
Summary The PicoBlaze™ module is a fully embedded 8-bit microcontroller macro for the Virtex™-II
series. Although it could be used for processing of data, the PicoBlaze macro is most likely to
be employed in applications requiring a complex, but non-time-critical state machine.

This revised version of the popular Constant (k) Coded Programmable State Machine
(KCPSM) macro (PicoBlaze) has also been developed with one dominant factor being held
above all others–its size. The result is a microcontroller that occupies just 84 Virtex-II slices,
which is 33% of the smallest XC2V40 device and incredibly less than 0.25% of the XC2V6000
device. Together with this small amount of logic, a single block RAM is used to form a ROM
store for a program of up to 1024 instructions. Even with such size constraints, the performance
is respectable in the 40 to 70 MIPS range, depending on device speed grade.

The PicoBlaze module is totally embedded into the Virtex-II device and requires no external
support. Any logic can be connected to the module inside the Virtex-II device, meaning that any
additional features can be added to provide ultimate flexibility. It is not so much what is inside
the PicoBlaze module that makes it useful, but the environment in which it lives.

Notes:
1. For Virtex-E and Spartan™-II/IIE designs, see XAPP213.

Introduction Figure 1 is a block diagram of a Virtex-II PicoBlaze module. The Virtex PicoBlaze module
requires no external support and provides a flexible environment for other logic connections
into the PicoBlaze module.

Application Note: Virtex-II Series

XAPP627 (v1.1) February 4, 2003

PicoBlaze 8-Bit Microcontroller for
Virtex-II Series Devices
Author: Ken Chapman

R

Figure 1: PicoBlaze Module Block Diagram

IN_PORT[7:0]

PORT_ID[7:0]INTERRUPT

INSTRUCTION[17:0]

OUT_PORT[7:0]

ADDRESS[9:0]

CLK

READ_STROBE

WRITE_STROBE

Interface to logic
Interface to logic

ADDRESS[9:0]
INSTRUCTION[17:0]

CLK

Block Memory
(Program)

RESET

x627_01_012703

PicoBlaze Module (KCPSM2)
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/xapp/xapp213.pdf

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

The PicoBlaze module is supplied as VHDL and as a precompiled soft macro that is handled by
the place and route tools to merge with the logic of a design. This plot (Figure 2) from the FPGA
Editor viewer shows the macro in isolation within the smallest Virtex-II device.
.

In the larger devices, the PicoBlaze module is virtually free (Figure 3). The potential to place
multiple PicoBlaze modules within a single design is obvious. Whenever a non-time-critical
complex state machine is required, this macro is easy to insert and greatly simplifies the
design.

Figure 2: FPGA Editor View of a PicoBlaze Macro in an XC2V40 Virtex-II Device
x627_02_111102
2 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

PicoBlaze Resource Information
The following device resource information (Figure 4) is taken from the ISE reports for the
PicoBlaze macro in an XC2V40 device. The reports reveal the features that are utilized and the
efficiency of the macro. The 84 “slices” reported by the map process in this case can reduce to
the minimum of 77 “slices” when greater packing is used to fit a complete design into a device.

Figure 3: FPGA Editor View of a PicoBlaze Macro in an XC2V6000 Virtex-II Device

Figure 4: Device Resource Information

x627_03_111102

XST Report
LUT1 : 1
LUT2 : 5
LUT3 : 68
LUT4 : 28

muxcy : 32
muxf5 : 9
xorcy : 33

FD : 39
FDE : 2
FDR : 5
FDRE : 8
FDRSE : 10
FDS : 2

RAM 32X1D : 8
RAM 32X1S : 10

Number of Slices : 84 out of 256 (32%)
Number of Block RAMs : 1 out of 4 (25%)
Total equivalent gate count for design: 73,635

 Device,speed: xc2v40,-6 (ADVANCED 1.113 2002-08-21)
 Minimum period: 8.966 ns
 (Maximum frequency: 111.53 MHz)

TRACE Report

102 LUTs
(51 slices)

Carry and MUX logic
(Free with LUTs)

66 Flip_flops
(Free with LUTs)

Register bank (16 slices)
Call/Return Stack (10 slices)

55.8 MIPS

Total = 77 Slices
x627_04_120402

MAP Report
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

PicoBlaze
Architecture

Figure 5 shows the PicoBlaze architecture.

PicoBlaze
Feature Set

General-Purpose Registers
The feature set includes 32 general-purpose 8-bit registers, specified as s00 to s1F (can be
renamed in the assembler). All register operations are completely flexible, with no registers
reserved for special tasks or given any priority over any other register. No accumulator exists as
any register can be adopted for use as an accumulator.

