
Summary This application note covers the logic equivalency flow using Xilinx ISE software with Synopsys
Formality. The target audience is designers familiar with the independent Xilinx HDL software
design flow.

Introduction With rapid increases in FPGA design sizes, new simulation and logic verification
methodologies must be explored to expedite the verification of design logic and functionality.
For logic equivalency checking, formal verification is quickly gaining acceptance by designers
creating multi-million gate designs, because of its accuracy and speed. Using Synopsys
Formality with Xilinx FPGA designs, designers can check logic equivalency between the RTL
(pre-synthesis) and Post-Implementation (after PAR) designs. Formal verification requires the
presence of a reference (verified) design, and checks the other design netlists (post-synthesis,
post-implementation) against that. A netlist at any point in the design flow, for example pre-
synthesis or post-implementation, can be used as the reference. However, the RTL (pre-
synthesis) netlist is most commonly used as the reference. The Xilinx/Formality formal
verification flow currently supports only the Verilog language.

Sofware and
Device Support

The formal verification flow between Xilinx and Synopsys Formality is supported with the
following software versions:

• Xilinx Software: ISE 4.1I and later.

• Synopsys Software: FPGA Compiler II version 3.6 and newer, and Formality version
2001.06 and newer.

• Platform Support: Solaris.

Formal Verification is available for the following devices:

• Spartan™-II.

• Virtex™, Virtex-E, and Virtex-II.

Flow Summary The following verification points are available for the Xilinx - Formality formal verification flow:

1. RTL — This is the pre-synthesis design code, usually used as the reference design.

2. Post-NGDBuild — This is equivalent to the post-synthesis netlist, consisting of gate-level
SIMPRIM primitives.

3. Post-MAP — At this stage, the design has been mapped into the target device by the Xilinx
implementation tools, but has not been routed as yet.

4. Post-PAR — At this stage, the design is completely placed and routed, and the resulting
structural netlist closely resembles the design layout as it will appear in silicon.

Application Note: FPGA

XAPP414 (v1.1) September 28, 2001

Xilinx/Synopsys Formality Verification
Flow
Author: Mujtaba Hamid and Yenni Totong

R

XAPP414 (v1.1) September 28, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www .xilinx.com/legal.htm .
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Xilinx/Synopsys Formality Verification Flow
R

Verifications can be done between any two points listed above, for example RTL vs. Post-
NGDBuild, RTL vs. Post-PAR, or Post-NGDBuild vs. Post-PAR. The formal verification flow with
Xilinx and Formality is shown in Figure 1.

Sample Flows Below are examples of two sample flows that can be run using Xilinx and Formality. The first
compares the logic equivalency between the RTL (Pre-synthesis) and the Post-NGDBUILD
designs, and the second checks the equivalency between the RTL and Post-PAR (back-
annotated) designs. Neither of these flows check for timing issues, since Formality is a logic
equivalency checker.

RTL vs. post NGDBuild
Reference design - Behavioral (RTL) Verilog design (netlist)

Implementation design - Post-NGDBuild Verilog netlist

The flow comprises of the following steps:

1. Synthesize the Verilog design files with Synopsys FPGA Compiler II targeting a Xilinx
FPGA (Virtex/Virtex-E/Virtex-II/Spartan-II). An EDIF netlist file will be produced at the end
of this step.

2. Create the Post-NGDBuild Verilog netlist using Xilinx implementation tool from the GUI or
the command line.

From the GUI:

Figure 1: Xilinx/Formality Formal Verification Flow

NGDBuild

Unisims

Simprims

Xilinx Implementation

Library Cells

MAP

Formal Verification Tool

core2formal.pl

RTL(Verilog)
HDL

Synthesis

EDIFs
Coregan
Module
(HDL

instantiation
file, EDIF)

PAR

NGDAnno

NGD2Ver

xilinx2verplex.pl

Flatten NGD file

EDIF File

HDL Instantiation FileRT code, possibly with
primitive cell instantation
(UNISIM components)
as the golden design.

Flatten Verilog
Structural Netlist in
Simprim Primitive
cells as a revised
design. Structural HDL describing

COREGen Module as part
of golden design.

Mapped NCD

PAR-ed NCD

NGA file

X413_01_091001
2 www.xilinx.com XAPP414 (v1.1) September 28, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

a. Create a Xilinx ISE Project using the EDIF netlist from step 1 above.

b. Create a Post-NGDBUILD Verilog netlist using the Xilinx ISE tools.
Note: Refer to the ISE documentation available in the ISE Quick Start Guide (found in the ISE 4.1I
software box) or the Xilinx support site at http://support.xilinx.com for more information on running
ISE.

