
Summary The SMPTE 259M Serial Digital Interface (SDI) standard describes how to transport standard-
definition digital video serially over video coax cable. SDI is commonly used as the video
transportation backbone of most broadcast studios and video production centers. This
application note describes implementations of a video standard detector and a flywheel video
decoder, suitable for use with Xilinx FPGAs.

Introduction This is one in a series of application notes describing SDI implementation in Xilinx FPGAs.
Figure 1 is a block diagram showing correlation between the various application notes and the
elements of the SDI link.

Before transmission over an SDI link, digital video is usually processed to insert error detection
checkwords. These checkwords allow the receiver to detect transmission errors. Ancillary data
packets can also be inserted into the inactive (blanked) portions of the video to carry non-video
data, such as digital audio. At the receiving end of the SDI link, the digital video is again
processed to detect transmission errors, extract ancillary data, or insert additional types of
ancillary data.

SDI is compatible with a variety of different digital video standards. Because the locations of the
error detection and ancillary data packets vary with the digital video standard, a video
processor must know which video standard is currently being processed. Most digital video
processors have a video standard detector examining the video stream to automatically
determine the video standard.

In addition to determining the video standard, a video processor must also synchronize itself to
the input video stream. It must know the vertical and horizontal position of the current video
sample. The video decoder function synchronizes to the input video stream and keeps running
counts of the current video line number and current horizontal position. With this information,
the video processor knows when to insert or extract the error detection checkwords and

Application Note: Virtex-II Series

XAPP625 (v1.0) March 12, 2002

SDI: Video Standard Detector and
Flywheel Decoder
Author: John Snow

R

Figure 1: SDI Block Diagram and Application Notes

ANC & EDH
Processors

XAPP299

Ancillary
DataDigital

Video

SDI Video
Encoder

XAPP298

Test Pattern
Generator

XAPP248

SDI
Driver

XAPP247

SDI
Equalization

& CDR

XAPP247

SDI Video
Decoder

XAPP288

Ancillary
Data

Digital
Video

Data

Clock

SDI
bitstream

Standard
Detect &
Flywheel

Standard
Detect &
Flywheel

XAPP625

ANC & EDH
Processors

XAPP299

x625_01_020802

XAPP625
XAPP625 (v1.0) March 12, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

SDI: Video Standard Detector and Flywheel Decoder
R

ancillary data packets. A special type of video decoder, the flywheel video decoder, is often
used in video processors because it provides immunity from noisy, error prone, or briefly
interrupted input video streams.

Digital Video
Standards

There are many different video standards, both analog and digital. Today, most broadcast
studios and video production centers use component digital video when creating, storing, and
transporting video. Component digital video can be readily compressed using digital video
compression standards. It can also be encoded into analog composite video for broadcast.

SDI supports a variety of standard-definition digital video standards. The ANSI/SMPTE 259M-
1997 SDI [1] standard defines how to serially transport the digital standards listed in Table 1.
The documents listed describe the parallel form of these video standards, and the SDI standard
describes how to convert the parallel video data to a serial format.

SDI is compatible with both component and composite digital video. Component digital video is
very commonly used in the broadcast industry, but composite digital video is not as common.
The reference designs accompanying this application note support only component digital
video.

Since the original SDI specification was introduced, it has been adapted to accommodate some
additional digital video standards. Among these are NTSC and PAL 4:4:4:4 component digital
video standards. The parallel format for the NTSC and PAL 4:4:4:4 video standards are
described in SMPTE RP 174-1993 [8] and ITU-R BT.799-3 [9]. The serial data rate for both
4:4:4:4 digital component video standards is 540 Mb/sec. The SDI specification was extended
to cover the 540 Mb/sec data rate by SMPTE 344M-2000 [10].

Xilinx application notes XAPP248 and XAPP286 contain descriptions of the 4 x 3 aspect ratio,
4:2:2 component digital video standards. The NTSC and PAL 16x9 aspect ratio 4:2:2
component digital video standards are very similar to the 4 x 3 aspect ratio standards and
simply have more samples per line. The 4:4:4:4 standards differ more significantly from the
4:2:2 standards, as described below.

The 4:2:2 digital video standards use two data words per video sample. Each video sample
contains a luma word (Y) and one chroma word. Consecutive video samples alternate between
containing a blue color-difference chroma word (Cb) and a red color-difference chroma word
(Cr).

In contrast, the 4:4:4:4 digital video standards have four data words per video sample. These
standards support either the YCbCr color space or the RGB color space. If YCbCr is used,
each video sample contains words for the Y, Cb, and Cr components plus a fourth auxiliary
component designated as A. If the RGB color space is used, each video sample contains a
word for each red, green, blue, and A component. The A component typically carries the key
channel, indicating the transparency of the sample. In the RGB color space, this key channel is
often called the alpha channel.

