to the XChecker Hardware section in Appendix E for help.

Cable is not reset.

Cycle power to the cable. Use the Reset command with the –c option.

Communication line is broken.

Run the Reset command with the –c option. Also make sure there is
power to your board and to the XChecker cable. Check all power and
port connections.

Communication checksum error.
D-3

Check for induced noise in your target system or from your target
system into the XChecker connections. Do not use cable extensions.
The XChecker cable length is tested to produce minimal noise levels.
Remember that a logic High must be 80-100% of VCC and a Logic
Low must be 0-25% of VCC.

Cable has no power.

Make sure there is power from your target system to the XChecker
cable. The cable draws power from an external source, not from the
host computer.

Communication time-out.

JTAG Programmer has not received an expected signal; for example,
a system trigger to initiate readback or data coming from readback.
Make sure that the selected options for trigger and readback are what
you intended. Check all connections.

Cannot communicate to the cable.

Run the Reset command with the –c option. Also, ensure that there is
power to your board and to the XChecker cable. Check all connec-
tions. Make sure the RS-232 connector is firmly attached.

Cable datafile file_name is empty.

Run the Reset command with the –c option. Make sure that the
XILINX environment variable points to the installation directory on
the PC.

No XChecker cable is connected to the port portname.

Ensure that there is power to your board and to the XChecker cable.
You must connect VCC and ground to the test fixture, if you are using
it. The cable draws power from your target system, not from the host
computer. Ensure that the RS-232 connector is firmly attached.

No XChecker cable is connected to the system.

Ensure that there is power to your board and to the cable. You must
connect VCC and ground to the test fixture, if you are using it.
XChecker draws power from your target system, not from the host
computer. Ensure that the RS-232 connector is firmly attached.

Fail reading cable status.

Try using the Reset command with the cable option. Ensure that there
is power to your board and to the cable. Check all connections.
D-4 Xilinx Development System

Unsupported command for this cable.

See the Interactive Mode Commands section for valid with the
XChecker cable. If you are using the previous parallel or serial down-
load cables, you can only use the Load command to download.

Read only number of bits received.

Check all connections. Check for noise that may be induced into your
target system or from your target system into the XChecker connec-
tions. Do not use cable extensions. The XChecker cable length is
tested to produce minimal noise levels. Remember that a logic High
must be 80-100% of VCC and a Logic Low must be 0-25% of VCC.

Invalid baud rate. Current baud rate is baud rate.

See Table 2-1 for the valid baud rates for your computer.

Missing baud rate. Current baud rate is baud rate.

See the Interactive Mode Commands section in Appendix E for
correct command usage.

Cannot communicate with port port name.

Check this manual for supported ports. See the Port command.

Datafile file_name is empty.

The specified datafile is either empty or contains invalid data. JTAG
Programmer supports only JEDEC 3-C format.

Datafile file_name is not found.

The file_name file does not exits in the current directory or search
path. Check your environment search path to make sure that it
contains the directory where file_name is.

Can’t open datafile file_name.

The file file_name does not exits in the current directory or search
path. Check your environment search path to make sure that it
contains the directory where file_name is located.

No part type is defined.

The part type specified in your design or by you (using the Part
command) is invalid. Check the The Programmable Logic Data Book
for valid part types and packages.

Unable to execute erase command at address string of instance string.
D-5

The specified device instance could not be erased. Check if data
protect is enabled as this disables the erase functionality. Also check
for the integrity of the cable connections.

Unable to program all addresses of instance string.

The specified device instance could not be programmed. Check if
data protect or data security is enabled as this disables the program-
ming functionality. If data security is enabled, first issue an “erase”
command then execute the program command. Also check for the
integrity of the cable connections.

Verification of instance string against program file string failed.

The specified device instance could not be verified. Check if data
security is enabled as this disables the readback functionality. If this is
not the case, check for the integrity of the cable connections. If error
persists you may have a bad part and Xilinx customer service should
be contacted.

Unable to program address string of instance string with data string.

The specified device instance could not be programmed. Check if
data protect or data security is enabled as this disables the program-
ming functionality. If data security is enabled, first issue an “erase”
command then execute the program command. Also check for the
integrity of the cable connections.

Unable to verify address string of instance string against data string.

The specified device instance could not be verified. Check if data
security is enabled as this disables the readback functionality. If this is
not the case, check for the integrity of the cable connections. If error
persists you may have a bad part and Xilinx customer service should
be contacted.

Verification failed at address value of instance string. Expected:
value. Read: value.

The specified device instance could not be verified. Check if data
security is enabled as this disables the readback functionality. If this is
not the case, check for the integrity of the cable connections. If error
persists you may have a bad part and Xilinx customer service should
be contacted.

A description for a device named string has not been supplied. Please
make sure that a BSDL description was loaded for this device.
D-6 Xilinx Development System

A description for an instance named string of any device has not
been supplied. Please make sure that a JTAG connection description
was supplied for this device.

Check that the specified part exists in the boundary-scan chain that
you declared in your “part” command. A new “part” command will
override the previously specified one. The current “part” database
can be displayed by typing “part” followed by a carriage return.

The boundary scan chain instruction register bit sequence is incorrect
at bit value. This corresponds to a scan chain break at or near part
string.

Verification of the integrity of the boundary-scan chain failed. Check
cable connections and “part” command specification The current
“part” database can be displayed by typing “part” followed by a
carriage return.

In a multi-part boundary scan chain, the name of the particular
boundary scan part instance on which to operate must be specified.
Please retry this command with an instance name specified.

You must specify a particular instance upon which to operated.
Respecify the command with that information. That is, specify “erase
instanceName” and not “erase”.

Unable to execute erase command for instance string

The specified device instance could not be erased. Check if data
protect is enabled as this disables the erase functionality. Also check
for the integrity of the cable connections.

Unable to execute functional test command using vectors in JEDEC
file string.

Functional test vectors failed for instance string.

Functional test vector value failed for instance string at pin number
value. Expected output value: value Actual output value: value

When running functional test using the INTEST instruction, the
applied functional vectors mismatched the predicted values. This
can be either a functional error in the design or an error in the vectors
specified. This will also occur when vectors targetted for a different
design are applied. Re-check the integrity of your design database
information.
D-7

Mismatched address values during verification of instance string.
Check JEDEC file and cable connections. Expected addressvalue:
value. Read: value.