From the MS-DOS window (PC) or the Unix Terminal window:

a. Set up the Xilinx environment variables.

b. Process the EDIF file:

>ngdbuild <filename>.edf

c. Create Post-NGDBuild Verilog:

>ngd2ver <infile>.ngd <outfile>.v

Note: If <outfile>.v is not supplied, ngd2ver will output the same file name as input file.

3. At the MS-DOS or the UNIX terminal window, run the ‘xilinx2formality.pl’ script:

>xilperl $XILINX/verilog/bin/<platform>/xilinx2formality.pl <filename>.v >
<outfile>.v

Notes:
1. xilperl is a Perl application available with the Xilinx ISE software.
2. <platform> can be "sol" for solaris UNIX workstation, "hp" for HP UNIX workstation, or "nt"
for PC platform.
3. Xilinx2verplex.pl removes extra cells in the Verilog netlist that are not needed for formal
verification.

4. If a CORE Generator module is instantiated in your design, run ‘core2formal’ to create a
‘reference’ description for the module. Reference Verification of Designs containing
Xilinx CoreGEN components for more information.

5. Run the Formality flow to compare the two versions of the Verilog netlists. See the
Formality Flow section.

RTL vs post PAR
Reference design: Behavioral (RTL) Verilog netlist.

Implemented design: Post-PAR Verilog netlist.

The flow is as follows:

1. Synthesize the Verilog design files with Synopsys FPGA Compiler II targeting a Xilinx
FPGA (Virtex/Virtex-E/Virtex-II/Spartan-II). An EDIF netlist file will be produced at the end
of this step.

2. Create Post-PAR Verilog netlist from the GUI or the command line.

From the GUI:

a. Launch the Xilinx software, and create a Xilinx ISE Project using the EDIF netlists from
step 1 .

b. Create a Post-PAR Verilog netlist using the Xilinx ISE tools.

The Xilinx ISE tools will run NGDBuild, MAP, PAR, and NGDANNO and NGD2Ver to create
Post-PAR Verilog netlist.
XAPP414 (v1.1) September 28, 2001 www.xilinx.com 3
1-800-255-7778

http://support.xilinx.com
http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

From the MS-DOS window (PC) or the Unix Terminal window:

a. Process EDIF

>ngdbuild <filename>.edf

b. Run MAP

>map -o <mapped>.ncd <filename>.ngd

c. Run PAR

>par <mapped>.ncd <par>.ncd <pcffile>.pcf

d. Process Post-PAR NCD for annotation

>ngdanno <par>.ncd

e. Create Post-PAR Verilog file

>ngd2ver <par>.nga <outfile>.v

3. At the MS-DOS or the UNIX terminal window, run the ‘xilinx2formality.pl’ script:

>xilperl $XILINX/verilog/bin/<platform>/xilinx2formality.pl <filename>.v > <outfile>.v

Notes:
1. xilperl is a Perl application available with the Xilinx ISE software.
2. <platform> can be "sol" for solaris UNIX workstation, "hp" for HP UNIX workstation, or "nt"
for PC platform.
3. Xilinx2verplex.pl removes extra cells in the Verilog netlist that are not needed for formal
verification.

4. If a CORE Generator module is instantiated in your design, run ‘core2formal’ to create a
‘reference’ description for the module. Reference Verification of Designs containing
Xilinx CoreGEN components for more information.

5. Run the Formality flow to compare the two versions of the Verilog netlists. See the
Formality Flow section below.

Formality Flow This section briefly describes the Formality verification flow. For more detailed information or
assistance on this flow, contact Synopsys Technical Support.

Before running formality, make sure that the required design files have been created, as
outlined in the previous section.

Setting Up the Environment
Setup environment variables to point to a Formality and Xilinx install. The variables that are
required are shown in Table 1.

Table 1: Environment Variables Needed to Setup Synopsys Formality and Xilinx

Name of Variable Location Pointed by the Variable

Synopsys Variables

SYNOPSYS <synopsys_install_directory>/<platform>

LM_LICENSE_FILE <port>@<license_server> or
<license_install_directory>/<license_file>

PATH $SYNOPSYS/fm/bin $path

Xilinx Variables

XILINX <xilinx_install_directory>

PATH $XILINX/bin/sol
4 www.xilinx.com XAPP414 (v1.1) September 28, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

Synopsys uses a setup file for each project. Create this setup file, ".synopsys_fm.setup" file in
the project directory by copying the template from
$XILINX/verilog/formality/template.synopsys_fm.setup and renaming to ".synopsys_fm.setup".
For more information on the use and customization possibilities of the ".synopsys_fm.setup"
file, contact Synopsys.

