
XAPP413 (v1.1) October 2, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This application note covers the logic equivalency flow using Xilinx ISE software with Verplex
Conformal LEC. The target audience is designers familiar with the independent Xilinx HDL
software design flow.

Introduction With rapid increases in FPGA design sizes, new simulation and logic verification
methodologies must be explored to expedite the verification of design logic and functionality.
For checking logic equivalency, formal verification is quickly gaining acceptance by designers
creating multi-million gate designs, because of its accuracy and speed. Using Conformal
(previously known as Tuxedo) LEC with Xilinx FPGA designs, designers can check logic
equivalency between the RTL (pre-synthesis) and post-implementation (after PAR) designs.

Formal verification requires the presence of a golden (verified) design, against which it checks
the other design netlists (post-synthesis, post-implementation). A netlist at any point in the
design flow, for example pre-synthesis or post-implementation, can be used as the golden
design. However, the RTL (pre-synthesis) netlist is most commonly used as the reference. The
Xilinx/Conformal formal verification flow currently supports only the Verilog language.

Software and
Device Support

The formal verification flow between Xilinx designs and Verplex Conformal LEC is supported by
the following software:

• Xilinx Software: ISE Alliance 4.1i (UNIX version only) and later

• Verplex Software: Conformal LEC version 2.1.1.a and later

• Platform Support: Solaris 2.7 and later

Formal Verification is available for the following devices:

• Spartan™-II

• Virtex™, Virtex-E, and Virtex-II

Flow Summary The following verification points are available for the Xilinx/Verplex formal verification flow:

1. RTL — This is the pre-synthesis design code, usually used as the reference design.

2. Post-NGDBuild — This is equivalent to the post-synthesis netlist, consisting of gate-level
SIMPRIM primitives.

3. Post-MAP — At this stage, the design has been mapped into the target device by the Xilinx
implementation tools, but has not been routed as yet.

4. Post-PAR — At this stage, the design is completely placed and routed, and the resulting
structural netlist closely resembles the design layout as it will appear in silicon.

Verifications can be done between any two points listed above, for example RTL vs. Post-
NGDBuild, RTL vs. Post-PAR, or Post-NGDBuild vs. Post-PAR. The formal verification flow with
Xilinx designs and Conformal LEC is shown in Figure 1.

Application Note: FPGA

XAPP413 (v1.1) October 2, 2001

Xilinx/Verplex Conformal Verification
Flow
Authors: Mujtaba Hamid and Yenni Totong

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP413 (v1.1) October 2, 2001
1-800-255-7778

Xilinx/Verplex Conformal Verification Flow
R

Sample Flows Below are two sample flows that can be run using Xilinx designs and Conformal LEC. The first
example compares the logic equivalency between the RTL (pre-synthesis) and the Post-
NGDBUILD designs. The second example checks the equivalency between the RTL and Post-
PAR (back-annotated) designs. Neither of these flows check for timing issues, since Conformal
is a logic equivalency checker.

RTL vs. Post-NGDBuild
Golden design: Behavioral RTL Verilog (pre-synthesis)

Revised design: Post-NGDBuild Verilog

The flow is comprised of the following steps:

1. Synthesize the Verilog design files with your synthesis tool, targeting a Xilinx
(Virtex/Virtex-E/Virtex-II/Spartan-II) FPGA. An EDIF netlist file is produced at the end of
this step.

2. Create the Post-NGDBuild Verilog code, using the Xilinx implementation tool from the GUI
or the command line.

From the GUI:

a. Create a Xilinx ISE Project using the EDIF netlists from Step 1.

b. Create a Post-NGDBUILD Verilog netlist using the Xilinx ISE tools.

Note: For more information on running ISE, refer to the ISE documentation available in the ISE Quick
Start Guide (with the ISE 4.1I software) or the http://support.xilinx.com Xilinx support site.