The format of the XYZ word of the timing reference signal (TRS) symbol is different for the
4:4:4:4 standards. A flag bit called S has been added to indicate the color space used in the

Table 1: SDI Supported Digital Video Standards

Standard Description Serial Bit Rate

SMPTE 125M[2] & ITU-R BT.601-5[3] NTSC & PAL 4x3 aspect ratio 4:2:2 component digital video 270 Mb/s

SMPTE 267M[4] NTSC 16x9 aspect ratio 4:2:2 component digital video 360 Mb/s

SMPTE 244M[5] NTSC Composite Digital Video 143 Mb/s

IEC 61179 [6] & EBU Tech. 3280-E [7] PAL Composite Digital Video 177 Mb/s
2 www.xilinx.com XAPP625 (v1.0) March 12, 2002
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp248.pdf
http://www.xilinx.com/xapp/xapp286.pdf

SDI: Video Standard Detector and Flywheel Decoder
R

video stream. The S bit is low for RGB and high for YCbCr. The format of the XYZ word for the
4:4:4:4 TRS symbol is shown in Table 2.

The bits labeled P4 through P1 are protection bits calculated in the following manner:

P4 = V ⊕ V ⊕ H

P3 = F ⊕ V ⊕ S

P2 = V ⊕ H ⊕ S

P1 = F ⊕ H ⊕ S

Video Standard
Detection

A video processor can be designed to support several different standards of digital video. To
properly process the video stream, the processor must first determine the video standard of the
input video stream.

Until very recently, digital video streams did not carry any explicit identification information to
indicate the video standard. In 2001, the SMPTE 352M [11] standard was released. This
standard describes a standard ancillary data packet carrying "video payload" identification
information. Once widely adopted, this standard will simplify the process of detecting the video
standard of a digital video stream. The video processor will simply be able to look for and
decode the identification information in the ancillary data packet.

For now, however, more traditional methods of video standard detection must still be used. The
video processor must determine the video standard by examining the timing of the video
stream. All digital video standards supported by SDI contain TRS symbols. These symbols
occur in the video stream whenever the video timing signals change. There are three timing
signals in the TRS symbol called F, V, and H. The F bit indicates the current field (odd or even).
The V bit is asserted during the vertical blanking interval of each field. The H bit is asserted
during the horizontal blanking interval of each line.

Each of the six component digital video standards supported by this application note contains
a different number of data words on a line of video. A video standard detector finds the TRS
symbols marking the beginning of each video line and counts the number of words between
those symbols, then compares the results against the known video standards. Table 3 shows
the number of samples on a line of video for each of the video standards supported by this
application note.

Most video standard detectors require some number of consecutive lines to contain the same
number of samples before reporting that the video standard has been detected. This same
function can be used to provide noise immunity by preventing the video standard detector from

Table 2: XYZ Word Format for the 4:4:4:4 TRS Symbol

Bit 9 8 7 6 5 4 3 2 1 0

TRS Symbol 1 F V H S P4 P3 P2 P1 0

Table 3: Words Per Video Line

NTSC/PAL Sampling Scheme Aspect Ratio Words Per Line

NTSC 4:2:2 4:3 1716

NTSC 4:2:2 16:9 2288

NTSC 4:4:4:4 4:3 3432

PAL 4:2:2 4:3 1728

PAL 4:2:2 16:9 2304

PAL 4:4:4:4 4:3 3456
XAPP625 (v1.0) March 12, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

inadvertently switching to a new video standard when receiving a few lines containing the
incorrect number of words, possibly caused by noise in the video stream.

If the video processor supports composite digital video, then it must determine whether the
video stream is composite or component digital video. This can be done by examining the
fourth word of any TRS symbol in the video stream. For composite digital video, all the bits of
this word are zero. For component digital video, the most significant bit (bit 9) of the fourth word
is always a one. Therefore, by simply looking at bit 9 of the fourth word of any TRS symbol, a
video standard detector can determine whether the video stream contains composite or
component digital video.

This application note does not support composite digital video. The video standard detector in
the reference design determines the type of video stream, and simply stays "unlocked" when it
finds composite video.

Flywheel Video
Decoder

Basic Video Decoding
Inserting and extracting information, such as ancillary data packets, requires the video
processor to know exactly the current line number and horizontal position of the sample being
received and processed. The primary purpose of the video decoder is to synchronize to the
incoming video stream and provide the current horizontal and vertical position to other modules
in the video processor.

To find the current horizontal position, a video decoder watches for a start of active video (SAV)
TRS symbol. The sample immediately after the last word of the SAV symbol is the first sample
in the active portion of the line (sample 0).

To find the current vertical position, the video decoder must watch for a transition of the F bit,
indicating the beginning of a new field. When a field transition occurs, the video decoder can
determine the current line number if it also knows the video standard. Table 4 shows the
starting line numbers of each field for both NTSC and PAL video.