The specified device instance could not be verified. Check if data
security is enabled as this disables the readback functionality. If this is
not the case, check for the integrity of the cable connections. If error
persists you may have a bad part and Xilinx customer service should
be contacted.

Illegal IDCODE read from device identification register on instance
string. IDCODE value: string

The IDCODE read from the specified part does not conform to the
1149.1 standard. This is often the result of a bad cable connection.
Check the integrity of the cable connection.

Error reading data value from address string on device string while
calculating checksum.

Data integrity errors while reading data values from device string
will result in an incorrect checksum.

While reading back data to calculate the checksum, errors occured.
Check if data security is enabled as this disables the readback func-
tionality. If this is not the case, check for the integrity of the cable
connections. If error persists you may have a bad part and Xilinx
customer service should be contacted.

Unable to program data protect bit at address string on device string.

Programming failures when programming data protect bits of device
string.

Unable to program data security bit at address string on device
string.

Programming failures when programming data security bits of
device string.

The specified device instance could not be programmed. Check if
data protect or data security is already enabled as this disables the
programming functionality. If data security is enabled, first issue an
“erase” command then execute the program command. Also check
for the integrity of the cable connections.

Error reading data value from address string on device string while
generating JEDEC file.
D-8 Xilinx Development System

Data integrity errors while reading data values from device string
will result in an incorrect or incomplete JEDEC file.

While reading back data to generate a JEDEC file, errors occured.

Check if data security is enabled as this disables the readback func-
tionality. If this is not the case, check for the integrity of the cable
connections. If error persists you may have a bad part and Xilinx
customer service should be contacted.

Xchecker configuration file for boundary-scan TAP driver not found.
Check XILINX path setting and locate file named ‘xckjtag.sys’.

When the Xchecker reconfiguration file xckjtag.sys is not found or
loaded correctly the above messages are displayed. Check that your
XILINX path includes the release “data” directory and that the file
“xckjtag.sys” exists in it. Also, check the integrity of the connections
to the xchecker cable both at the serial port and to the target system.

Data protection is enabled in instance string (NOTE: device program-
ming contents cannot be altered).

This is the warning message issued when data protect is enabled. It is
displayed with each operation addressing this device.

Data security is enabled in instance string (NOTE: device program-
ming contents cannot be read).

This is the warning message issued when data security is enabled. It
is displayed with each operation addressing this device.

The device string is not a Xilinx part (IDCODE: string)

The device string is not a XC9500 part (IDCODE: string) Please verify
the specification of the order of the parts in the boundary-scan chain.

The device string is not an XC95108 part (IDCODE: string). Please
verify the specification of the order of the parts in the boundary-scan
chain.

The device string is not a currently supported XC9500 part (IDCODE:
string) Please verify the specification of the order of the parts in the
boundary-scan chain.

These messages are displayed when the software identifies that the
specified operation is targetting an improper device. Check that the
specified part exists in the boundary-scan chain that you declared in
your “part” command. A new “part” command will override the
D-9

previously specified one. The current “part” database can be
displayed by typing “part” followed by a carriage return.

The JEDEC file string is for a device of type string. The specified part
string is actually a string device. Please re-generate your JEDEC file.

The specified part string is of type string for which JEDEC files
cannot yet be generated.

These messages are displayed when the software identifies that the
specified JEDEC file associated with an instance is not a supported
device or does not match the specified device. Check that the speci-
fied part exists in the boundary-scan chain that you declared in your
“part” command. A new “part” command will override the previ-
ously specified one. The current “part” database can be displayed by
typing “part” followed by a carriage return.

The checksum calculated by reading the programmed device values
differs from the expected result.

While reading back data to calculate the checksum, errors occured.
Check if data security is enabled as this disables the readback func-
tionality. If this is not the case, check for the integrity of the cable
connections. If error persists you may have a bad part and Xilinx
customer service should be contacted.

Xchecker re-configuration file for boundary-scan TAP driver was not
completed. Check XILINX path setting, cable connections and
version of file named ‘xckjtag.sys’.

When the Xchecker reconfiguration file xckjtag.sys is not found or
loaded correctly the above message is displayed. Check that your
XILINX path includes the release “data” directory and that the file
“xckjtag.sys” exists in it. Also, check the integrity of the connections
to the xchecker cable both at the serial port and to the target system.

The device string is not an XC95216 part (IDCODE: string) Please
verify the specification of the order of the parts in the boundary-scan
chain.

This message is displayed when the software identifies that the speci-
fied operation is targetting an improper device. Check that thespeci-
fied part exists in the boundary-scan chain that you declared in your
“part” command. A new “part” command will override the previ-
ously specified one. The current “part” database can be displayed by
typing “part” followed by a carriage return.
D-10 Xilinx Development System

Appendix E

Using the Command Line Interface

This chapter gives specific information about using jtagprog in a
workstation or PC environment to perform JTAG operations. You
can use jtagprog to download, read back, verify design configura-
tion data for any device, and to probe internal logic states of an CPLD
design.

JTAG Programmer batch software support the following capabilities.

• JTAG Programmer allows you to download a design to the CPLD
on the target system.

• JTAG Programmer can verify CPLD configuration by comparing
it to the original JEDEC programming file after configuring an
CPLD.

• You can program multiple CPLDs connected on a boundary-scan
chain.

• You can apply test vectors from a JEDEC file through the
boundary-scan TAP to CPLDs using the INTEST instruction.

This appendix contains the following sections:

• Using JTAG Programmer Batch Version Software

• Command-Line Options

• Interactive Mode Commands

Using JTAG Programmer Batch Version Software
This section describes the JTAG Programmer files and commands.
E-1

JTAG Programmer Files
You must become familiar with the following files, which are used by
the JTAG Programmer software.

design.jed

The design.jed file contains the configuration information for the
target design in JEDEC 3-C standard formats. The file is generated by
the fitter software. This file may optionally contain functional test
vectors to do functional verification of XC9500/XL/XV devices.

jtagprogrammer.pro

The jtagprogrammer.pro file contains the default values for all JTAG
Programmer options: part, design, baud, and port. These option
values are updated at the end of every JTAG Programmer session. For
JTAG Programmer to recognize a jtagprogrammer.pro file, it must be
located in the current working directory.

batch_file.cmd

The batch files are text files used to execute commands in the batch
mode, and the extension “.cmd” is required.

device.bsd

The bsd files contain Boundary Scan Description Language (BSDL)
specifications of the operation of the boundary-scan logic of a given
device. For any non-XC9500/XL/XV device in your boundary-scan
chain, you are required to supply this file.