Arithmetic Logic Unit
The Arithmetic Logic Unit (ALU) provides all the simple operations expected in an 8-bit
processing unit.

Figure 5: PicoBlaze Architecture
X627 05 012903

IN_PORT[7:0]

Port
Address
Control

PORT_ID7:0]

READ_STROBE

WRITE_STROBE

OUT_PORT[7:0]

ALU

Add/Sub
Logical

Shift
Rotate

ZERO &
CARRY
Flags

Interrupt
Flag Store

Constant
Data

INTERRUPT
Interrupt
Control

Program
Flow

Control

Program
Counter

Program
Counter
Stack

ADDRESS[9:0]

Program
ROM/RAM

1024 words

INSTRUCTION[17:0]

Operational
Control &
Instruction
Decoding

18 bit instruction word

8 bit data path

8 bit port address

10 bit program address

8 bit Constant(k) information

RESET

CLK

 s0F
 s0E
 s0D
s0C
s0B
s0A
s09
s08

s1F
s1E
s1D
s1C
s1B
s1A
s19
s18

s17
s16
s15
s14
s13
s12
s11
s10

s07
s06
s05
s04
s03
s02
s01
s00

32 Registers
8-bit
4 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

All operations are performed using an operand provided by any register. The result is returned
to the same register. For operations requiring a second operand, a second register can be
specified or a constant 8-bit value can be supplied. The ability to specify any constant value
with no penalty to the program size or performance enhances the simple instruction set. To
clarify, the ability to “ADD 1" is the equivalent of a dedicated INCREMENT operation. For
operations requiring more than 8 bits, addition and subtraction operations have an option to
include CARRY. Bit-wise operators (LOAD, AND, OR, XOR) provide the ability to manipulate
and test values. There is also a comprehensive Shift and Rotate group.

Flags Program Flow Control
The ALU operation results affect the ZERO and CARRY flags. This information determines the
execution sequence of the program using conditional and non-conditional program flow control
instructions. JUMP commands specify absolute addresses within the program space.

CALL and RETURN commands provide subroutine facilities for commonly used sections of
code. A CALL command is made to a specified absolute address, while a program counter
stack preserves the return address. The stack provides for a nested CALL with a depth of up to
31 levels, which should be more than adequate for the program size supported.

Reset
The RESET input forces the processor back into the initial state. The program executes from
address 000 and interrupts are disabled. The status flags and CALL/RETURN stack are also
reset. Note that the register contents are not affected.

Input/Output
The PicoBlaze module has 256 input ports and 256 output ports. An 8-bit address value
provided on the PORT_ID bus together with READ_STROBE or WRITE_STROBE signals
indicates the accessed port. The port address can be either supplied in the program as an
absolute value, or specified indirectly as the contents of any of the 32 registers. Indirect
addressing is ideal when accessing a block of memory either constructed from block or
distributed RAM within or external to the Virtex-II device.

During an INPUT operation, the value provided at the input port is transferred into any of the 32
registers. An input operation is indicated by a READ_STROBE output pulse. Although using
this signal in the design input interface logic is not always vital, it indicates that data has been
acquired by the PicoBlaze module.

During an OUTPUT operation, the contents of any of the 32 registers are transferred to the
output port. A WRITE_STROBE output pulse indicates an output operation. This strobe signal
is used in the design output interface logic to ensure that only valid data is passed to external
systems. Typically, WRITE_STROBE is used as a clock enable or write enable signal.

Interrupt
The processor provides a single interrupt input signal. Using simple logic, multiple signals can
be combined and applied to this one input signal. By default, the effect of the interrupt signal is
disabled and is then under program control to be enabled and disabled as required.

An active interrupt forces the PicoBlaze macro to initiate a “CALL 3FF” (i.e., a subroutine call to
the last program memory location) for the user to define a suitable course of action.
Automatically, the interrupt process preserves the current ZERO and CARRY flag contents and
disables any further interrupts. A special RETURNI command ensures that the end of an
interrupt service routine restores the status of the flags and controls the enable of future
interrupts.
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Constant (k)
Coded Values

The PicoBlaze module is in many ways a state machine based on constants. Constant values
are specified for use in the following aspects of a program:

• Constant data value for use in an ALU operation

• Constant port address to access a specific piece of information or control logic external to
the PicoBlaze module

• Constant address values for controlling the execution sequence of the program

The PicoBlaze instruction set coding is designed to allow constants to be specified within any
instruction word. Hence, the use of a constant carries no additional overhead to the program
size or its execution. This effectively extends the simple instruction set with a whole range of
virtual instructions.