Using a Flywheel for Noise Immunity
A flywheel video decoder is often used in video processors to provide immunity from noise and
interruptions in the input video stream. Flywheel video decoders use the same techniques just
described to synchronize to the input video stream. Once synchronized, however, the flywheel
generates its own video timing for the video stream. It continuously compares its internally
generated video timing information with the input video stream. When a difference occurs, the
flywheel decoder does not immediately resynchronize with the input video stream. Instead, it
continues to generate video timing unchanged, as if it had momentum carrying it forward. If the
input video stream contains only a few corrupted data words, it usually resumes in sync with the
flywheel. However, if synchronization is lost because the video stream was switched to a
different source or standard, the flywheel eventually determines that it must resynchronize with
the incoming video stream.

Not only does the flywheel decoder provide noise immunity for the video decoder function, but
it also can provide several other valuable functions.

The video timing information produced by the flywheel decoder can be used to repair damaged
or invalid TRS symbols in the input video stream. Because the flywheel is generating video
timing information, the video processor can generate correct TRS symbols. These can be

Table 4: Field Starting Line Numbers

NTSC/PAL
Odd Field Starting Line

Number (F = 0)
Even Field Starting Line

Number (F = 1)

NTSC 4 266

PAL 1 313
4 www.xilinx.com XAPP625 (v1.0) March 12, 2002
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

inserted in place of the TRS symbols in the input video stream, thereby, repairing any TRS
symbols that have been corrupted by noise.

The flywheel decoder continues to generate and insert TRS symbols into the video stream
even when the input video stream is interrupted. Obviously, the visual information in the
resulting video stream is invalid. But, the timing information contained in the TRS symbols is
valid. This is useful because it keeps all downstream video equipment synchronized.

Synchronous Switching Considerations
SDI video streams are often sent through video routers. In most cases, broadcast studios take
care to insure synchronization of the various video streams into the router. The input video
streams usually are synchronized to the same video line. However, the video streams are not
always synchronized to precisely the same horizontal position on the line.

When a router switches between these synchronous video sources, the receiving equipment
sometimes detects some small horizontal offset of the EAV symbol on the line where the switch
occurs. Normally, a flywheel decoder would ignore this EAV offset until it detected the offset
occurring repeatedly over some number of consecutive lines. Only then would the flywheel
resynchronize. However, when switching between closely synchronized video sources, it is
better for the flywheel decoder to instantly resynchronize.

SMPTE recommended practice RP 168-1993 defines one line per field when synchronous
switching is allowed to occur.[12] Table 5 shows the synchronous switching lines for both fields
of both the NTSC and PAL video standards. These lines were carefully chosen to minimize
disturbances to timing and other vital data. Other digital video standards forbid the placement
of critical information on these synchronous switching lines, since these lines are subject to
corruption during the switch.

According to RP 168, a synchronous switch must occur only during a window of a few hundred
samples located in about the middle of the active portion of the synchronous switching line.
This insures that the switch occurs well after the SAV symbol and well before the EAV symbol,
thus minimizing the chance that these important video timing signals will be corrupted by the
switch.

A video flywheel decoder should accommodate horizontal offsets that occur on these
synchronous switching lines and immediately resynchronize to the incoming video stream, if
such an offset is detected. If a vertical offset or field difference is detected on a synchronous
switching line, the switch is asynchronous and the flywheel should implement its normal
resynchronization process.

Tolerating an Early Falling Transition of the V Bit
The current standards for NTSC component digital video, SMPTE 125M-1995 and ITU-R
BT.601-5, require the V bit to transition from a High to a Low on lines 20 and 283, marking the
end of the vertical blanking interval. Earlier versions of the NTSC component digital video
specifications, however, allowed the V bit to fall Low on any line from 10 to 20 for the odd field
and 273 to 283 for the even field.

The current specifications recommend tolerance of early V bit transitions to allow for
compatibility with video equipment designed to earlier versions of the specifications. Since the
video flywheel decoder is generating its own version of the V bit, it may detect a discrepancy in
the V bit on video streams generated by older equipment. The flywheel decoder should tolerate

Table 5: RP 168 Synchronous Switching Line Numbers

NTSC/PAL Odd Field Synchronous
Switching Line Number

Even Field Synchronous
Switching Line Number

NTSC 10 273

PAL 6 319
XAPP625 (v1.0) March 12, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

these discrepancies, but only on those lines where the V bit was permitted to transition early in
the previous standards.

PAL component digital video specifications have always precisely specified the line when the V
bit should transition, so this does not apply to the PAL standards.

Reference
Design

The reference design contains a top-level module called video_decode. This module is a
wrapper around three modules: the video standard detector (autodetect), the flywheel video
decoder (flywheel), and a preprocessor module that is used to examine the video stream for
TRS symbols and other special patterns (trs_detect). Figure 2 is a block diagram of the
video_decode module.

There may be some cases where the autodetect module is not required. If an application
always processes the same video standard, or if the video standard is provided some other
way, by a front panel selector switch for example, the autodetect function can be eliminated
from the design. In these cases, the std_in inputs to the flywheel module should be hardwired
to the video standard or controlled by some external function. The std_locked signal should
always be asserted. The rx_xyz_err input of the flywheel module should be connected to
either the rx_xyz_err or the rx_xyz_err_4444 output of the trs_detect module, depending
on the video standard. Finally, the s4444 input of the flywheel module should be correctly
controlled if one of the 4:4:4:4 formats is selected.