Figure 1: Xilinx/Conformal Formal Verification Flow

NGDBuild

Unisims

Simprims

Xilinx Implementation

Library Cells

MAP

Formal Verification Tool

core2formal.pl

RTL(Verilog) HDL
Synthesis

EDIFsCORE Generator
Module (HDL

instantiation file,
EDIF)

PAR

NGDAnno

NGD2Ver

xilinx2verplex.pl

Flatten NGD file

EDIF File

HDL Instantiation FileRT code, possibly with
primitive cell instantation
(UNISIM components)
as the golden design

Flatten Verilog
Structural Netlist in
Simprim Primitive
cells as a revised
design

Structural HDL describing
CORE Generator Module
as part of golden design

Mapped NCD

PAR-ed NCD

NGA file

X413_01_100101

http://www.xilinx.com
http://support.xilinx.com

Xilinx/Verplex Conformal Verification Flow

XAPP413 (v1.1) October 2, 2001 www.xilinx.com 3
1-800-255-7778

R

From the UNIX Terminal window:

a. Set up the Xilinx environment variables.

b. Process the EDIF file:

>ngdbuild <filename>.edf

c. Create Post-NGDBuild Verilog:

>ngd2ver <infile>.ngd <outfile>.v

Note: If <outfile>.v is not supplied, ngd2ver outputs the same filename as the input file.

3. From the UNIX terminal window, run the "xilinx2verplex" command:

>xilperl $XILINX/verilog/bin/<platform>/xilinx2verplex.pl <filename>.v > <outfile>.v

Notes:
1. xilperl is a Perl application available with the Xilinx ISE software.
2. <platform> can be "sol" for solaris UNIX workstation, "hp" for HP UNIX workstation, or "nt"

for PC platform.
3. Xilinx2verplex.pl removes extra cells in the Verilog netlist that are not needed for formal

verification.

4. If a CORE Generator module is instantiated in your design, run "core2formal" to create a
"golden" description for the module. Refer to the Verification of Designs Containing
Xilinx CORE Generator Components section for more information.

5. Run the Conformal flow to compare the two versions of the Verilog netlists. Refer to the
Conformal LEC Flow section.

RTL vs. Post-PAR
Golden design : Behavioral RTL Verilog (pre-synthesis)

Revised design: Post-PAR Verilog

The flow is as follows:

1. Synthesize the Verilog design files with your synthesis tool, targeting a Xilinx
(Virtex/Virtex-E/Virtex-II/Spartan-II) FPGA. An EDIF netlist file is produced at the end of
this step.

2. Create Post-PAR Verilog netlist from the GUI or the command line.

From the GUI:

a. Launch the Xilinx software, and create a Xilinx ISE Project, using the EDIF netlists from
Step 1.

b. Create a Post-PAR Verilog netlist, using the Xilinx ISE tools.

The Xilinx ISE tools run NGDBuild, MAP, PAR, and NGDANNO and NGD2Ver to create
a Post-PAR Verilog netlist.

From the UNIX Terminal window:

a. Process EDIF:

>ngdbuild <filename>.edf

b. Run MAP:

>map -o <mapped>.ncd <filename>.ngd

c. Run PAR:

>par <mapped>.ncd <par>.ncd <pcffile>.pcf

d. Process Post-PAR NCD for annotation:

>ngdanno <par>.ncd

http://www.xilinx.com

4 www.xilinx.com XAPP413 (v1.1) October 2, 2001
1-800-255-7778

Xilinx/Verplex Conformal Verification Flow
R

e. Create a Post-PAR Verilog file:

>ngd2ver <par>.nga <outfile>.v

3. From the UNIX terminal window, run the "xilinx2verplex" command:

>xilperl $XILINX/verilog/bin/<platform>/xilinx2verplex.pl <filename>.v > <outfile>.v

Notes:
1. xilperl is a Perl application available with the Xilinx ISE software.
2. <platform> can be "sol" for solaris UNIX workstation, "hp" for HP UNIX workstation, or "nt"

for PC platform.
3. Xilinx2verplex.pl removes extra cells in the Verilog netlist that are not needed for formal

verification.