Invoking JTAG Programmer
You can start JTAG Programmer using interactive commands from
the system shell. This mode offers additional commands for down-
load and readback and also allows you to probe the internal logic
states of the target system device.

Downloading
You can download a design after connecting the cable to the host
system and target system. To download a design, enter the following
command at the operating system prompt.

jtagprog
E-2 Xilinx Development System

When you do not specify any options, the JTAG Programmer soft-
ware selects the port where the cable is connected and sets the baud
rate to the maximum allowed by the platform. You can modify the
communication port and baud rate by changing the appropriate
settings in the xchecker.pro file.

To download in an interactive mode, enter the following command at
the system prompt.

jtagprog

You see the following message on the screen:

JTAGProgrammer: version x1_1.0 Copyright: 1991-1996

Cable ID type is ’XCHECKER’
Cable is connected to ’/dev/ttya’
Baud rate is 38400

To specify the number, type, names and order of devices in the
boundary-scan chain:

part part_type:design_name

To erase and program the a design, enter this command string:

program design_name

Verifying
After you have properly configured a device, you can verify its
configuration and compare it to your original design.

In most applications, verification is not needed, but this feature can
be helpful with designs that experience extremely unstable or noisy
VCC conditions.

To execute a readback after the device has been in operation, use the
interactive commands, as follows:

jtagprog

This command invokes the interactive mode, and the [JTAGPro-
grammer::(#)] > prompt appears (the “#” in the prompt string is the
current command number).

[JTAGProgrammer::(#)] > part part_type:design_name
E-3

The part commands identifies the number the number, type, name
and order of devices in the boundary-scan chain. In this case there is
one device only. Then to program the device, enter:

[JTAGProgrammer::(#)] > program design_name

The program command downloads design.jed to the target device. If
you want a readback after the target device is in operation, you can
execute the Verify command.

[JTAGProgrammer::(#)] > verify design_name

This command initiates a readback, and compares the data to the
design.jed file.

You may also execute the program and verify operations in one step
by typing:

[JTAGProgrammer::(#)] > program -v design_name

Command-Line Options
This section describes the JTAG Programmer command-line options.
The data files are configuration bitstream files in JEDEC format.
When you do not specify any options or data files, the system
defaults to the interactive mode.

The command-line syntax is as follows:

jtagprog options

You can abbreviate all options to the minimum number of distinctive
characters in the option name.

Commands and options are not case-sensitive.

–batch Batch Mode Operation

Syntax: –batch bat_file.cmd

Abbreviation: b

The Batch option executes commands in batch mode. The bat_file
must have a ".cmd" extension and contain valid JTAG Programmer
commands, including interactive commands. You can add comments
to files by using the # symbol, either on the command line or on a
new line.

–h The Help Option
E-4 Xilinx Development System

Syntax: –help

Abbreviation: h

The Help option displays command line usage information.

-log Specify Log File Name

Syntax: –log filename.log

Abbreviation: -l

Captures all output to the specified log file.

–port Specify Port Name

Syntax: –port portname

Abbreviation: po

The Specify Port Name option identifies the port connection for the
XChecker cable. If you do not specify this option, the default option
AUTO, searches for the cable connected to any port, parallel or serial.
Valid ports for supported platforms are listed in Table E-1.

Valid Ports for the XChecker Cable

*Use with the parallel download cable only.

 **ttya and ttyb must be readable and writable to ensure a proper
connection.

Interactive Mode Commands
This section describes the JTAG Programmer interactive mode
commands. To use the interactive mode commands, you enter jtag-
prog at the system prompt.

You can abbreviate the commands using the least number of distinc-
tive characters, as with the command line options, but you must use
at least two characters. You can repeat the previous command using
either an equal sign, "=," or an exclamation point, "!."

Platform Communication Ports

IBM PC com1 com2 lpt1* lpt2*

Sun /dev/ttya** /dev/ttyb**

HP /dev/tty00 /dev/tty01
E-5

Autoconfigure — Identify Chain Composition

Syntax: autoconfigure

Abbreviation: autoc

This command queries all the devices in the chain and attempts t o
identify the boundary-scan chain composition using the IDCODE
instruction. The command returns a list of devices in the chain and
their position with device 1 being closest to the system TDI. Parts that
have not implemented IDCODE or those parts whose IDCODE is
unrecognized will be identified as unknown devices.

Batch — Execute in Batch Mode

Syntax: batch bat_file.cmd

Abbreviation: bat

The Batch command executes commands in a batch mode. The
bat_file must have a “.cmd” extension and contain valid JTAG
Programmer commands. Use the pound sign, "#" to precede comment
lines in the batch file.

Examples

The following examples show two methods of using the Batch
command from the JTAG Programmer prompt:

 batch bat_file.cmd

< bat_file.cmd

Baud — Specify Baud Rate

Syntax: baud baud_rate

Abbreviation: bau

The Baud command specifies a communication baud rate. At initial-
ization, the fastest baud rate for your host system is automatically
selected. Table E-2 lists the valid baud rates.
E-6 Xilinx Development System

Valid Baud Rates

Dump

Syntax: dump [-h] part_name -j file_name

The dump command will read the contents of a part and create a
JEDEC file with the results. The file created will default to
part_name.jed. Optionally, you may specify your own name using
the -j flag. The part_name must have been specified with the part
command.

The -h flag specifies that all untargeted parts should use HIGHZ
mode as the BYPASS method. This will float all untargeted device
output pins and can reduce system noise in active environments.

Erase

Syntax: erase [-f] [-h] part_name

This command erases the programmed contents of the specified part.
The part_name must have been specified with the part command.
The option -f is used to reset write-protect.

The -h flag specifies that all untargeted parts should use HIGHZ
mode as the BYPASS method. This will float all untargeted device
output pins and can reduce system noise in active environments.