The video_decode module delays the video stream by six clock cycles. Figure 3 shows the
timing relationships between many of the output signals of the video_decode module. The
diagram shows an EAV symbol followed immediately by the first part of an ANC packet. If the
ANC packet were an EDH packet, then the edh_next signal would be asserted at the same
time as the anc_next signal. The diagram ends with an SAV symbol.

Figure 2: Video Decoder Block Diagram

vid_in
10

trs_detect

clk ce rst

autodetect

clk ce rst

reacquire

flywheel

clk ce rst

en_sync_switch

td_xyz_err
td_xyz_err_4444

td_vid
td_trs
td_f
td_h
td_eav

td_anc
td_edh

td_xyz

std
std_locked

vid_out
trs
field
v_blank
h_blank
horz_count
vert_count
sync_switch
locked
eav_next
sav_next
xyz_word
anc_next
edh_next

xyz_err
s4444

10

3

10

12
10

en_trs_blank

x626_02_020802
6 www.xilinx.com XAPP625 (v1.0) March 12, 2002
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

.

Trs_detect Module
The trs_detect module performs some preliminary parsing of the video stream, looking for
certain special word patterns. This module has a four clock deep register pipeline that delays
the video while the module examines it. Figure 4 is a block diagram of the trs_detect module.

The trs_detect module performs the following functions:

• The trs_detect module detects TRS symbols occurring in the video stream. TRS symbols
are four words long. The first three words are a pattern unique in the video stream: 3FFh,
000h, and 000h. When this pattern is detected, the trs_detect module asserts the
rx_trs signal while it outputs the first word of the TRS symbol.

• If a TRS symbol is detected, the trs_detect module decodes the fourth word of the TRS

Figure 3: Timing Diagram for video_decode

clk

vid_in

vid_out

0003ff

trs

eav_next

field

v_blank

h_blank

xyz_word

anc_next

x625_03_020802

sav_next

000 3c4 000 3ff 3ff 080 200 3ff 000 000 3b0

0003ff 000 3c4 000 3ff 3ff 080 200 3ff 000 000 3b0

XYZ DID XYZ

input
video

ANC packet (partial)

ADF

TRS (EAV)

TRS preamble

TRS (SAV)

TRS preamble

Figure 4: trs_detect Block Diagram

vid_in
10

all_1s

all_0s

clk

pipe1
reg

in
reg

clk clk

pipe2
reg

out
reg

clk

anc

trs

f
v
h

eav
sav

vid10 10 10

xyz
error

detect

xyz_err

xyz_err_4444 rx_xyz_err_4444

rx_xyz_err

rx_trs

rx_anc

rx_f
rx_v
rx_h
rx_eav
rx_sav

vid_out
10

DID
decode rx_edh

XYZ
decode

edh

x625_04_020802
XAPP625 (v1.0) March 12, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

symbol, called the XYZ word. It asserts the rx_xyz signal as it outputs the XYZ word. It
also asserts either the rx_eav or rx_sav signals, depending on whether the TRS symbol
is an EAV or SAV. The rx_eav and rx_sav signals are only asserted when the first word
of a TRS symbol is output from the trs_detect module (when rx_trs is asserted). These
signals provide a look-ahead function for the video processor, indicating whether the TRS
symbol is an EAV or SAV before the XYZ word of the TRS symbol appears in the output
video stream from the trs_detect module.

• The trs_detect module checks the protection bits of the XYZ word to determine if it
contains an error. The module asserts the rx_xyz_err signal if the XYZ word contains
an error. This signal is only valid if the video standard is one of the 4:2:2 standards. A
different error signal, rx_xyz_err_4444 indicates the detection of an error in the XYZ word
for the 4:4:4:4 video standards. Because the trs_detect module does not know which
video standard is being received, it always examines the XYZ word for errors in both
formats. These two error signals are only valid when the rx_xyz signal is asserted.

• The trs_detect module latches the F, V, and H bits from the TRS symbol's XYZ word.
These latched bits are output from the trs_detect module as the rx_f, rx_v, and rx_h
signals. These signals remain valid until the next TRS symbol is detected. These signals
always transition at the beginning of the TRS symbol.

• The trs_detect module detects ancillary data (ANC) packets. An ANC packet begins with a
three-word ancillary data flag (ADF). Similar to the TRS symbol, the ADF is unique in the
video stream. The three words of the ADF are 000h, 3FFh, and 3FFh. When an ADF is
detected, the trs_detect module asserts the rx_anc signal during the first word of the
ADF.

• When an ADF is detected, the trs_detect module examines the word immediately after the
ADF to determine if the ANC packet is an error detection and handling (EDH) packet. The
word immediately following the ADF in an ANC packet is called the Data Identification
word (DID) identifying the type of packet. EDH packets have a DID value of 1F4h. If an
EDH packet is found, the trs_detect module asserts the rx_edh signal during the first
ADF word of the packet (when rx_anc is asserted).