4. If a CORE Generator module is instantiated in your design, run "core2formal" to create a
"golden" description for the module. Refer to the Verification of Designs Containing
Xilinx CORE Generator Components section for more information.

5. Run the Conformal flow to compare the two versions of the Verilog netlists. Refer to the
Conformal LEC Flow section.

Conformal LEC Flow
This section briefly steps through the Conformal-LEC flow. For more details on this flow, contact
Verplex customer support.

All the commands in this section can either be entered at the Conformal LEC command prompt
in the GUI, or compiled into a command (.DO) file that can be executed from Conformal.

1. Launch Conformal LEC at the command prompt by typing "lec" to start the GUI, shown in
Figure 2. Commands are entered in this GUI at the bottom, in the window labeled
"SETUP >".

2. Read the golden design and the design that needs to be verified, as follows:

read design <top>.v <lower_level>.v -f verilog.vc -verilog -golden -replace

read design <the_revised_version>.v -f verilog.vc -verilog -revised –replace
Note: If a CORE Generator module is instantiated in your design, refer to the Verification of
Designs Containing Xilinx CORE Generator Components section to create a "golden"
description of the module.

3. Tie the GSR and GTS pins in the Xilinx design netlists to known values:

add tied signal 0 glbl.GSR -rev

add tied signal 0 glbl.GTS -rev

4. Finalize the setup of the design before proceeding with formal verification:

set flatten model -seq_constant

set system mode lec

5. Instruct Conformal LEC to check for all compared points between the two designs:

add compared points -all

6. Proceed with comparing the two designs for logic equivalency:

compare

http://www.xilinx.com

Xilinx/Verplex Conformal Verification Flow

XAPP413 (v1.1) October 2, 2001 www.xilinx.com 5
1-800-255-7778

R

Figure 2: Conformal LEC GUI After Launch.

http://www.xilinx.com

6 www.xilinx.com XAPP413 (v1.1) October 2, 2001
1-800-255-7778

Xilinx/Verplex Conformal Verification Flow
R

Conformal LEC runs the comparison on the two designs, and displays the report on the bottom
half of the screen, as shown in Figure 3.

Once Conformal has completed the equivalency checking on the designs, more details on the
results can be obtained. As shown in Figure 4, the "Mapping Manager" window, which you can
launch by selecting Tools > Mapping Manager from the Conformal LEC main GUI, is broken up
into three sections: unmapped points, mapped points, and compared points. The unmapped
points have a red circle next to them, whereas the mapped points do not.

Additionally, the GUI is broken up into two columns: one for the golden design and one for the
compared design. The mapping manager thus visually shows the points between two designs
that do or do not match. Additionally, it shows all points that were compared between the two
designs. You can deselect points that do not need to be compared.

You can also create a number of other reports, based on results obtained from the design
comparison. These are available under the "Report" pull-down menu in the main Conformal
LEC GUI.

Figure 3: Conformal LEC Main GUI Showing the Results of the Design Comparison

http://www.xilinx.com

Xilinx/Verplex Conformal Verification Flow

XAPP413 (v1.1) October 2, 2001 www.xilinx.com 7
1-800-255-7778

R

Commands can also be compiled into a command file (.DO file). You can execute this script
from the Conformal LEC GUI by selecting the "File > Do Dofile" option from the pull-down
menu. A sample command file is shown in the Conformal Command Files section.