Exit — Terminate Session

Syntax: exit

Abbreviation: exi

The Exit command terminates the current JTAG Programmer session,
asks you whether to save current program options in the xchecker.pro
file, and returns you to the system shell.

Platform Baud Rate

9600 19200 38400

IBM PC X X X

Sun X X X

HP 700 X X X
E-7

Functest

Syntax: functest [-h] part_name [-j file_name]

The functest command will run the functional vectors in the associ-
ated JEDEC file (file_name) on the specified device (part_name) using
the intest command. If the part_name is the same as the JEDEC
file_name, then the file_name does not need to be specified. The
part_name must have been specified with the part command.

The -h flag specifies that all untargeted parts should use HIGHZ
mode as the BYPASS method. This will float all untargeted device
output pins and can reduce system noise in active environments.

Help — Online Help

Syntax: help topic

Abbreviation: he

The Help command displays online help for the topic requested in
24-line segments. Enter y to scroll forward to the next 24 lines. Enter n
to exit Help.

Id_loop — Idcode Looping

Syntax: id_loop -n [number_of_loops] part_name

This command is used to perform idcode looping to debug noise
problems in the boundary scan chain.

Opgroup — Setup Group for Concurrent Operations

Syntax: opgroup groupname partname:jedec_file

This command is used to set up groups of devices for concurrent
operations. Each group specified must have a unique name and can
include any number of devices in the boundary-scan chain. The
devices are identified by using the partname specified in the part
command. You may optionally specify a full path name to the jedec
file for each partname.

The opgroup command can be invoked only after a part command
has been issued.
E-8 Xilinx Development System

The groupname designated in the opgroup command can be used in
place of the partname in the erase, program or verify commands to
execute concurrent operations on all devices in that group.

Part — Specify Device Chain

Syntax: part device_type:part_name device_type:part_name ...

Abbreviation: pa

This command must be executed first. It describes the devices in the
chain to the software. The device_type is used to find the BSDL file
associated with each part. BSDL files must be named
device_type.bsd. The part_name is an arbitrary name to associate
with the device instance in the chain. It will usually be the proper
name (the file name without the extension) of the JEDEC file associ-
ated with the device at that location in the boundary-scan chain,
although it could be anything. The boundary scan chain order must
start with the closest device to TDI, and proceed in order through the
chain until it reaches the last device, which is closest to TDO. When
multiple "part" commands are issued, the information associated
with the very last is maintained.

Partinfo

Syntax: partinfo [-h] -id -signature -checksum part_name -j
jedec_file_name

The partinfo command returns the manufacturer’s identification (id),
the user signature (-signature) or the device checksum (-checksum)
for a particular part_name. Any or all of the three switches may be
specified in a single command. The part_name must have been speci-
fied in the part command. When calculating the checksum the JEDEC
file should be specified as well to indicate the expected checksum.

The -h flag specifies that all untargeted parts should use HIGHZ
mode as the BYPASS method. This will float all untargeted device
output pins and can reduce system noise in active environments.

If you use the partinfo command with the -signature option when
generating an SVF file, use the -u option to specify the expected user-
code.
E-9

Port — Specify Download/Readback Port

Syntax: port portname

Abbreviation: po

The port command specifies the download/readback port. Table 3-5
lists the valid entries; the ports listed in bold face are the defaults. If
the port is defined as Auto, all ports are scanned to search for a cable.

Valid Ports for the Parallel, XChecker Cable and MultiLINX Cables

*Use with the parallel download cable only.

 **ttya and ttyb must be readable and writable to ensure a proper
connection.

***only on Win98 Systems

Program

Syntax: program [-v] [-t] [-s] [-p] [-h] [-i] [-l] [-m] part_name [-j
file_name]

This command programs the specified part. If the part_name is the
same as the JEDEC file_name, then the file_name does not need to be
specified. The part_name must have been set in the part command.
There are four options that may be specified (individually or
together):

-v after programming the device reads back the contents and verifies
that they agree with the associated JEDEC file.

-t executes a functional test after programming using the vectors
contained in the associated JEDEC file.

-s sets data security in the device. This disables readback of the
device’s programmed contents. The device must be erased to repro-
gram it.

Platform Communication Ports

IBM PC com1 com2 lpt1* lpt2* usb***

Sun /dev/ttya** /dev/ttyb**

HP /dev/tty00 /dev/tty01
E-10 Xilinx Development System

-p sets data protect in the device. This disables over-write of the
device‘s programmed contents. The device cannot be erased or re-
programmed.

-b skips the erase of the device prior to programming.

-h specifies that all untargeted parts should use HIGHZ mode as the
BYPASS method. This will float all untargeted device output pins and
can reduce system noise in active environments.

-i specifies info only. This is used with proms and indicates that only
info bits are being programmed.

-l loads FPGA. This is used to load FPGA at the end of configuration.

-m selects map/parallel mode. This is used to configure the prom to
seek out data in parallel mode.

Quit — Terminate Session

Syntax: quit

Abbreviation: qu

The Quit command terminates the current JTAG Programmer session
and asks you whether to save current program options in the
xchecker.pro file.

Save — Save Option Settings

Syntax: save

Abbreviation: sa

The Save command saves the settings of four interactive command
results in the jtagprogrammer.pro file; baud rate (Baud command),
design name (Load command), device type (Parttype command) and
port name (Port command).

At initialization, JTAG Programmer reads the jtagprogrammer.pro
file to set up the defaults for the current session. This file must be in
the current directory or in the XILINX environment search path.
JTAG Programmer updates the profile information at the end of
every session. The jtagprogrammer.pro file is created when you exit
from your first JTAG Programmer session.
E-11

Settings — Display Settings

Syntax: settings

Abbreviation: se

The Settings command provides a listing of the following informa-
tion; the port name, the baud rate, the type of cable, the design name,
the part type and package type, the clock source, and hardware
trigger status. It also lists the number of clocks for the first and subse-
quent snapshots, the number of signals defined in the probe list, and
the number of signals defined in the display list.

Sys —Temporarily Exit to Operating System

Syntax: sys

Abbreviation: none

The Sys command allows you to temporarily exit from JTAG
Programmer to the operating system prompt. Enter exit to return to
JTAG Programmer.