Constant Cycles
All instructions under all conditions execute over two clock cycles. A constant execution rate is
of great value, when determining the execution time of a program, particularly when embedded
into a real-time situation.

Constant Program Length
The program length is 1024 instructions, conforming to the 1024 x 18 format of a single
Virtex-II block RAM. All address values are specified as 10-bits contained within the instruction
coding. The fixed memory size promotes a consistent level of performance from the module.

Using the
PicoBlaze
Macro

The PicoBlaze macro is used principally in a VHDL design flow. It is provided as source VHDL
(kcpsm2.vhd), which has been written for optimum and predictable implementation in a
Virtex-II device. The code is suitable for implementation and simulation of the macro and has
been developed and tested using XST for implementation and ModelSim™ for simulation. See
Figure 6 and Figure 7. The code should not be modified in any way.

Figure 6: VHDL Component Declaration of KCPSM2

component kcpsm2
 Port (address : out std_logic_vector(9 downto 0);
 instruction : in std_logic_vector(17 downto 0);
 port_id : out std_logic_vector(7 downto 0);
 write_strobe : out std_logic;
 out_port : out std_logic_vector(7 downto 0);
 read_strobe : out std_logic;
 in_port : in std_logic_vector(7 downto 0);
 interrupt : in std_logic;

reset : in std_logic;
 clk : in std_logic);
 end component;
6 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Figure 7: VHDL Component Instantiation of the KCPSM2

Connecting the
Program ROM

The principal method by which the PicoBlaze program ROM is used is in a VHDL design flow.
The PicoBlaze assembler generates a VHDL file in which a block RAM and its initial contents
are defined (see Assembler Directives). This VHDL file can be used for implementation and
simulation of the processor. It has been developed and tested using XST for implementation
and Modelsim for simulation. See Figure 8and Figure 9.

Figure 8: VHDL Component Declaration of Program ROM

Figure 9: VHDL Component Instantiation of Program ROM

To aid with development, a VHDL file called “embedded_kcpsm2.vhd” is also supplied in
which the PicoBlaze macro is connected to its associated block RAM program ROM. This entire
module can be embedded in the design application, or simply used to cut and paste the
component declaration and instantiation information into the user’s own code.

Notes:
1. The name of the program ROM (shown as "prog_rom" in the above examples) depends on the

name of the user’s program. For example, if the user’s program file was called “phone.psm,” then the
assembler generates a program ROM definition file called “phone.vhd.”

processor: kcpsm2
 port map(address => address_signal,
 instruction => instruction_signal,
 port_id => port_id_signal,
 write_strobe => write_strobe_signal,
 out_port => out_port_signal,
 read_strobe => read_strobe_signal,
 in_port => in_port_signal,
 interrupt => interrupt_signal,
 reset => reset_signal,
 clk => clk_signal);

component prog_rom
 Port (address : in std_logic_vector(9 downto 0);
 instruction : out std_logic_vector(17 downto 0);
 clk : in std_logic);
 end component;

program: prog_rom
 port map(address => address_signal,
 instruction => instruction_signal,
 clk => clk_signal);
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Alternative
Design Flows

Although the primary design flow is VHDL, the PicoBlaze module can be used in any design
flow supported by Xilinx using the following files:

kcpsm2.ngc

The NGC file provided was made by synthesizing the kcpsm2.vhd file with XST (without
inserting I/O buffers).

This file can be used as a “black box” in a Virtex-II design, and it will be merged with the rest of
the user’s design during the translate phase (ngdbuild).

Note that buses are defined in the style IN_PORT<7:0> with individual signals from in_port_0
through in_port_7.

prog_rom.coe

The COE file generated by the assembler is suitable for use with the Xilinx Core Generator.

The file defines the initial contents of a block ROM. The files generated by Core Generator can
then be used as normal in the chosen design flow and connected to the PicoBlaze “black box”
in the user’s design.

Notes:
1. It is recommended that “embedded_kcpsm2.vhd” be used for the generation of an ECS schematic

symbol.

Simulation
If the NGC file is used in the design flow, then some form of back annotated net list needs to be
used for simulation of the design to fill in the “black box” details required by the user’s simulator.

PicoBlaze
Instruction Set

This section lists a complete instruction set representing all opcodes.

1. “XX” and “YY” refer to the definition of the storage registers “s” in range 00 to 1F.

2. “kk” represents a constant value in range 00 to FF.

3. “aaa” represents an address in range 000 to 3FF.

4. “pp” represents a port address in range 00 to FF.