Figure 5 shows a timing diagram of the inputs and outputs of the trs_detect module. It shows
how the input video stream is delayed by four clock cycles before coming out of the module. An
EAV TRS symbol is shown going into the trs_detect module. An ancillary data packet
immediately follows the TRS symbol. The signals in parenthesis have the same timing as the
signals listed above them.
8 www.xilinx.com XAPP625 (v1.0) March 12, 2002
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

When the trs_detect module is looking for TRS symbols and ANC packets, it only examines the
eight most significant bits of the video word to determine if the word contains all zeros or all
ones. This is to provide compatibility with 8-bit video equipment. The digital video standards
state that, when checking for TRS and ADF words, the least two significant bits should be
ignored.

Figure 5: trs_detect Module Timing

3ff 000 000 3c4 000 3ff 3ff 080

clk

vid_in

vid_out

200 110

000 000 3c4 000 3ff 3ff 080 2003ff

rx_trs

rx_eav
(rx_sav)

rx_f

rx_v

rx_h

rx_xyz

rx_xyz_err
(err_4444)

rx_anc
(rx_edh)

TRS preamble XYZ ADF DID

TRS (EAV) ANC packet

x625_05_020802
XAPP625 (v1.0) March 12, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

Autodetect Module
The autodetect module implements a video standard detector. This module examines the input
video stream and decoded information from the trs_detect module and determines the video
standard. Figure 6 is a block diagram of the autodetect module.

The autodetect module is based on a finite state machine (FSM). The FSM has two main loops,
the ACQUIRE loop shown in Figure 7 and the LOCKED loop shown in Figure 8. The ACQUIRE
loop tries to match the input video stream with one of the standards supported by the module.
Once the video standard is determined, the FSM enters the LOCKED loop where it
continuously monitors the input video stream for a change in the video standard.

To determine the video standard, the FSM determines the number of words between SAV
symbols. Each video standard supported by the module has a unique number of words per
video line. When the first SAV is detected, the horizontal counter is cleared (state ACQ3). The
horizontal counter increments every clock cycle, counting the number of words on the video
line. When the next SAV symbol is found, the horizontal counter value is captured in the
saved_hcnt register (state ACQ4). The value in the saved_hcnt register is compared to the
horizontal position of the six subsequent SAV symbols (state ACQ7). If the SAV occurs at the
same horizontal position on each of these lines, then the FSM assumes that the video is stable
and it has found the correct number of words per line. If the number of words on a line varies
from the value in the saved_hcnt register during the acquisition process, the entire process is
restarted.

Figure 6: autodetect Block Diagram

decode

=

vid_in

rx_xyz

composite

eav

sav

std

rx_xyz_err

rx_xyz_err_4444

int_xyz_err

State
Machine

error
counter

clr_errcnt
inc_errcnt max_errs

S

R
Qclr_locked

set_locked
locked

D

CE
Q s4444

ld_s4444

vid_in[5]

vid_std
3

iteration
counter

std
register

std out
register

loops 3

samples
ROM

matchcode[1]

horizontal
counter

saved
hcnt

clr_loops
inc_loops

ld_std
ld

clr_hcnt

ld_std

4
matchcode[0]

samples

12

4

matchcode[1] match

rx_trs

matchcode
2

xyz_err
x625_06_020802
10 www.xilinx.com XAPP625 (v1.0) March 12, 2002
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

After finding the number of words per line in the input video stream, the FSM compares this
word count with the word counts of each of the supported video standards. The Samples ROM
contains the word counts for each supported video standard. In state ACQ6, the FSM cycles
through each entry in the ROM by incrementing the iteration counter and comparing the output
of the ROM with the value in the saved_hcnt register. If a match is found, the value of the
iteration counter is captured in the std register and is used as the output video standard code
(vid_std). If no match is found after searching all the entries in the ROM, the FSM restarts the
acquisition process.

After the FSM has acquired the video standard, it moves to the LOCKED loop. In this loop, the
FSM determines if the number of words on each video line in the input video stream is correct
for the current video standard. It also checks for errors in XYZ words of the TRS symbols. If an
incorrect number of words is found on a line or an XYZ word error occurs, an error counter
increments. When the number of consecutive video lines with errors exceeds the MAX_ERRS
value, the FSM returns to the ACQUIRE loop to reacquire the standard.

By requiring that errors occur on some number of consecutive lines before beginning to
reacquire the video standard, the FSM provides some noise immunity for the video standard
detection function. It also, however, increases the amount of time required for a new video
standard to be detected.

