
Summary This application note describes a two-dimensional Discrete Cosine Transform (2D DCT) 
function implemented on a Xilinx FPGA. The reference design file provides behavioral code for 
implementation on any Xilinx device. Some advantages of the module include the ability to 
parametrize the DCT function and to guarantee performance. The code can be further 
optimized by instantiating embedded adders and multipliers when targeting the Virtex™-II 
series of FPGAs. After an initial latency of 92 clock cycles, one 2D-DCT value is output at every 
clock.

Compression Compression is the process of reducing the size of the data sent, thereby, reducing the 
bandwidth required for the digital representation of a signal. Many inexpensive video and audio 
applications are made possible by the compression of signals. Compression technology can 
result in reduced transmission time due to less data being transmitted. It also decreases the 
storage requirements because there is less data. However, signal quality, implementation 
complexity, and the introduction of communication delay are potential negative factors that 
should be considered when choosing compression technology. 

Video and audio signals can be compressed because of the spatial, spectral, and temporal 
correlation inherent in these signals. Spatial correlation is the correlation between neighboring 
samples in an image frame. Temporal refers to correlation between samples in different frames 
but in the same pixel position. Spectral correlation is the correlation between samples of the 
same source from multiple sensors. 

There are two categories of compression: lossy and lossless. In medical system applications, 
image losses can translate into costly medical mistakes; therefore, lossless compression 
methods are used. Fortunately, the majority of video and image processing applications do not 
require the reconstructed data to be identical to the original data. In such applications, lossy 
compression schemes can be used to achieve higher compression ratios. 
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Figure 1:  Block Diagram of a Compression/Decompression System[1]
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DCT 
Compression

Discrete Cosine Transform (DCT) is a lossy compression scheme where an N x N image block 
is transformed from the spatial domain to the DCT domain. DCT decomposes the signal into 
spatial frequency components called DCT coefficients. The lower frequency DCT coefficients 
appear toward the upper left-hand corner of the DCT matrix, and the higher frequency 
coefficients are in the lower right-hand corner of the DCT matrix. The Human Visual System 
(HVS) is less sensitive to errors in high frequency coefficients than it is to lower frequency 
coefficients. Because of this, the higher frequency components can be more finely quantized, 
as done by the quantization matrix.

Each value in the quantization matrix is pre-scaled by multiplying by a single value, known as 
the quantizer scale code. This value can range in value from one to 112 and is modifiable on a 
macroblock basis. Dividing each DCT coefficient by an integer scale factor and rounding the 
results accomplishes quantization. This sets the higher frequency coefficients (in the lower 
right corner), that are less significant to the compressed picture, to zero by quantizing in larger 
steps. The low frequency coefficients (in the upper left corner), that are more significant to the 
compressed picture, are quantized in smaller steps. The goal of quantization is to force as 
many of the DCT coefficients to zero, or near zero, as possible within the boundaries of the 
prescribed bit-rate and video quality parameters. Thus, since quantization throws away some 
information, it is a lossy compression scheme.

Quantization can be expressed as:

The following is a sample of the Quantization matrix used for the JPEG algorithm:

For most image compression standards, N = 8. An 8 x 8 block size does not have significant 
memory requirements, and furthermore, a block size greater than 8 x 8 does not offer 
significantly better compression. Each picture is divided into 16 x 16 blocks called a 
macroblock. Each of the macroblocks is further divided into 16 samples x 16 lines. Each block 
on which DCT is performed is 8-samples by 8-lines called blocks. Thus, each macroblock 
consists of four blocks.

DCT is image independent and can be performed with fast algorithms. Fast algorithms are 
parallel and can be efficiently implemented on parallel architecture. Examples of standards 
using DCT:

• Dolby AC2 & AC3: 1-D DCT (and 1-D Discrete Sine Transform) 

• JPEG (still images): 2-D DCT spatial compression 

• MPEG1 & MPEG2: 2-D DCT plus motion compensation

• H.261 and H.263: moving image compression for video conferencing and video telephony 

Much of the processing required to encode or decode video using these standards is taken up 
by calculating the DCT and/or IDCT. An efficient hardware block dedicated to these functions 
will improve the performance of the digital video system considerably.