Verify — Verify Target CPLD Bitstream

Syntax: verify [-h] part_name [-j file_name]

Abbreviation: ve

This command reads back the configuration registers of the specified
part and compares its contents against the JEDEC file. If the
part_name is the same as the JEDEC file_name, the file_name does
not need to be specified.

The -h flag specifies that all untargeted parts should use HIGHZ
mode as the BYPASS method. This will float all untargeted device
output pins and can reduce system noise in active environments.
E-12 Xilinx Development System

Appendix F

Standard Methodologies for Instantiating the

BSCAN Symbol

This appendix supplies examples for JTAG programming, including
the following:

• Instantiating the BSCAN symbol in Foundation XVHDL, which
includes a solution for the XC5200 Family and the XC4000 Family

• Instantiating the BSCAN symbol in Synplicity, which includes
solutions for the XC5200 and XC4000 using Verilog and VHDL

• Instantiating the BSCAN symbol in Synopsys, which includes
examples for the XC5200 and XC4000 using VerilogandVHDL

Instantiating the BSCAN symbol in Foundation
XVHDL

This section contains solutions for XC5200 and XC4000.

Solution 1 - XC5200 Family
The following example outlines instantiating the BSCAN symbol for
XC5200 devices:

entity example is

port (a, b, c: in bit; d: out bit);

end example;

architecture xilinx of example is

component bscan
F-1

 port(tdi, tms, tck: in bit; tdo: out bit);

end component;

component tck

 port (i : out bit);

end component;

component tdi

 port (i : out bit);

end component;

component tms

 port (i : out bit);

end component;

component tdo

 port (o : in bit);

end component;

component ibuf

 port (i: in bit; o: out bit);

end component;

component obuf

 port(i: in bit; o: out bit);

end component;

signal tck_net, tck_net_in : bit;

signal tdi_net, tdi_net_in : bit;

signal tms_net, tms_net_in : bit;

signal tdo_net, tdo_net_out : bit;

begin

u1: bscan port map (tdi=>tdi_net, tms=>tms_net, tck=>tck_net,

tdo=>tdo_net_out);

u2: ibuf port map(i=>tck_net_in, o=>tck_net);
F-2 Xilinx Development System

u3: ibuf port map(i=>tdi_net_in, o=>tdi_net);

u4: ibuf port map(i=>tms_net_in, o=>tms_net);

u5: obuf port map(i=>tdo_net_out, o=>tdo_net);

u6: tck port map (i=>tck_net_in);

u7: tdi port map (i=>tdi_net_in);

u8: tms port map (i=>tms_net_in);

u9: tdo port map (o=>tdo_net);

process(c)

begin

if(c’event and c=’1’) then

d <= a;

end if;

end process;

end xilinx;

Solution 2 - XC4000 Family
The following example outlines instantiation of the BSCAN symbol
for XC4000 devices:

entity example is

 port (a, b, c: in bit; d: out bit);

end example;

architecture xilinx of example is

component bscan

 port(tdi, tms, tck: in bit; tdo: out bit);

end component;

component tck

 port (i : out bit);

end component;

component tdi
F-3

 port (i : out bit);

end component;

component tms

 port (i : out bit);

end component;

component tdo

 port (o : in bit);

end component;

signal tck_net : bit;

signal tdi_net : bit;

signal tms_net : bit;

signal tdo_net : bit;

begin

u1: bscan port map (tdi=>tdi_net, tms=>tms_net, tck=>tck_net,

tdo=>tdo_net);

u2: tck port map (i=>tck_net);

u3: tdi port map (i=>tdi_net);

u4: tms port map (i=>tms_net);

u5: tdo port map (o=>tdo_net);

process(c)

begin

if(c’event and c=’1’) then

d <= a;

end if;

end process;

end xilinx;
F-4 Xilinx Development System

Instantiating the BSCAN symbol in Synplicity
This section contains solutions for instantiating the BSCAN symbol in
Synplicity.

Solution 1 - XC5200 Family - Verilog Code
// XC5200 - Boundary SCAN Verilog code

module bnd_scan (a, b, c, d);

input a, b, c;

output d;

reg d;

wire TCK_P, TDI_P, TMS_P, TDO_P;

BSCAN U0 (.TDO (TDO_P), .TDI (TDI_P), .TMS (TMS_P), .TCK
(TCK_P));

TDI U1 (.i (TDI_P));

TCK U2 (.i (TCK_P));

TMS U3 (.i (TMS_P));

TDO U4 (.o (TDO_P));

always@ (posedge c)

d<=a;

endmodule

module TDI(i) /* synthesis black_box */;

output i /* synthesis .ispad=1 */;

endmodule

module TCK(i) /*synthesis black_box*/;

output i /*synthesis .ispad=1*/;

endmodule

module TMS(i) /*synthesis black_box*/;

output i /*synthesis .ispad=1*/;

endmodule
F-5

module TDO(o) /*synthesis black_box .noprune=1 */;

input o /*synthesis .ispad=1*/;

endmodule

module BSCAN(TDO, TCK, TDI, TMS) /* synthesis black_box */;

 output TDO;

 input TCK, TDI, TMS;

endmodule

#-- TCL Script

#device options

set_option -technology XC5200

set_option -part XC5202

set_option -package PC84

set_option -speed_grade -3

#add_file options

add_file -verilog "bnd_scan.v"

#compilation/mapping options

set_option -default_enum_encoding onehot

set_option -symbolic_fsm_compiler true

#map options

set_option -frequency 0.000

set_option -fanout_limit 100

set_option -force_gsr true

set_option -disable_io_insertion false

set_option -xilinx_m1 true

#set result format/file last

project -result_file "bnd_scan.xnf"

project -run

#end TCL
F-6 Xilinx Development System

Solution 2: Using the Synplicity Xilinx Macro Library
You can instantiate a BSCAN cell by using the import library
supplied with Synplify. The Synplify Xilinx Macro Libraries contain
pre-defined black-boxes for the Xilinx macros so that you can manu-
ally instantiate them into your design.