Setting up the Xilinx Verification Libraries
There are two Xilinx Verification libraries that need to be used along with Formality for Formal
Verification. These are:

• UNISIMS — The UNISIMS library contains the Xilinx primitives in RTL format. This library
is required if the design contains any Xilinx primitives, for example the DCM or BlockRAM.

• SIMPRIMS — The SIMPRIMS library contains the Xilinx primitives for back-annotated
Verification (Post-NGDBUILD, Post-PAR). Since the back-annotated library is comprised
completely of these gate-level primitives, this library must be compiled before verifying a
Post-NGDBUILD or Post-PAR design.

The libraries must be read into Formality upon the start of the Verification flow. More details on
this are provided in the subsequent section.

Verifying
Design

All formality commands can be run either from the GUI or the Unix terminal prompt. We will
step through the flow using the GUI, however, these commands can be added into a script that
can be launched from the terminal prompt.

1. The ".synopsys_fm.setup" file should already be present in the project directory. The setup
file must contain the Xilinx verification library path information, project path information,
and other necessary directives for the Xilinx-Formality flow. These comprise of the
following three lines:

set signature_analysis_matching true

set dir [exec pwd]

set XILINX /path/to/xilinx/install

set search_path
". $XILINX/verilog/formality/unisims $XILINX/verilog/formality/simprims "

Add these commands to the ".synopsys_fm.setup" file if needed. Save and close the file.

Additionally, ensure that the XILINX variable is pointing to the correct location of the Xilinx
install directory.
XAPP414 (v1.1) September 28, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

2. Start up the GUI by typing "formality" at the Unix terminal prompt. The Formality GUI that
comes up is shown in Figure 2.

The main section of the GUI shows the transcript of the commands and the log file
generated. The commands can be entered in the bottom section of the GUI. Alternatively,
a script can be called from the GUI by selecting File > Run Script from the pull-down menu.

3. The Xilinx Verification libraries, UNISIMS and SIMPRIMS, need to be read into Formality
before comparing the designs. Enter the following commands at the formality command
prompt to read the libraries:

set XILINX /path/to/xilinx/install/

source $XILINX/verilog/formality/unisims/unisims.fms

source $XILINX/verilog/formality/simprims/simprims.fms

Formality will read the contents of the Xilinx verification libraries. This may take upto 10
minutes, depending on the network connection speed and processor speed.

4. Select File-> New container.

Figure 2: Formality Main GUI
6 www.xilinx.com XAPP414 (v1.1) September 28, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

5. Enter rtl on container name. We will use this container to store the RTL (reference) design.
The RTL container GUI will open up, as shown in Figure 3.

6. In the rtl - Container window, select File > Read Design from the pull-down menu..

7. Select all the RTL files in the design.
Note: If you have CoreGEN modules in your design, do not select the <coregen_module>.v files at
this time. We will add the CoreGEN modules at a later time. This is because the coregen modules are
already instantiated as a black box in your design. In order to read the description of coregen
modules, you'll need to override the black box component. Otherwise, the following error will occur:

Error: You are declaring a module 'tenths' which is already declared.
(File:<coregen_module>.v)

8. Select Open on the "Read Design" browser window (Figure 4) .

Figure 3: RTL Container GUI
XAPP414 (v1.1) September 28, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

9. Click OK on the next window to accept all the default settings.

10. Click on the + sign next to WORK and select the top-level design module.

11. Select the top-level module, Right-Click on that module and select "Set as Reference."

12. Select File > Link Design > Use Default Options from the rtl-container's pull-down menu.

13. Repeat steps 3 to 5 to create a container called "imp." This container will be used to store
the implemented design.

14. In the imp-Container window, select File > Read Design from the pull-down menu.

15. Select the implemented Verilog file. This can be the after NGDBUILD or after PAR. Ensure
that this file has been processed through the xilinx2formality.pl script. See section Sample
Flows for more details.

16. Repeat steps 8 to 10 for the "imp" container window.

17. Right Click on the toplevel.v and select "Set as Implementation."

18. Select File > Link Design > use Default Options from the imp-container pull-down menu.

19. To include any CoreGEN modules to the reference design, refer to the section Verification
of Designs containing Xilinx CoreGEN components .

Figure 4: Read Design Options GUI
8 www.xilinx.com XAPP414 (v1.1) September 28, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

20. From the Formality Console window, click Run -> Verify -> All Compare Points. If the
designs compare successfully, the result will be shown in the GUI under the "Verification"
section, as shown in Figure 5.