Figure 7: autodetect FSM ACQUIRE Loop

ACQ0

ACQ1

~rx_trs

rx_trs

ACQ2

sav & ~composite

eav | (sav & composite)

loops= 0

= 1

ACQ3

= 7

other

ACQ4 ACQ5 ACQ7
loops++
hcnt <= 1

loops++
hcnt <= 1
matchcode <= 00

loops++
hcnt <= 1
matchcode <= 00

savcnt <= hcnt
hcnt <= 1
loops++

ACQ6 loops++
std <= loops
matchcode <= 01

~match and loops=7

~match and
loops != 7

match

match

~match

loops <= 0
errcnt <= 0
clear locked

if rx_xyz, load s4444

LOCKED

ACQUIRE

~eav & ~sav

match

~match

x625_07_020802
XAPP625 (v1.0) March 12, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

Flywheel Module
The flywheel module implements a flywheel video decoder. This module provides video timing
in the presence of noisy, error prone, or interrupted input video data. After the autodetect
module has determined the video standard of the input video stream, the flywheel synchronizes
to the input video stream. Once synchronized, the flywheel generates video timing that should
correspond to the timing of the input video stream. If the flywheel detects mismatches between
the input video stream and its internally generated video timing on four lines over a window of
eight video lines, it will begin to resynchronize. The flywheel provides noise immunity by
requiring a significant number of errors to occur before resynchronizing.

The flywheel generates and inserts TRS symbols into the video stream, overwriting the data in
the input video stream where the TRS symbols occur. This will repair any damaged or
erroneous TRS symbols appearing in the input video stream. However, this can cause multiple
copies of a TRS to appear in the resulting video stream if the TRS in the input video stream
does not occur at the same time as the flywheel generated TRS. To prevent this, the flywheel
implements TRS blanking. The flywheel generates black-level video values and inserts them in
place of a TRS in the input video stream, if the TRS does not occur at the same time as the TRS
generated by the flywheel.

The flywheel reference design takes less than two fields to synchronize to a new input video
stream. Because the flywheel must look for the start of a new field to synchronize vertically, the
actual time to synchronize is anywhere from a few lines to a little over one field, depending on
where the first field transition occurs in the input video stream.

Figure 8: autodetect FSM LOCKED Loop

LCK0

~rx_trs

rx_trs

LCK1

sav & ~xyz_err

eav

if rx_xyz, ld_s4444

ACQUIRE

LOCKED

ERR0

sav & xyz_err

LCK2

LCK3

match

~match

ERR1

ERR2

errcnt = max_errs

hcnt <= 1

errcnt++

hcnt <= 1
matchcode <= 10

errcnt <= 0

set locked

~eav & ~sav

errcnt < max_errs

x625_08_020802
12 www.xilinx.com XAPP625 (v1.0) March 12, 2002
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

Figure 9 is a block diagram of the flywheel module. The flywheel contains four modules
implementing the state machine (fly_fsm), the field functions (fly_field), the vertical functions
(fly_vert), and the horizontal functions (fly_horz).

Figure 9: flywheel Block Diagram

rx_vid
10

in
reg

clk

decoded video
signals from

trs_detect

std_locked

std_in
3

clk

fly_
fsm

vert counter

V bit logic

fly_vert

new field detect

F bit logic

fly_field

out
reg

clk

rx_new_field

f

v

hcnt

vcnt

flywheel video
generator

XYZ word
generator

f
v
h

hcnt

horz_count

h_blank

trs, xyz_word
eav_next, sav_next

sync_switch

vert_count

v_blank

locked

field

vid_out

anc_first
edh_first

horz counter

H bit logic

fly_horz
horz decode

vert decode

h

xyz

10

x625_09_020802
XAPP625 (v1.0) March 12, 2002 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

Figure 10: flywheel FSM State Diagram Main Loop

LOCK

HSYNC
1

otherwise

FSYNC
2

LOCK

std_locked & resync
UN

LOCK

~std_locked

SWITCH

std_locked & ~resync &
switch_interval

~rx_sav

UNLOCK

~std_locked

HSYNC
2

FSYNC
1

rx_sav & fly_sav

rx_sav & ~fly_sav

~fly_eav | xyz_err

fly_eav & ~rx_eav

fly_eav & rx_eav & ~xyz_err

~new_rx_field

new_rx_field

FSYNC
3

LOCK

set lock

clr lock
ld std

clr hcnt

ld vcnt
ld f
clr resync

std_locked

clr lock
clr switch

x625_10_020802
14 www.xilinx.com XAPP625 (v1.0) March 12, 2002
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

The FSM of the flywheel begins in the UNLOCK state. It remains in this state until the
autodetect module signals detection of the input video standard by asserting the std_locked
signal. The FSM then attempts to synchronize to the input video stream.

To synchronize to the input video stream, the FSM first synchronizes horizontally by looking for
SAV symbols in the input video stream. The FSM resets the horizontal counter located in the
fly_horz module whenever an SAV is received. This is repeated until the flywheel’s generated
SAV occurs at the same time as the SAV in the input video stream. When the positions of the
SAV symbols match, the FSM has synchronized the horizontal counter to the input video
stream.