For VHDL based designs all one has to do is add the following 2 lines
in the VHDL and instantiate the BSCAN component. Please look in
the $SYNPLCTY\lib\xilinxf000.vhd for BSCAN component and its
port interface list. For xc5200 VHDL designs, use xc4000.vhd "black
box" instantiation as an example.

library xc4000;

use xc4000.components.all;

For Verilog designs, just add the xc4000.v file in the source file list
along with the source design file. The xc4000.v file is also in the
$SYNPLCTY\lib\xilinx directory. For xc5200 Verilog designs, use
xc4000.v black box instantiation as an example.

You must instantiate the complete set of Xilinx boundary scan
modules (bscan,tdi,tck,tms,tdo) in to your design.

Solution 3: XC4000 Devices - Verilog Code
// XC4000e/ex/xl - Boundary SCAN Verilog code

module bnd_scan (a, b, c, d);

input a, b, c;

output d;

reg d;

wire TCK_P, TDI_P, TMS_P, TDO_P;

BSCAN U1 (.TDO (TDO_P), .TDI (TDI_P), .TMS (TMS_P), .TCK
(TCK_P),

 .DRCK (open), .IDLE (open), .SEL1 (open), .SEL2 (open),

 .TDO1 (1’b0), .TDO2 (1’b0));

TDI U2 (.i (TDI_P));

TCK U3 (.i (TCK_P));
F-7

TMS U4 (.i (TMS_P));

TDO U5 (.o (TDO_P));

always@ (posedge c)

d<=a;

endmodule

#-- TCL scipt

#device options

set_option -technology XC4000E

set_option -part XC4003E

set_option -package PC84

set_option -speed_grade -1

#add_file options

add_file -verilog "/products/synplify.ver3_0/lib/xilinx/xc4000.v"

add_file -verilog "bnd_scan.v"

#map options

set_option -frequency 0.000

set_option -fanout_limit 100

set_option -force_gsr true

set_option -disable_io_insertion false

set_option -xilinx_m1 true

#set result format/file last

project -result_file "bnd_scan.xnf"

project -run

#end TCL

Solution 4: XC4000 Devices - VHDL Code
-- XC4000e/ex/xl - Boundary SCAN VHDL code

library IEEE;
F-8 Xilinx Development System

use IEEE.std_logic_1164.all;

library xc4000;

use xc4000.components.all;

entity bnd_scan is

port (

a, b, c: in bit;

d: out bit

);

end bnd_scan;

architecture xilinx of bnd_scan is

signal TCK_P : STD_LOGIC;

signal TDI_P : STD_LOGIC;

signal TMS_P : STD_LOGIC;

signal TDO_P : STD_LOGIC;

begin

 U0: BSCAN port map (TDO => TDO_P,

 TDI => TDI_P,

 TMS => TMS_P,

 TCK => TCK_P,

 DRCK => open,

 IDLE => open,

 SEL1 => open,

 SEL2 => open,

 TDO1 => ’0’,

 TDO2 => ’0’);

 U1: TDI port map (I =>TDI_P);

 U2: TCK port map (I =>TCK_P);

 U3: TMS port map (I =>TMS_P);
F-9

 U4: TDO port map (O =>TDO_P);

process (c)

begin if (c’event and c=’1’)

 then d <= a;

end if;

end process;

end xilinx;

#-- TCL script

#device options

set_option -technology XC4000E

set_option -part XC4003E

set_option -package PC84

set_option -speed_grade -1

#add_file options

add_file -vhdl -lib work "bnd_scan.vhd"

add_file -_include "/products/synplify.ver3_0/lib/xilinx/
xc4000.vhd"

#compilation/mapping options

set_option -default_enum_encoding onehot

set_option -symbolic_fsm_compiler false

#map options

set_option -frequency 0.000

set_option -fanout_limit 100

set_option -force_gsr true

set_option -disable_io_insertion false

set_option -xilinx_m1 true

#set result format/file last

project -result_file "bnd_scan.xnf"
F-10 Xilinx Development System

project -run

#end TCL

If you experience problems instantiating, the simplest workaround
for you would be to replace the VHDL "open" statements with actual
signal names. All you have to do is declare 4 signals of type std_logic
and connect the DRCK, IDLE, SEL1 and SEL2 ports of BSCAN to
these signals.

Another solution that would work requires a change in the BSCAN
component declaration in the xc4000.vhd file located in your
SYNPLCTY\LIB\xilinx directory.

Please change the BSCAN component to be component BSCAN

port(

 TDO : out STD_LOGIC ;

 DRCK : out STD_LOGIC ;

 IDLE : out STD_LOGIC ;

 SEL1 : out STD_LOGIC ;

 SEL2 : out STD_LOGIC ;

 TDI : in STD_LOGIC;

 TMS : in STD_LOGIC;

 TCK : in STD_LOGIC;

 TDO1 : in STD_LOGIC;

 TDO2 : in STD_LOGIC);

end component;

Notice that the initialization for the output ports have been removed.

Solution 5: XC5200 Devices - VHDL Code
-- XC5200 - Boundary Scan VHDL code

library IEEE;

use IEEE.std_logic_1164.all;

entity bnd_scan is
F-11

port (a, b, c: in bit;

d: out bit);

end bnd_scan;

architecture xilinx of bnd_scan is

 attribute black_box : boolean;

 attribute black_box_pad_pin : string;

 attribute synthesis_noprune : boolean;

 component BSCAN

 port (TDI, TMS, TCK : in STD_LOGIC;

 TDO : out STD_LOGIC);

 end component;

 attribute black_box of BSCAN : component is true;

 component TDI

 port (I : out STD_LOGIC);

 end component;

 attribute black_box_pad_pin of TDI : component is "I";

 component TCK

 port (I : out STD_LOGIC);

 end component;

 attribute black_box_pad_pin of TCK : component is "I";

 component TMS

 port (I : out STD_LOGIC);

 end component;

 attribute black_box_pad_pin of TMS : component is "I";

 component TDO

 port (O : in STD_LOGIC);

 end component;

 attribute black_box_pad_pin of TDO : component is "O";
F-12 Xilinx Development System

 attribute synthesis_noprune of TDO : component is true;

signal TCK_P : STD_LOGIC;

signal TDI_P : STD_LOGIC;

signal TMS_P : STD_LOGIC;

signal TDO_P : STD_LOGIC;

begin

 U0: BSCAN port map (TDO => TDO_P,

 TDI => TDI_P,

 TMS => TMS_P,

 TCK => TCK_P);