Quantizedvalue i j( , )

DCT i j( , )
Quantizationmatrix i j( , )
----------------------------------------------------------------=

JPEG Quantization Matrix

3 5 7 9 11 13 15 17
5 7 9 11 13 15 17 19
7 9 11 13 15 17 19 21
9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

=
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Technical 
Aspects of the 
Compression 
Algorithm

The following material provides a brief description of DCT. Further details can be found in 
"Image and Video Compression Standards" by Vasudev Bhaskaran and Konstantinos 
Konstantinides[1]. The 12-bit signed input pixels provide a 16-bit signed output coefficient for 
the DCT. A 12-bit signed input has 11 data bits. For an 8 x 8 DCT, the 11 data bits can be 
multiplied eight times (represented by three bits). Multiplying 11 bits by 3 bits can result in 
11 + 3 or 14 bits. Added to these 14 bits are the sign bit and the fraction bit to give a total of 
16 bits. The algorithm used for the calculation of the 2D DCT is based on the following 
equation:

 (EQ 1)

First, the 1D DCT of the rows are calculated and then the 1D DCT of the columns are 
calculated. The 1D DCT coefficients for the rows and columns can be calculated by separating 
equation 1 into the row part and the column part.

 (EQ 2), where

(EQ 3), where 

and M = total # of columns, N = total # of rows.

The constant values for C and Ct calculated from equations 2 and 3 are as follows:

XCpq XNmn
n 0=
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∑
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C

23170 23170 23170 23170 23170 23170 23170 23170
32138 27246 18205 6393 6393– 18205– 27246– 32138–

30274 12540 12540– 30274– 30274– 12540– 12540 30274
27246 6393– 32138– 18205– 18205 32138 6393 27246–

23170 23170– 23170– 23170 23170 23170– 23170– 23170
18205 32138– 6393 27246 27246– 6393– 32138 18205–

12540 30274– 30274 12540– 12540– 30274 30274– 12540
6393 18205– 27246 32138– 32138 27246– 18205 6393–

=

C
t

23170 32138 30274 27246 23170 18205 12540 6393
23170 27246 12540 6393– 23170– 32138– 30274– 18205–

23170 18205 12540– 32138– 23170– 6393 30274 27246
23170 6393 30274– 18205– 23170 27246 12540– 32138–

23170 6393– 30274– 18205 23170 27246– 12540– 32138
23170 18205– 12540– 32138 23170– 6393– 30274 27246–

23170 27246– 12540 6393 23170– 32138 30274– 18205
23170 32138– 30274 27246– 23170 18205– 12540 6393–

=
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For the case of 8 x 8 block region, a one-dimensional 8-point DCT/IDCT followed by an internal 
double buffer memory, followed by another one-dimensional 8-point DCT provides the 2D DCT 
architecture.

Vector processing using parallel multipliers is a method used for implementation of DCT. The 
advantages in the vector processing method are regular structure, simple control and 
interconnect, and good balance between performance and complexity of implementation.

Behavioral 
Model

Using vector processing, the output Y of an 8 x 8 DCT for input X is given by Y = C•X•Ct, where 
C is the cosine coefficients and Ct are the transpose coefficients. This equation can also be 
written as Y=C•Z, where Z = X•Ct. Using the cosine C and inverse cosine Ct numbers in 
equation 2 and 3, the intermediate value Z = X•Ct can be calculated as follows:

Z(0,0) = 23170 (x00 + x01 + x02 + x03 + x04 + x05 + x06 + x07)

Z(0,1) = 32138x00 +27246x01 +18205x02 +6393x03 –6393x04 –18205x05 –27246x06 –32138x07)

= 32138(x00 – x07) + 27246(x01 – x06) + 18205(x02 – x05) + 6393(x03 – x04)

Z(0,2) = 30274(x00 + x07) + 12540(x01 + x06) – 12540(x02 + x05) – 30274(x03 + x04)

Z(0,3) = 27246(x00 – x07) – 6393(x01 – x06) – 32138(x02 – x05) – 18205(x03 – x04)

Z(0,4) = 23170(x00 + x07) – 23170(x01 + x06) – 23170(x02 + x05) + 23170(x03 + x04)

Z(0,5) = 18205(x00 – x07) – 32138(x01 – x06) + 6393(x02 – x05) + 27246(x03 – x04)

Z(0,6) = 12540(x00 + x07) – 30274(x01 + x06) + 30274(x02 + x05) – 12540(x03 + x04)

Z(0,7) = 6393(x00 – x07) – 18205(x01 – x06) + 27246(x02 – x05) – 32138(x03 – x04) 

Or:

Z(k,0) = 23170 (xk0 + xk1 + xk2 + xk3 + xk4 + xk5 + xk6 + xk7)

Z(k,1) = 32138(xk0 – xk7) + 27246(xk1 – xk6) + 18205(xk2 – xk5) + 6393(xk3 – xk4)

Z(k,2) = 30274(xk0 + xk7) + 12540(xk1 + xk6) – 12540(xk2 + xk5) – 30274(xk3 + xk4)

Z(k,3) = 27246(xk0 – xk7) – 6393(xk1 – xk6) – 32138(xk2 – xk5) – 18205(xk3 – xk4)

Z(k,4) = 23170(xk0 + xk7) – 23170(xk1 + xk6) – 23170(xk2 + xk5) + 23170(xk3 + xk4)

Z(k,5) = 18205(xk0 – xk7) – 32138(xk1 – xk6) + 6393(xk2 – xk5) + 27246(xk3 – xk4)

Z(k,6) = 12540(xk0 + xk7) – 30274(xk1 + xk6) + 30274(xk2 + xk5) – 12540(xk3 + xk4)

Z(k,7) = 6393(xk0 – xk7) – 18205(xk1 – xk6) + 27246(xk2 – xk5) – 32138(xk3 – xk4) 

where k = 0, 2, …, 7.