Next, the FSM attempts to synchronize vertically by waiting for a transition of the field bit (F) in
the input video stream. The fly_field module contains field transition detection logic. This logic
captures the F bit from every EAV in the input video stream and compares it to the F bit from the
previous EAV. When the F bit changes, the start of a new field has been found and the fly_field
module asserts the new_rx_field signal, causing the state machine to load the vertical
counter. The value loaded into the vertical counter is determined by the current video standard
and by the value of the F bit.

After the vertical counter has been loaded, the flywheel is synchronized to the input video
stream. The FSM moves to the LOCK state and asserts the locked output. Once locked, the
FSM remains locked until it detects differences between its internally generated TRS symbols
and the TRS symbols in the input video stream on four lines over a rolling eight-line window.
When too many errors are detected, the FSM negates the locked signal and repeats the
synchronization process.

Once per field, on the synchronous switching line, the FSM moves to the SWITCH1 state to
check for a synchronous switch. In this state, the FSM determines if the EAV in the input video
stream and the internally generated EAV occur at the same time. If they do not, the FSM
reloads the horizontal counter to match the position of the EAV symbol in the input video
stream.

The FSM contains a fail-safe mechanism to allow it to continue to generate valid video timing
even if the input video stream does not contain an EAV during the synchronous switching line.

Figure 11: flywheel FSM State Diagram Synchronous Switching

std_locked &
~fly_eav_next & ~rx_eav_first

SWITCH

std_locked &
rx_eav_first

std_locked & fly_eav_next

UNLOCK

~std_locked

LOCK

resync hcnt

SWITCH
1

SWITCH
2

SWITCH
5

SWITCH
3

SWITCH
4

SWITCH
6

LOCK

rx_eav_first

~rx_eav_first

UNLOCK

rx_eav_first

~rx_eav_first & fly_sav_next

~rx_eav_first &
~fly_sav_next

clr_switch

if fly_sav_next
 clr_switch
 inc vcnt

x625_11_020802
XAPP625 (v1.0) March 12, 2002 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

SDI: Video Standard Detector and Flywheel Decoder
R

Without this fail-safe mechanism, the FSM would become stuck waiting for an EAV in the input
video stream. The fail-safe mechanism is found in state SWITCH6. In this state, the FSM has
already determined that the input EAV is overdue. If no EAV is received before it is time to
generate an SAV, the FSM gives up on the synchronous switch and proceeds to the UNLOCK
state. This is considered to be a failed synchronous switching event.

During the synchronous switching lines, the flywheel is designed to pass the EAV from the input
video stream directly through to the output video stream. In the case of a failed synchronous
switch, the input video stream does not contain an EAV. In this case, there will not be an EAV
symbol in the output video on the failed synchronous switching line.

The flywheel module generates an output signal called sync_switch. This signal is asserted
when the current video line contains the synchronous switching point. In an SDI receiver
design, this signal should be used to disable TRS filtering in the SDI receiver’s framer function.
TRS filtering generally forces the framer to receive at least two consecutive TRS symbols at a
new bit offset in the serial data stream before reframing to this new offset. During the
synchronous switching interval, the framer should immediately reframe if an offset is detected
in the TRS symbol.

When the FSM moves to the UNLOCK state due to losing synchronization with the input video
stream or because of a failed synchronous switching event, the flywheel continues to generate
valid TRS symbols based on its internal timing until it regains synchronization.

The flywheel module is designed to tolerate early V-bit transitions. On those lines when the V bit
is permitted to be either High or Low, the flywheel ignores the V bit when comparing its
internally generated TRS symbols with the TRS symbols in the input video stream. This only
applies to the NTSC standards. For all PAL video standards, the V bit is always checked.

Testbench
The test_vid_decode.v and test_vid_decode.vhd files each contain a testbench for
the video decoder. The testbench contains an instance of the video_decode module and video
generator module called multigen.

The multigen module generates video for each of the six digital component video standards
supported by the video decoder. It also supports the option of generating an early transition on
the V bit for the NTSC standards.

The video generated by the multigen module is connected to the input of the video decoder. It
is also delayed by an amount equal to the latency of the video decoder and then compared with
the output of the video decoder to detect any differences. The comparison is only done when
the video decoder indicates that it is locked to the video standard. The comparison code also
ignores legal early transitions of the V bit and differences during the synchronous switching
interval.

The testbench cycles through all six supported video standards, determining if the video
decoder recognizes and locks to each of them. During the NTSC 4:2:2 test, the testbench also
performs tests of various other features of the video decoder: tolerance of early V-bit
transitions, TRS blanking, synchronous switching, and generation of TRS symbols when the
input video stream is interrupted. The code in the testbench that tests these features can be
moved to allow testing of these features during any of the video standards.

