
Summary The block memories in the Virtex™-II architecture are capable of supporting data bus widths of
up to 36-bits. A self-addressing FIFO reference design uses these block memories to store
both data and address information in a single memory location. This application note, covering
all Virtex-II and Virtex-II Pro™ devices, describes FIFO designs where no external counters are
required. Only flag and status information logic is used. The resulting FIFOs are not fast
(around 150 MHz). Their advantage is in using only one clock load. In addition, the status
mechanism is very simple. These FIFOs are more suitable for data throttling in continuous data
systems rather than the full or empty detection required in frame based data systems.

Introduction In Figure 1, the self-addressing FIFO counters are implemented as a ROM based sequencer
inside the same memory being used for data storage. As there are no counters, the clock load
for the incoming and outgoing data is exactly one. Thus, clock skew is no longer an issue, and
none of the 16 global clock trees available in Virtex-II devices need to be used.

Application Note: Virtex-II Series

XAPP291 (v1.1) February 27, 2002

Self-Addressing FIFO
Author: Nick Sawyer

R

Figure 1: Self-Addressing FIFO

Address

Data In
Address

Data In

EN
WE

EN

WE

Clk

Clk

+1

Dual Port RAM

Adder

Port A

Port B

Data Out Data Out

Data Out

"1"

"0"

"X"

Data In

Output Clock

Input Clock

WriteEnable

Output Enable

Flags

x291_01_011702

m

n + m n + m

n + m n

2

2

m

n

m m
n = number of data bits
m = number of address bits
XAPP291 (v1.1) February 27, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Self-Addressing FIFO
R

The true dual-port structure of the block RAMs includes input and output data busses plus
address and control signals for each port. Data can be independently read from and written to
each port. Both read and write accesses are synchronized to the appropriate port clock, with a
positive or negative selectable edge. The only operational limitation is not to write data to a
given address from one port while it is being read from the other port. To allow for parity, the
basic array size of the block memory is 18 Kbits. Each port may be independently configured
for a specific data bus width. For example, Port A can be configured as a 512 x 36 memory, and
port B configured differently as a 2048 x 9 memory. Using these features, clock domains are
safely crossed at the same time as the data width is converted.

As an example, the output buffer on a communication system could use 36-bit wide data written
at 50 MHz, and read as 9-bit wide data at 155 MHz. All the various combinations of memory
structure are shown in Table 1.

Implementing a
Counter in a
Memory

There are two possible methods for implementing a counter inside a memory. Method one is
presented for interest while method two forms the basis of the reference design.

By deasserting the write enable pin, a synchronous RAM becomes a synchronous ROM, or in
other words, a sequencer. The contents of each of the ROMs can be initialized via the bitstream
at device power-up. Essentially any sequence and therefore any state machine (within input
and output pin limits) can be implemented in the ROM. The n-bit counter is a trivial case, it is a
state machine with "n" inputs and "n" outputs. The count order is determined by the contents of
the memory. The count speed is governed by the output enable control, effectively making it a
clock enable. With counters implemented in one block memory, and data storage in another a
FIFO can be built. However, this method gives a fanout of two on the read and write clocks.
Although better than the classic FIFO design, there is still a possibility of clock skew.

The second method uses a feedback mechanism. M address bits are fed back from the RAM
output data port to its address port. The same m bits are fed to a simple incrementer circuit.
The output of the incrementer circuit is combined with the incoming data word. This next
address plus data word is written synchronously into the next memory location. The only
initialization needed is presetting the RAM outputs to x01 at reset. This function is available by
using the block memory SSRA pin.

We can now imagine a scenario, where some of each word in the memory is used as the
counter storage, and the rest is used for data storage. This is where the wide data busses
comes in handy. For example, a 36-bit word can contain 32 bits of data and four bits of address,
to give a 16-deep by 32-wide FIFO. Or the 36-bit word could have nine bits of address and
27 bits of data to give a 512-deep by 27-wide FIFO. The choice is up to the designer.

The top two bits of the incrementer circuit are Gray encoded. Only one of these two bits can
ever change at any one clock transition. This minimizes any possibility of error when reading
the flags, but it makes the incrementer slightly more complicated, and therefore slower. To
maximize the speed of the design, a pure binary incrementer could be used, but the flags will
need to be checked twice to ensure a valid flag value.