Program Control Group
JUMP aaa
JUMP Z,aaa
JUMP NZ,aaa
JUMP C,aaa
JUMP NC,aaa

CALL aaa
CALL Z,aaa
CALL NZ,aaa
CALL C,aaa
CALL NC,aaa

RETURN
RETURN Z
RETURN NZ
RETURN C
RETURN NC

Notes:
1. Call and Return supports a stack depth of up to 31.
8 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Logical Group
LOAD sXX,kk
AND sXX,kk
OR sXX,kk
XOR sXX,kk

LOAD sXX,sYY
AND sXX,sYY
OR sXX,sYY
XOR sXX,sYY

Arithmetic Group
ADD sXX,kk
ADDCY sXX,kk
SUB sXX,kk
SUBCY sXX,kk

ADD sXX,sYY
ADDCY sXX,sYY
SUB sXX,sYY
SUBCY sXX,sYY

Shift and Rotate Group
SR0 sXX
SR1 sXX
SRX sXX
SRA sXX
RR sXX

SL0 sXX
SL1 sXX
SLX sXX
SLA sXX
RL sXX

Input/Output Group
INPUT sXX,pp
INPUT sXX,(sYY)

OUTPUT sXX,pp
OUTPUT sXX,(sYY)

Interrupt Group
RETURNI ENABLE
RETURNI DISABLE

ENABLE INTERRUPT
DISABLE INTERRUPT
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Program
Control Group

JUMP
Under normal conditions, the program counter (PC) increments to point to the next instruction
(Figure 10). The address space is fixed to 1024 locations (000 to 3FF hex), making the program
counter 10-bits wide. The top of the memory is 3FF hex and increments to 000.

The JUMP instruction can be used to modify this sequence by specifying a new address.
However, the JUMP instruction can be conditional. A conditional JUMP is only performed if a
test performed on either the ZERO flag or CARRY flag is valid. The JUMP instruction has no
effect on the status of the flags (Figure 11).

Each JUMP instruction must specify the 10-bit address as a three-digit hexadecimal value. The
assembler supports labels to simplify programming (Figure 12).

Figure 10: Program Counter

Figure 11: JUMP Instruction

Figure 12: JUMP Instruction Specification

x627_09_120402

Normal Instruction+1

PC PC

x627_10_120402

a a a a a a a a a a
Unconditional or
condition valid

Condition
not valid

New Address

PC

+1

PC

x627_11_120402

0 1 0 a a a a a a a a a a

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Bit 12 0 - UNCONDITIONAL
 1 - CONDITIONAL

Bit 11
0
0
1
1

Bit 10
0
1
0
1

Condition
if Zero
if NOT Zero
if Carry
if Not Carry

1 1
10 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

CALL
The CALL instruction is similar in operation to the JUMP instruction. It modifies the normal
program execution sequence by specifying a new address. The CALL instruction can also be
conditional. In addition to supplying a new address, the CALL instruction also causes the
current program counter (PC) value to be pushed onto the program counter stack. The CALL
instruction has no effect on the status of the flags (Figure 13).]

The program counter stack supports a depth of 31 address values, enabling nested CALL
sequences to a depth of 31 levels to be performed. Since the stack is also used during an
interrupt operation, at least one of these levels should be reserved when interrupts are enabled.

The stack is implemented as a separate cyclic buffer. When the stack is full, it overwrites the
oldest value. Hence, it is not necessary to reset the stack pointer when performing a software
reset. This also explains why there are no instructions to control the stack and why no program
memory needs to be reserved for the stack.

Each CALL instruction must specify the 10-bit address as a three-digit hexadecimal value. To
simplify programming, labels are supported in the assembler. (Figure 14).

Figure 13: CALL Instruction

Figure 14: CALL Instruction Specification

x627_12_120402

Stack

a a a a a a a a

Unconditional or
condition valid

Unconditional or
condition valid

Condition
not valid

New Address

PC

PC
+1

a a

x627_13_120402

0 1 1 a a a a a a a a a a

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Bit 12 0 - UNCONDITIONAL
 1 - CONDITIONAL

Bit 11
0
0
1
1

Bit 10
0
1
0
1

Condition
if Zero
if NOT Zero
if Carry
if Not Carry

1 1
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

RETURN
The RETURN instruction is the complement to the CALL instruction. The RETURN instruction
is also conditional. In Figure 15, the new program counter (PC) value is formed internally by
incrementing the last value on the program address stack, ensuring that the program executes
the instruction following the CALL instruction which resulted in the subroutine. The RETURN
instruction has no effect on the status of the flags.

The programmer must ensure that a RETURN is only performed in response to a previous
CALL instruction, so that the program counter stack contains a valid address (Figure 16). The
cyclic implementation of the stack continues to provide values for RETURN instructions which
cannot be defined. Each RETURN only specifies the condition for flag tests.