Reference
Design Results

Table 6 shows the results after place and route of the various modules implemented in this
application note. Results are given for the top-level video_decode module and individually for
the three main blocks that make up the video decoder. All results were obtained using the
Verilog versions of the designs with Xilinx ISE version 4.1i using XST as the synthesis tool.
Results using the VHDL files are not shown but are essentially identical. Virtex-II results are for
a -5 speed grade device. Spartan II results are for a -6 speed grade device. The reference
design files are available on the Xilinx FTP site at:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp625.zip
16 www.xilinx.com XAPP625 (v1.0) March 12, 2002
1-800-255-7778

http://www.xilinx.com

ftp://ftp.xilinx.com/pub/applications/xapp/xapp625.zip

SDI: Video Standard Detector and Flywheel Decoder
R

The video decoder runs at the word rate of the video interface. The highest word rate required
for the six supported video standards is 54 MHz. As shown in Table 6, this is easily achievable
with Xilinx FPGAs.

Conclusions In an SDI transmission link, digital video is normally preprocessed prior to transmission to
insert error detection checkwords and other types of ancillary data. At the receiving end of the
SDI link, the data is again processed to check for transmission errors and possibly to extract the
ancillary data. In order to carry out these functions, a digital video processor must be
synchronized to the video stream, to determine the fixed locations of these types of data
packets. This is the job of the video decoder. A flywheel video decoder adds noise immunity
features to the basic video decoder. Most video processors also include a video standard
detector, to automatically determine the standard of the input video stream.

These two functions can be used for more than just SDI-related video processing. Most video
processing features require the two things provided by these functions: the standard of the
input video stream and the current horizontal and vertical position of the input video stream.

References 1. ANSI/SMPTE 259M-1997, SMPTE Standard for Television - 10-Bit 4:2:2 Component and
4fsc Composite Digital Signals - Serial Digital Interface (The Society of Motion Picture
standards and recommended practices referenced in this application note can be
purchased at the SMPTE web site: http://www.smpte.org.

2. ANSI/SMPTE 125M-1995, SMPTE Standard for Television - Component Video Signal
4:2:2 - Bit-Parallel Digital Interface.

3. ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for Standard 4:3 and
Wide-Screen 16:9 Aspect Ratios (International Telecommunication Union). The ITU-R
standards referenced in this application note can be purchased from the International
Telecommunication Union at: http://www.itu.int/itudoc/itu-r/rec/bt/.

4. ANSI/SMPTE 267m-1995, SMPTE Standard for Television - Bit-Parallel Digital Interface -
Component Video Signal 4:2:2 16 x 9 Aspect Ratio.

5. ANSI/SMPTE 244M-1995, SMPTE Standard for Television - System M/NTSC Composite
Video Signals - Bit-Parallel Digital Interface.

6. IEC 61179, Helical-scan digital composite video cassette recording system using 19mm
magnetic tape, format D2 (International Electrotechnical Commission). This standard can
be purchased from the International Electrotechnical Commission at:
http://www.iec.ch/webstore.

7. EBU Tech. 3280-E, Specification of interfaces for 625-line digital PAL signals (European
Broadcasting Union). This standard can be downloaded from the EBU web site at
http://www.ebu.ch.

8. RP 174-1993, SMPTE Recommended Practice - Bit Parallel Digital Interface for 4:4:4:4
Component Video Signal (Single Link).

Table 6: Reference Design Results

Optimized for Area Optimized for Speed

Design Name Size LUTs/FFs
Speed:
Virtex-II

Speed:
Spartan II Size LUTs/FFs

Speed:
Virtex-II

Speed:
Spartan II

trs_detect.v 30/60 140 MHz 110 MHz 35/56 200 MHz 120 MHz

autodetect.v 124/55 95 MHz 60 MHz 122/55 110 MHz 70 MHz

flywheel.v 211/127 75 MHz 60 MHz 215/131 100 MHz 80 MHz

video_decode.v 363/235 75 Mhz 60 MHz 372/237 100 MHz 70 MHz
XAPP625 (v1.0) March 12, 2002 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com
http://www.smpte.org/
http://www.itu.int/itudoc/itu-r/rec/bt/
http://www.iec.ch/webstore/
http://www.ebu.ch/

SDI: Video Standard Detector and Flywheel Decoder
R

9. SMPTE 344M-2000, SMPTE Standard for Television - 540 Mb/s Serial Digital Interface.

10. ITU-R BT.799-3, Interfaces for Digital Component Video Signals in 525-Line and 625-Line
Television Systems Operating at the 4:4:4 Level of Recommendation ITU-R BT.601
(Part A).

11. SMPTE 352M-2001 SMPTE Standard for Television - Video Payload Identification for
Digital Interfaces.

12. RP 168-1993, SMPTE Recommended Practice - Definition of Vertical Interval Switching
Point for Synchronous Video Switching.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

03/12/02 1.0 Initial Xilinx release
18 www.xilinx.com XAPP625 (v1.0) March 12, 2002
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Digital Video Standards
	Video Standard Detection
	Flywheel Video Decoder
	Basic Video Decoding
	Using a Flywheel for Noise Immunity
	Synchronous Switching Considerations
	Tolerating an Early Falling Transition of the V Bit

	Reference Design
	Trs_detect Module
	Autodetect Module
	Flywheel Module
	Testbench

	Reference Design Results
	Conclusions
	References
	Revision History