 U1: TDI port map (I =>TDI_P);

 U2: TCK port map (I =>TCK_P);

 U3: TMS port map (I =>TMS_P);

 U4: TDO port map (O =>TDO_P);

process (c)

begin

if (c’event and c=’1’) then

d <= a;

end if;

end process;

end xilinx;

#-- TCL Script

#device options

set_option -technology XC5200

set_option -part XC5202

set_option -package PC84

set_option -speed_grade -3

#add_file options
F-13

add_file -vhdl -lib work "bnd_scan.vhd"

#compilation/mapping options

set_option -default_enum_encoding onehot

set_option -symbolic_fsm_compiler false

#map options

set_option -frequency 0.000

set_option -fanout_limit 100

set_option -force_gsr true

set_option -disable_io_insertion false

set_option -xilinx_m1 true

#set result format/file last

project -result_file "bnd_scan.xnf"

project -run

#end TCL

Instantiating the BSCAN symbol in Synopsys
This section contains solutions for instantiating the BSCAN symbol in
Synopsys.

Solution 1: XC5200 Devices - VHDL Code
VHDL Code for Instantiating BSCAN in the XC5200:

-- XC5200 example of instantiating the BSCAN symbol

entity example is

 port (a, b, c: in bit; d: out bit);

end example;

architecture xilinx of example is

component bscan

 port(tdi, tms, tck: in bit; tdo: out bit);

end component;
F-14 Xilinx Development System

component tck

 port (i : out bit);

end component;

component tdi

 port (i : out bit);

end component;

component tms

 port (i : out bit);

end component;

component tdo

 port (o : in bit);

end component;

component ibuf

 port (i: in bit; o: out bit);

end component;

component obuf

 port(i: in bit; o: out bit);

end component;

signal tck_net, tck_net_in : bit;

signal tdi_net, tdi_net_in : bit;

signal tms_net, tms_net_in : bit;

signal tdo_net, tdo_net_out : bit;

begin

u1: bscan port map (tdi=>tdi_net, tms=>tms_net, tck=>tck_net,

tdo=>tdo_net_out);

u2: ibuf port map(i=>tck_net_in, o=>tck_net);

u3: ibuf port map(i=>tdi_net_in, o=>tdi_net);

u4: ibuf port map(i=>tms_net_in, o=>tms_net);
F-15

u5: obuf port map(i=>tdo_net_out, o=>tdo_net);

u6: tck port map (i=>tck_net_in);

u7: tdi port map (i=>tdi_net_in);

u8: tms port map (i=>tms_net_in);

u9: tdo port map (o=>tdo_net);

process(c)

begin

if(c’event and c=’1’) then

d<= a;

end if;

end process;

end xilinx;

Runscript for compiling XC5200 BSCAN VHDL Example:

PART = 5202PC84-5

TOP = example

analyze -format vhdl "bscan5k.vhd"

elaborate TOP

set_port_is_pad "*"

insert_pads

set_dont_touch u1

set_dont_touch u2

set_dont_touch u3

set_dont_touch u4

set_dont_touch u5

set_dont_touch u6

set_dont_touch u7

set_dont_touch u8

set_dont_touch u9
F-16 Xilinx Development System

compile

set_attribute TOP "part" -type string PART

write -f xnf -h -o "bscan5k.sxnf"

Solution 2: XC4000 Devices - Verilog Code
Verilog Code for Instantiating BSCAN in the XC4000

VERILOG IS CASE SENSITIVE! BE SURE TO FOLLOW THE CASE
USED IN THIS EXAMPLE!

//XC4000/XC4000E Example of instantiating BSCAN symbol

module example (a,b,c,d);

input a, b, c;

output d;

reg d;

wire tck_net;

wire tdi_net;

wire tms_net;

wire tdo_net;

BSCAN u1 (.TDI(tdi_net), .TMS(tms_net), .TCK(tck_net),
.TDO(tdo_net));

TDI u2 (.I(tdi_net));

TMS u3 (.I(tms_net));

TCK u4 (.I(tck_net));

TDO u5 (.O(tdo_net));

always@(posedge c)

d<=a;

endmodule

Runscript for compiling XC4000 BSCAN Verilog Example:

PART = 4025ehq240-3

TOP = example
F-17

read -format verilog "bscan4k.v"

set_port_is_pad "*"

insert_pads

set_dont_touch u1

set_dont_touch u2

set_dont_touch u3

set_dont_touch u4

set_dont_touch u5

compile

replace_fpga

set_attribute TOP "part" -type string PART

write -f xnf -h -o "bscan4k.sxnf"

Solution 3: XC5200 Devices - Verilog Code
Verilog Code for Instantiating BSCAN in the XC5200:

//XC5200 Example of instantiating BSCAN symbol

module example (a,b,c,d);

input a, b, c;

output d;

reg d;

wire tck_net, tck_net_in;

wire tdi_net, tdi_net_in;

wire tms_net, tms_net_in;

wire tdo_net, tdo_net_out;

BSCAN u1 (.TDI(tdi_net), .TMS(tms_net), .TCK(tck_net),
.TDO(tdo_net));

TDI u2 (.I(tdi_net_in));

TMS u3 (.I(tms_net_in));

TCK u4 (.I(tck_net_in));
F-18 Xilinx Development System

TDO u5 (.O(tdo_net_out));

IBUF u6 (.I(tdi_net_in), .O(tdi_net));

IBUF u7 (.I(tms_net_in), .O(tms_net));

IBUF u8 (.I(tck_net_in), .O(tck_net));

OBUF u9 (.I(tdo_net), .O(tdo_net_out));

always@(posedge c)

d<=a;

endmodule

Runscript for compiling XC5200 BSCAN Verilog Example:

PART = 5202PC84-5

TOP = example

read -format verilog "bscan5k.v"

set_port_is_pad "*"

insert_pads

set_dont_touch u1

set_dont_touch u2

set_dont_touch u3

set_dont_touch u4

set_dont_touch u5

set_dont_touch u6

set_dont_touch u7

set_dont_touch u8

set_dont_touch u9

compile

set_attribute TOP "part" -type string PART

write -f xnf -h -o "bscan5k.sxnf"
F-19

Solution 4: XC4000 Devices - VHDL Code
VHDL Code for Instantiating BSCAN in the XC4000:

-- XC4000/XC4000E example of instantiating the BSCAN symbol

entity example is

 port (a, b, c: in bit; d: out bit);

end example;

architecture xilinx of example is

component bscan

 port(tdi, tms, tck: in bit; tdo: out bit);

end component;

component tck

 port (i : out bit);

end component;

component tdi

 port (i : out bit);

end component;

component tms

 port (i : out bit);

end component;

component tdo

 port (o : in bit);

end component;

signal tck_net : bit;

signal tdi_net : bit;

signal tms_net : bit;

signal tdo_net : bit;

begin

u1: bscan port map (tdi=>tdi_net, tms=>tms_net, tck=>tck_net,
F-20 Xilinx Development System

tdo=>tdo_net);

u2: tck port map (i=>tck_net);

u3: tdi port map (i=>tdi_net);

u4: tms port map (i=>tms_net);

u5: tdo port map (o=>tdo_net);

process(c)

begin

if(c’event and c=’1’) then

d<= a;

end if;

end process;

end xilinx;

Runscript for compiling XC4000 BSCAN VHDL Example:

PART = 4025EHQ240-3

TOP = example

analyze -format vhdl "bscan4k.vhd"

elaborate TOP

set_dont_touch u1

set_dont_touch u2

set_dont_touch u3

set_dont_touch u4

set_dont_touch u5

set_port_is_pad "*"

insert_pads

compile

replace_fpga

set_attribute TOP "part" -type string PART

write -f xnf -h -o "bscan4k.sxnf"
F-21

set_dont_touch/dont_touch are case-sensitive with respect to
instance names.
F-22 Xilinx Development System

	JTAG Programmer Guide
	About This Manual
	Conventions
	Introduction
	Introduction
	Device operation options available to users are:
	Device operation options available to users are:
	Non-Volatile Device Data Security
	User Feedback

	Required Files
	JEDEC Files
	BSDL Summary
	BIT Files
	MCS/EXO Prom Files

	Hardware
	Download Cables
	XChecker Hardware (Serial)
	Connecting for System Operation
	Cable Connections
	Baud Rates
	Connecting the XChecker Cable
	Connecting the XChecker Cable
	Connection to Your Target System

	Parallel Cable
	Connecting for System Operation
	Configuring the Parallel Download Cable
	Flying Lead Connectors

	MultiLINX Cable
	MulitLINX Baud Rates
	MultiLINX Hardware Advantages
	MultiLINX Power Requirements
	MultiLINX Signals

	Power Up Sequencing

	JTAG Programmer Tutorial
	Cable Setup
	Selecting a Port for the Cable
	Creating New Chain Descriptions
	Configuring a Device In-System
	Configuring a Device In-System
	Define Device Manually

	Programming Xilinx CPLD and FPGA Devices
	Concurrent Mode
	Use HIGHZ instead of BYPASS
	Selecting Parts for Programming
	Selecting Parts for Programming
	Selecting Operations

	Modifying a Chain
	Adding a Device
	Changing a Part
	Deleting a Part
	Selecting the Entire Chain
	Saving the Chain Description

	Debugging a Chain
	Data Security Selection
	Options Specific to Proms

	Generating SVF Files
	Generating SVF Files
	Substituting with Version n Devices
	Using the Batch Tool (jtagprog)
	Using the JTAG Programmer

	Designing Boundary-Scan and ISP Systems
	Connecting Devices in a Boundary-Scan Chain
	FPGA Device Considerations
	Bitstream Considerations
	Virtex Considerations
	Device Set-up
	Verifying Device Configuration
	Device Behavior Notes

	Boundary Scan Basics
	Boundary Scan Basics
	Boundary Scan/IEEE Standard 1149.1
	What can it be used for?
	How does it work?
	The TAP Controller
	The Instruction Register
	The Data Registers
	JTAG Test Access Port

	JTAG TAP Controller
	JTAG TAP Controller
	JTAG TAP Controller States

	JTAG Instructions Supported in FastFLASH Parts
	Mandatory Boundary Scan Instructions
	Optional Boundary Scan Instructions
	FastFLASH Reconfiguration Instructions

	JTAG Parallel Cable Schematic
	Troubleshooting Guide
	Communication
	Improper Connections
	Improper or Unstable VCC
	Boundary Scan Chain Errors
	System Noise

	Error Messages
	Using the Command Line Interface
	Using the Command Line Interface
	Using JTAG Programmer Batch Version Software
	JTAG Programmer Files
	Invoking JTAG Programmer
	Downloading
	Verifying
	Command-Line Options
	Interactive Mode Commands
	Autoconfigure — Identify Chain Composition
	Batch — Execute in Batch Mode
	Baud — Specify Baud Rate
	Dump
	Erase
	Exit — Terminate Session
	Functest
	Help — Online Help
	Id_loop — Idcode Looping
	Opgroup — Setup Group for Concurrent Operations
	Part — Specify Device Chain
	Partinfo
	Port — Specify Download/Readback Port
	Program
	Quit — Terminate Session
	Save — Save Option Settings
	Settings — Display Settings
	Sys —Temporarily Exit to Operating System
	Verify — Verify Target CPLD Bitstream

	Standard Methodologies for Instantiating the BSCAN Symbol
	Instantiating the BSCAN symbol in Foundation XVHDL
	Solution 1 - XC5200 Family
	Solution 2 - XC4000 Family

	Instantiating the BSCAN symbol in Synplicity
	Solution 1 - XC5200 Family - Verilog Code
	Solution 2: Using the Synplicity Xilinx Macro Library
	Solution 3: XC4000 Devices - Verilog Code
	Solution 4: XC4000 Devices - VHDL Code
	Solution 5: XC5200 Devices - VHDL Code

	Instantiating the BSCAN symbol in Synopsys
	Solution 1: XC5200 Devices - VHDL Code
	Solution 2: XC4000 Devices - Verilog Code
	Solution 3: XC5200 Devices - Verilog Code
	Solution 4: XC4000 Devices - VHDL Code