Figure 2:  2D-DCT Using Vector Processing
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= Ct

23170 32138 30274 27246 23170 18205 12540 6393
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23170 32138– 30274 27246– 23170 18205– 12540 6393–

=
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Each element in the first row of the input matrix X are multiplied by each element in the first 
column of matrix Ct and added together to get the first value Z00 of the intermediate matrix Z. 
To get Z01, each element of row zero in X is multiplied by each element in the first column of Ct 
and added and so on. As shown, input X00 gets multiplied by all the coefficients in the first row 
of Ct, and input X01 gets multiplied by all the coefficients in the second row of Ct, and so on.

The calculation is implemented by using eight multipliers and storing the coefficients in ROMs. 
At the first clock, the eight inputs x00 to x07 are multiplied by the eight values in column one, 
resulting in eight products (P00_0 to P00_7). At the eighth clock, the eight inputs are multiplied by 
the eight values in column eight resulting in eight products (P07_0 to P07_7). From the equations 
for Z, the intermediate values for the first row of Z is computed:

Z00 = P00_0 + P00_1+ P00_2+ P00_3+ P00_4+ P00_5+ P00_6+ P00_7

Z01 = P01_0 + P01_1+ P01_2+ P01_3+ P01_4+ P01_5+ P01_6+ P01_7

Zij = Pij_0 + Pij_1+ Pij_2+ Pij_3+ Pij_4+ Pij_5+ Pij_6+ Pij_7

Where i = 0 to 7, the matrix X row number and j = 0 to 7, the matrix Ct column number.

The intermediate values for the second row of Z, Z1K, are computed by using P1K values. The 
8 x 8 Z matrix can be calculated using these equations.

The block diagram for the implementation of the 1D-DCT is shown in Figure 3.

Figure 3:  1D-DCT Implementation (K is 0 - 7)
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The values for Z0(0 -7) can be calculated in eight clock cycles. (If the adder output is also 
registered, Z07 is calculated at the ninth clock cycle). All 64 values of Z are calculated in 64 
clock cycles and then the process is repeated. The values of Z correspond to the 1D-DCT of the 
input X. Once the Z values are calculated, the 2D-DCT function Y can be calculated from 
Y = CZ.

Each element in the first row in the coefficient matrix C is multiplied by each element in the first 
column of matrix Z and added together to get the first value Y00 of the output matrix Y. To get 
Y01, each element of row zero in C is multiplied by each element in the first column of Z and is 
added as before. Multiplying row k of C by column zero of Z results in the coefficient YK0. All the 
elements in the first row of matrix Z are multiplied by all the elements in the first column of 
matrix C.

The calculation is implemented by using eight multipliers and storing the coefficients in ROMs. 
At the first clock, the eight coefficients in row zero of C are multiplied by the eight values in the 
first column of Z and are added together to result in Y00. At the eighth clock, the eight values of 
row zero of C are multiplied by the eight values in column eight of Z. The resultant is added to 
give Y07.

C

23170 23170 23170 23170 23170 23170 23170 23170
32138 27246 18205 6393 6393– 18205– 27246– 32138–

30274 12540 12540– 30274– 30274– 12540– 12540 30274
27246 6393– 32138– 18205– 18205 32138 6393 27246–

23170 23170– 23170– 23170 23170 23170– 23170– 23170
18205 32138– 6393 27246 27246– 6393– 32138 18205–

12540 30274– 30274 12540– 12540– 30274 30274– 12540
6393 18205– 27246 32138– 32138 27246– 18205 6393–

= Z

z00 z01 z02 z03 z04 z05 z06 z07
z10 z11 z12 z13 z14 z15 z16 z17
z20 z21 z22 z23 z24 z25 z26 z27
z30 z31 z32 z33 z34 z35 z36 z37
z40 z41 z42 z43 z44 z45 z46 z47
z50 z51 z52 z53 z54 z55 z56 z57
z60 z61 z62 z63 z64 z65 z66 z67
z70 z71 z72 z73 z74 z75 z76 z77