Once verification has completed, several reports can be generated to see passing and failing
points. All these report options are available under the "Report" pull-down menu in Formality.
An example of a "Passing Points" report is shown in Figure 6. This report is divided into two

Figure 5: Formality Transcript Showing Results of Verification
XAPP414 (v1.1) September 28, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

columns, one each for the Reference and Implementation designs. On each row, the report
shows the signals in the two designs that were deemed logically equivalent by Formality.

Verification of
Designs
Containing
Xilinx CoreGEN
Components

Xilinx provides IP of varying complexity to designers to assist in the completion of Xilinx FPGA
designs. This IP is provided with the CoreGEN tool, part of the Xilinx ISE software package.
However, since the CoreGEN IP is not provided in synthesizable Verilog but as a EDIF netlist,
a few extra steps are required to add the Xilinx CoreGEN macros into the Golden RTL design
for checking in Conformal LEC. The netlist needs to be run through the Xilinx NGDBUILD and
NGD2VER tools, and then processed through the xilinx2verplex.pl utility to convert it into a
format acceptable to Conformal. Xilinx provides a PERL script "core2formal.pl" to run all the
commands necessary.

This PERL script is available in $XILINX/verilog/bin/<platform>/core2formal.pl.

In order to run these commands, the Xilinx environment must be setup.

The command is as follows:

>xilperl $XILINX/verilog/bin/<platform>/core2formal.pl -<vendor> -<family>
<coregen_module>.edn

Notes:
1. For Conformal LEC, the <vendor> option must be "verplex".

Figure 6: Passing Points Report in Formality
10 www.xilinx.com XAPP414 (v1.1) September 28, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

2. The <family> option can be virtex, virtexe, virtex2, and spartan2.
- <platform> can be "sol" for solaris UNIX workstation, "hp" for HP UNIX workstation, or "nt" for

PC platform.

The PERL script will run the following commands:

ngdbuild –p <family> <coregen_module>.edn

ngd2ver –r –w <coregen_module>.ngd <coregen_module>_ngd.v

xilperl xilinx2verplex.pl <coregen_module>_ngd.v > <coregen_module>_for.v

Known Issues There are some known issues with the Formal Verification flow using Xilinx and Formality. They
are listed below. Any known issues reported in the future are going to be documented in Xilinx
Answer Records, which can be found from http://support.xilinx.com.

1. Verification of RAM's inferred by the synthesis tools is not supported by Formality. This is
because inferred components make it difficult for formal verification tools to find
appropriate compare points in the designs.

2. Verification with re-timing turned on in synthesis is not supported by Formality. Synthesis
tools change and move around logic during re-timing, and this causes difficulty for formal
verification tools to find appropriate compare points between designs. If re-timing is turned
on, there will be some points during formal verification that will not compare successfully.

3. Designs using distributed SelectRAM will have difficulty matching to back-end designs.
This is because the implementation tools break up the SelectRAM instances into smaller
components, which makes it difficult for formality to compare the RTL and Implemented
XAPP414 (v1.1) September 28, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

versions of SelectRAMs. The recommendation is either to not use SelectRAMs, or to use
the small SelectRAM primitive, RAM16x1, in the RTL design, as shown in Figure 7.

4. If the option is selected to bring GSR or GTS as a port in the back-annotated design, then
the compare points for these ports must be removed, otherwise they will be reported as
unmatched points by Formality. This can be accomplished via the Formality GUI by
selecting Setup > Compare Points > Remove in the pull-down menu, as shown in Figure 8.

Figure 7: 32-bit RAM Composed of Smaller Primitives

dpra1

X_RAMD32

dpra0

a0

dpra2

dpra3

d

a1

a2

a3

wclk

we

dpra4

a4

A0

DP_9

RAM16X1D

A1

A2

A3

D DPO

DPRA0SPO

DPRA1

DPRA2

DPRA3

WCLK

WE

A0

DP_10

F5MUX_0

X_MUX2

RAM16X1D

A1

A2

A3

D DPO

DPRA0SPO

DPRA1

IA

dpo

X413_05_091001

WSGAND

X_AND2

X_INV
I0 O

WSJAND

I O

I1

WSFAND

X_AND2

I0 O

I1

IB O

SEL

DPRA2

DPRA3

WCLK

WE

Figure 8: Removing Compare Point
12 www.xilinx.com XAPP414 (v1.1) September 28, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

5. Designs that are re-targeted from one device to another without re-synthesizing the design
can cause errors in Formality. Since the size and width of the BlockRAM's is different in
different devices, it is recommended to re-synthesize to the new device when re-targeting
a design. If the re-targeting is done only at the back-end, some components will be mis-
matched in formal verification, since they will not match the components used in the RTL
design.