Figure 4: Conformal LEC Mapping Manager

http://www.xilinx.com

8 www.xilinx.com XAPP413 (v1.1) October 2, 2001
1-800-255-7778

Xilinx/Verplex Conformal Verification Flow
R

Verification of
Designs
Containing
Xilinx CORE
Generator
Components

Xilinx provides designers with IP of varying complexity to assist in the completion of FPGA
designs. This IP is provided with the CORE Generator tool, part of the Xilinx ISE software
package. However, since the CORE Generator IP is provided as an EDIF netlist rather than as
synthesizable Verilog code, a few extra steps are required to add the Xilinx CORE Generator
macros into the Golden RTL design for checking in Conformal LEC. The netlist needs to be run
through the Xilinx NGDBUILD and NGD2VER tools and then processed through the
xilinx2verplex.pl utility, to convert it into a format acceptable to Conformal. Xilinx provides a
"core2formal.pl" PERL script to run the commands necessary.

The location of the PERL script is: $XILINX/verilog/bin/<platform>/core2formal.pl

To run these commands, you must set up the Xilinx environment.

The command is as follows:

>xilperl $XILINX/verilog/bin/<platform>/core2formal.pl -<vendor> -<family>
<coregen_module>.edn

Notes:
1. For Conformal LEC, the <vendor> option must be "verplex".
2. The <family> option can be virtex, virtexe, virtex2, and spartan2.

- <platform> can be "sol" for solaris UNIX workstation, "hp" for HP UNIX workstation, or "nt" for
PC platform.

The PERL script runs the following commands:

ngdbuild –p <family> <coregen_module>.edn

ngd2ver –r –w <coregen_module>.ngd <coregen_module>_ngd.v

xilperl xilinx2verplex.pl <coregen_module>_ngd.v > <coregen_module>_for.v

Known Issues Known issues with the Formal Verification flow using Xilinx designs and Conformal LEC are
listed below:

1. Verification of RAM resources inferred by the synthesis tools is not supported by Conformal
LEC. This is because inferred components make it difficult for formal verification tools to
find appropriate compare points in the designs.

2. Verification with retiming turned on in synthesis is not supported by Conformal LEC.
Synthesis tools change and move around logic during retiming, and this causes difficulty
for formal verification tools attempting to find appropriate compare points between designs.
If retiming is turned on, some points do not compare successfully during formal verification.

3. Verification returns errors if the synthesis tools use register merging to optimize logic,
because this results in unmapped points between the golden and the implemented design.
This can be worked around by using the following command in Conformal:

Set flatten model -all_seq_merge

4. Designs with distributed SelectRAM+ (for example, RAM16X1D) contain an unmapped
register for each RAM bit during verification. This is because the RAM16X1D is
decomposed into an X_RAMS16 and X_RAMD16. The functionality of the golden vs.
revised design is the same, but registers are introduced that become unmapped points.
The recommendation is to code SelectRAM using the RAMD16x1 primitives, as shown in
Figure 5. To work around this, mark the register from X_RAMS16 and X_RAMD16 as
equivalent. Add the following line after 'read design':

add inst equiv inst1 inst2 -revised

where inst1 and isnt2 are the equivalent registers from the two RAM components in the
revised design.

To get the name of inst1 and inst2, you must run the compare once. The additional registers
show up as unmapped points in the Mapping Manager window. Note the names and match

http://www.xilinx.com

Xilinx/Verplex Conformal Verification Flow

XAPP413 (v1.1) October 2, 2001 www.xilinx.com 9
1-800-255-7778

R

them with the mapped registers (DFF) in the Mapped Points section bit per bit. Next, add the
above workaround in your .do file or type them on the Conformal Tcl prompt. For example:

add inst equiv page1_i30_G/mem_reg[0]

page1_i30_F/mem_reg[0] -revised

5. Designs with FDCP/FDCP_1/FDCPE/FDCPE_1/FDDRCPE. The asynchronous CLR has
priority over asynchrous PRE. LEC is warning that the golden has gated PRE and the
revised version does not.