=

23170→
23170→
23170→
23170→
23170→
23170→
23170→
23170→

z00 z01 z02 z03 z04 z05 z06 z07
z10 z11 z12 z13 z14 z15 z16 z17
z20 z21 z22 z23 24 z25 z26 z27
z30 z31 z32 z33 z34 z35 z36 z37
z40 z41 z42 z43 z44 z45 z46 z47
z50 z51 z52 z53 z54 z55 z56 z57
z60 z61 z62 z63 z64 z65 z66 z67
z70 z71 z72 z73 z74 z75 z76 z77
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The block diagram for the implementation of the 2 D-DCT is shown in Figure 4

Implementation 
Description

Preprocessing
In RGB color space, the average value of all the color components is 128. However, in the 
YCbCr color space the average value of Y is 128, but the value of Cr and Cb is bias zero. The 
image pixels are preprocessed before going into the DCT coder to provide uniform processing. 
The preprocessing makes the average value to be zero by subtracting 128 from each pixel 
value. This value is added back after the inverse DCT operation[1].

Figure 3 and Figure 4 show the block diagrams for reference design implementation. The 1D-
DCT values are first calculated and stored in a RAM. The second 1D-DCT is done on the 
values stored in the RAM. For each 1D implementation, inputs are loaded into an 
adder/subtractor. The output of the adder/subtractor is fed into a multiplier. The constant 
coefficient multiplication values are stored in a ROM and fed into the second input of the 
multiplier. The equations for Z and Y show the even column values are obtained by adding the 
inputs, and the odd column values are obtained by subtracting the inputs. Thus, for every other 
clock an addition is done at the inputs. This control is achieved by using a simple toggle flip-flop 
with the output toggling High or Low to select an adder or a subtractor. The outputs of the four 
multipliers are added together resulting in the intermediate coefficients. The intermediate 
coefficients are stored in a RAM. The values stored in the intermediate RAM are read out one 
column at a time (i.e., every eighth value is read out every clock). This is the input for the 
second DCT.

Figure 4:  2D-DCT Implementation (K is 0-7)
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Reference 
Design

Resource Utilization
This application note and reference design includes a basic explanation of DCT. The Verilog 
and VHDL code shows the implementation of a 2D DCT. The code implements a 2D DCT with 
8-bit input data and 9-bit output data. The number of input/output data bits can be changed as 
needed. The code is available on the Xilinx web site at: 
ftp://ftp.xilinx.com/pub/applications/xapp/xapp 610.zip.

The code has been tested and simulated against the vectors given in "Image and Video 
Compression Standards," second edition, by Vasudev Bhaskaran and Konstantinos 
Konstantinides, ISBN 0-7923-9952-8 [1], on page 60. This code has not been tested for IEEE 
compliance.

References and 
Recommended 
Links

1. "Image and Video Compression Standards," second edition, by Vasudev Bhaskaran and 
Konstantinos Konstantinides, ISBN 0-7923-9952-8

2. A variety of cores developed by Xilinx or by partners are available on the Xilinx web site:

a. http://www.support.xilinx.com/ipcenter/catalog/logicore/docs/dct_1d.pdf

b. http://www.xilinx.com/products/logicore/alliance/xentec_spotlight.htm

c. http://www.support.xilinx.com/ipcenter/dct_lounge/index.htm

3. Application note XAPP208: IDCT Implementation in Virtex Devices for MPEG Applications, 
v 1.1 (12/99) at: http://www.xilinx.com/xapps/xapp208.pdf

4. White paper WP113: A Spartan-II DCT/IDCT Programmable ASSP Solution at:
http://www.xilinx.com/publications/whitepapers/wp_spartan.htm

Conclusion The DCT design files demonstrate an efficient implementation of the DCT algorithm using 
Virtex devices. The DCT reference design files can be used to target any Xilinx device. 
Optimize the code by instantiating the adder/subtractor and multiplier units when targeting 
Virtex parts. The sample design has an initial latency of 92 clock cycles after which one DCT 
output is obtained at every clock. Of the 92 clock latency, 64 clocks are used to write in the 64 
1D-DCT values into the transpose memory.

Revision 
History

The following table shows the revision history for this document.  

Table  1:  Resource Utilization

Device
Speed 
Grade Package

Pre-Map 
(Synthesis Constraint) Post-Route Slices

XCV300E -8 BG352 92.15 MHz (150 MHz) 64.56 MHz 847(27%)

XC2V250 -6 FG456 182.75 MHz (180 MHz) 64.56 MHz 558 (36%)

XCV300 -6 PQ240 104.62 MHz (100 MHz) 64.56 MHz 848(27%)

XC2S200 -6 FG256 95.00 MHz (80 MHz) 64.56 MHz 853(36%)

Date Version Revision

03/06/02 1.0 Initial Xilinx release.

03/20/02 1.1 Updated Reference Design section

04/24/02 1.2 Fixed link to reference design.
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