6. If the design instantiates the FDDRRSE or FDDRCPE components for Dual-Data rate
ports, the SIMPRIMS component, X_MUXDDR, will need to be renamed to match the
component used in the front-end. Without doing this, these points will result in mis-
compares in Formality.

7. If the "-bp" option is used in Xilinx Map during Implementation, Formal verification will not
work correctly. The "-bp" switch pushes logic into unused BlockRAM areas, but these
changes makes logic equivalency checking impossible for the parts of the design pushed
inside the BlockRAM's as Formality cannot see inside the BlockRAM.

8. If the synthesis tool merges registers during the optimization process, this causes errors
during formal verification as some compare points are missing for Formality. This problem
can be resolved by using a script called "makeconstraints," provided by Synopsys, that
generates a constraints file to inform Formality of the registers that were merged during
Synthesis by FPGA Compiler II. Note that this script only works with FPGA Compiler II.
This script is provided in text format in the following section.

9. Map inserts a pull-up for internal tri-state buffers. This will cause some uncompared points
in formal verification. These can be worked around by either:

- Manually instructing formality to not compare these points.

- Remove the pull-up instantiations manually from the back-end netlist.

- Add pull-ups to internal tri-state buffers in the RTL design.

Formality Run
Scripts

Formality can be run using either the GUI or command line scripts. This section provides two
scripts that can be used at the command line.

Formality Flow Script
This script lays out the basic formality verification flow and runs through most of the steps
outlined in the section Verifying Design .

create_cont rtl

create_cont post_syn

set search_path ". ./RTL $XILINX/verilog/formality/simprims
$XILINX/verilog/formality/unisims"

set hdlin_ignore_full_case false

set hdlin_ignore_parallel_case false

set hdlin_error_on_mismatch_message false

read_ver -c rtl [glob ./RTL/*.v]

source $XILINX/verilog/formality/unisims/unisims.fms

set_ref rtl:/WORK/<design_dir>

link $ref

current_cont post_syn
XAPP414 (v1.1) September 28, 2001 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

source $XILINX/verilog/formality/simprims/simprims.fms

read_verilog -container post_syn ./<design>.v.MOD

set_imp post_syn:/WORK/<design_dir>

link $impl

#set name_match_allow_subset_match true

set signature_analysis_matching true

set_compare_rule $impl -from {/f1} -to {}

#current_design $ref

#current_design $impl

source ./remove_cp_impl.fms

source ./set_constraints.fms

verify -no

report_failing_points > failing_points

Workaround for Register Merging
This script provides the workaround for register merging by FPGA Compiler II. More details on
this issue are provided in Known Issue number 12 in this document.

#!/bin/sh

fc2_report=$1

tmpfile=${fc2_report}$$

grep and get all of the Duplicate cells merges messages

get just the two paths

remove the single quotes

grep "Warning: Duplicate cells .*merged." ${fc2_report} | awk '{printf("%s
%s\n",$4,$6) }' | \

sed -e "s/\'/ /g" > ${tmpfile}

get the design name

designName=`cat ${tmpfile} | awk -F/ '{print $2}' | uniq | head -1`

remove the /designname

change <> to []

print the set_constraint commands
14 www.xilinx.com XAPP414 (v1.1) September 28, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

cat ${tmpfile} | sed -e "s/\/${designName}//g" | sed -e "s/</[/g" | sed -e "s/>/]/g" | \

awk '{printf("set_constraint coupled \" [file tail %s] [file tail %s] \" \

[file dirname [tr $ref%s]] \n",$1,$2,$1)}' > ${fc2_report}.constraints

if [-f ${tmpfile}] ; then

 rm ${tmpfile}

fi

Support
Information

For additional support on the Xilinx/Formality flow, contact Synopsys customer support. The
contact information is:

Email: Suppor_center@synopsys.com

Phone: (650) 546-4200

(800) 245-8005

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/18/01 1.0 Initial Xilinx release.

09/28/01 1.1 Changed Support Information.
XAPP414 (v1.1) September 28, 2001 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Sofware and Device Support
	Flow Summary
	Sample Flows
	RTL vs. post NGDBuild
	RTL vs post PAR

	Formality Flow
	Setting Up the Environment
	Setting up the Xilinx Verification Libraries

	Verifying Design
	Verification of Designs Containing Xilinx CoreGEN Components
	Known Issues
	Formality Run Scripts
	Formality Flow Script
	Workaround for Register Merging

	Support Information
	Revision History