6. Virtex-II designs:The RAM128X1S is converted to 8 X_RAMD16.

set mapping effort high

7. With Virtex-II devices, RAMB4 becomes X_RAMB16 after NGDBuild.

add tied signal 0 wr_mode[0] -net -module

X_RAMB16_S1_INIT -revised

add tied signal 0 wr_mode[1] -net -module

X_RAMB16_S1_INIT -revised

8. Designs that are retargeted from one device without resynthesizing the design can cause
problems. Since the size and width of block RAM resources are different in different
devices, it is recommended to resynthesize to the new device when retargeting a design. If
the retargeting is done only at the back end, some components are mismatched in formal
verification, since they might not match the components used in the RTL design.

Figure 5: 32-bit RAM Composed of Smaller Primitives

dpra1

X_RAMD32

dpra0

a0

dpra2

dpra3

d

a1

a2

a3

wclk

we

dpra4

a4

A0

DP_9

RAM16X1D

A1

A2

A3

D DPO

DPRA0SPO

DPRA1

DPRA2

DPRA3

WCLK

WE

A0

DP_10

F5MUX_0

X_MUX2

RAM16X1D

A1

A2

A3

D DPO

DPRA0SPO

DPRA1

IA

dpo

X413_05_091001

WSGAND

X_AND2

X_INV
I0 O

WSJAND

I O

I1

WSFAND

X_AND2

I0 O

I1

IB O

SEL

DPRA2

DPRA3

WCLK

WE

http://www.xilinx.com

10 www.xilinx.com XAPP413 (v1.1) October 2, 2001
1-800-255-7778

Xilinx/Verplex Conformal Verification Flow
R

9. If the design instantiates a FDDRRSE or FDDRCPE component for dual-data rate, the
SIMPRIMS component, X_MUXDDR, must be renamed to match the component used in
the front end. Without this, these points result in mis-compares. This can be worked around
by using the following command in Conformal to rename the component:

Add mapped points /<design_hierarchy>/<component> -type BBOX BBOX -
module <module_name> <module_name>

Where the <component> can be the dual-data-rate flipflop needed to be renamed, and
<module_name> is the name of the design.

10. Formal verification does not work correctly if the retiming option is selected during
Synthesis. In retiming, the synthesis tools readjust the logic to obtain better timing results,
but these changes make logic equivalency checking impossible.

11. If the "-bp" option is used in Map during Implementation, formal verification does not work
correctly. The "-bp" switch pushes logic into unused block RAM areas, but this change
makes logic equivalency checking impossible, because the formal verification tool cannot
see inside the block RAM.

Conformal
Command Files

The following is an example of a .do file for running Conformal:

read design <top>.v <lower_level>.v -f verilog.vc -verilog -golden -replace
read design <the_revised_version>.v -f verilog.vc -verilog -revised -replace
set flatten model -seq_constant

//Connect GSR and GTS to 0(GND)
add tied signal 0 glbl.GSR -rev
add tied signal 0 glbl.GTS -rev

set system mode lec
add compared points -all
compare
set system mode setup

Note:

The verilog.vc file contains the path to the SIMPRIMS and UNISIMS library cells. An example of this
file exists in the Xilinx install directory at $XILINX/verilog/verplex/verilog.vc and is also shown below:

-y $XILINX/verilog/verplex/unisims

-y $XILINX/verilog/verplex/simprims

Support
Information

For additional support on the Xilinx/Conformal LEC flow, contact Verplex customer support:

Email: Support@verplex.com

Phone: (408) 586-0300

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/18/01 1.0 Initial Xilinx release.

10/02/01 1.1 Minor corrections. Replaced figures 2, 3, and 4.

http://www.xilinx.com

	Xilinx/Verplex Conformal Verification Flow
	Summary
	Introduction
	Software and Device Support
	Flow Summary
	Sample Flows
	RTL vs. Post-NGDBuild
	RTL vs. Post-PAR
	Conformal LEC Flow

	Verification of Designs Containing Xilinx CORE Generator Components
	Known Issues
	Conformal Command Files
	Support Information
	Revision History