Table 1: Possible Dual Port RAM Configurations

Port A Port B

512 x 36 512 x 36, 1024 x 18, 2048 x 9, 4096 x 4, 8192 x 2, 16384 x 1

1024 x 18 1024 x 18, 2048 x 9, 4096 x 4, 8192 x 2, 16384 x 1

2048 x 9 2048 x 9, 4096 x 4, 8192 x 2, 16384 x 1

4096 x 4 4096 x 4, 8192 x 2, 16384 x 1

8192 x 2 8192 x 2, 16384 x 1

16384 x 1 16384 x 1
2 www.xilinx.com XAPP291 (v1.1) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Self-Addressing FIFO
R

In Figure 1, an example data transfer is started by writing data (23) to location x00. After the
clock edge, the data output of port A contains x0123. The lower data byte (23) is ignored, the
upper byte (x01) is fed back as the address for the next write. A one is added to x01 for
merging with the next incoming data. For example, if the next incoming data is 45, then x0245
is written into location x01. This value then appears at the output of port A. The next cycle will
write to location x03 and so forth.

Reading data is less complicated. An output clock and optional output enable signal are applied
to Port B. Data is read synchronous to the clock. The lower byte is the valid data that was
written into Port A of the FIFO. The upper byte contains the address for the next read. The
upper byte is therefore fed back to the address inputs of Port B.

Having covered the basic FIFO operation, one very important feature remains. Indicating
whether a FIFO is full, empty, or somewhere in between is usually referred to as a flag. Since
the top two bits of the counters are Gray coded, only one of the two bits changes at a time. It is
safe to compare the top two bits of the write counter with the top two bits of the read counter,
even though they are in two separate time domains. This comparison gives three flag outputs.

Flag0: The FIFO being between empty and one-half full

Flag1: The FIFO being between one-quarter to three-quarters full

Flag2: The FIFO being between one-half to full

This method gives a very simple yet elegant mechanism for handling FIFO requests. To take
advantage of this method use flag1 (retimed to the receiver clock domain) as the FIFO read
enable. In this way the FIFO is never near overflow, or emptied, and all asynchronous
conditions are avoided. A standard system is also assumed to have continuous input data. A
pictorial view of the counter and flag operation is given in Figure 2.

Figure 2: Flag Operation

address High = 00address High = 01

address High = 11address High = 10

Write Counter Read Counter

x291_02_062201
XAPP291 (v1.1) February 27, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Self-Addressing FIFO
R

Three different self-addressing FIFO reference designs are available from the Xilinx website at
ftp://ftp.xilinx.com/pub/applications/xapp/xapp291.zip. These are written in VHDL and
Verilog and are fully synthesizable. The designs describe FIFOs with equal input and output
data widths, as well as versions where the input is twice as wide as the output, or the output is
twice as wide as the input. Details of the available data widths and depths are given in the code.

Conclusion The self-addressing FIFO is a small and novel mechanism for transferring data between clock
domains while avoiding the necessity of using a clock tree. The only constraints are the obvious
ones. Data must be valid at the clock edges and the clock period still needs to be controlled.
Clock skew is not an issue and therefore general purpose routing may be used for the input or
output clock depending on the system architecture.

When implemented into the Virtex-II or Virtex-II Pro devices, the circuit is capable of running at
around 140 MHz for input data, and 200 MHz for the output data.

This shows the ability to build multiple self-addressing FIFOs in the Virtex-II architecture
allowing designers to input or output data to external devices without ever using the on-board
global clock resources. This is extremely useful in the design of many sorts of systems, for
example where interfaces to multiple external PHY devices are required.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

11/02/01 1.0 Initial Xilinx release.

02/27/02 1.1 Changed Summary for clarity, revised Figure 1, and added Verilog
support.
4 www.xilinx.com XAPP291 (v1.1) February 27, 2002
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp291.zip
http://www.xilinx.com

	Summary
	Introduction
	Implementing a Counter in a Memory
	Conclusion
	Revision History