Figure 15: RETURN Instruction

Figure 16: RETURN Instruction Specification

x627_14_120402

Stack

Unconditional or
condition valid

Condition
not valid

PC

+1

+1

PC

x627_15_120402

0 1 0 0 0 0 0 0 0 0 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Bit 12 0 - UNCONDITIONAL
 1 - CONDITIONAL

Bit 11
0
0
1
1

Bit 10
0
1
0
1

Condition
if Zero
if NOT Zero
if Carry
if Not Carry

1 0
12 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Interrupt Group RETURNI
The RETURNI instruction (Figure 17) is a special variation of the RETURN instruction. It
concludes an interrupt service routine. The RETURNI is unconditional and always loads the
program counter (PC) with the last address on the program counter stack. The address does
not increment in this case, because the instruction at the address stored needs to be executed.
The RETURNI instruction restores the flags to the point of interrupt condition. It also
determines the future ability of interrupts using ENABLE and DISABLE as an operand.

The programmer must ensure that a RETURNI (Figure 18) is only performed in response to an
interrupt. Each RETURNI must specify if a further interrupt is enabled or disabled.

ENABLE INTERRUPT and DISABLE INTERRUPT
These instructions are used to set and reset the INTERRUPT ENABLE flag (Figure 19). Before
using ENABLE INTERRUPT (Figure 20), a suitable interrupt routine must be associated with
the interrupt address vector (3FF). Never enable interrupts while performing an interrupt
service.

Figure 17: RETURNI Instruction

Figure 18: RETURNI Instruction Specification

Figure 19: ENABLE/DISABLE INTERRUPT Instruction

Figure 20: ENABLE/DISABLE INTERRUPT Instruction Specification

x627_16_120402

Stack

PC

CARRY

ZERO

Preserved
CARRY

Interrupt
Enable

Preserved
ZERO

"1"

"0"

ENABLE

DISABLE

x627_17_111102

RETURNI ENABLE

RETURNI DISABLE

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x627_18_111102

Interrupt
Enabled

"1"

"0"

ENABLE

DISABLE

x627_19_120402

ENABLE INTERRUPT

DISABLE INTERRUPT

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XAPP627 (v1.1) February 4, 2003 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Logical Group LOAD
The LOAD instruction specifies the contents of any register. The new value is either a constant
or the contents of any other register. The LOAD instruction has no effect on the status of the
flags (Figure 21).

Since the LOAD instruction does not affect the flags, it is used to reorder and assign register
contents at any stage of the program execution. Because the load instruction is able to assign
a constant with no impact to the program size or performance, the load instruction is the most
obvious way to assign a value or clear a register.

Each LOAD instruction (Figure 22) must specify the first operand register as “s” followed by two
hexadecimal digits. The register also forms a destination for the result. The second operand
must then specify a second register value in a similar way or specify an 8-bit constant using two
hexadecimal digits. The assembler supports register naming and constant labels to simplify
programming.

Figure 21: LOAD Instruction

Figure 22: LOAD Instruction Specification

x627_20_120402

ConstantsXX

sYYsXX

k k k k k k k k

x627_21_111102

LOAD sXX,kk

LOAD sXX, sYY

0 0 0 0 0 x x x x x k k k k k k k k

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 x x x x x y y y y y 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sXX Constant

sXX sYY
14 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

AND
The AND instruction performs a bit-wise logical AND operation between two operands. For
example, 00001111 and 00110011 produces the result 00000011. The first operand is any
register, and it is the register assigned the result of the operation. A second operand is also any
register, or an 8-bit constant value (Figure 23). Flags are affected by this operation. The AND
operation can be used to perform tests on the contents of a register. The status of the ZERO
flag then controls the flow of the program

Each AND instruction (Figure 24) must specify the first operand register as “s” followed by two
hexadecimal digits. This register also forms the destination for the result. The second operand
specifies a second register value in a similar way, or specifies an 8-bit constant using two
hexadecimal digits. The assembler supports register naming and constant labels to simplify
programming.

Figure 23: AND Instruction

Figure 24: AND Instruction Specification

x627 22 111102

ConstantsXX

sYYsXX

sXX

sXX

k k k k k k k k

0CARRY ?ZERO

AND

AND

Set if all bits of result are zero.
Reset in all other cases.

x627_23_111102

AND sXX,kk

AND sXX, sYY

0 0 0 0 1 x x x x x k k k k k k k k

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 x x x x x y y y y y 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sXX Constant

sXX sYY
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

OR
The OR instruction performs a bit-wise logical OR operation between two operands. For
example, 00001111 OR 00110011 produces the result 00111111. The first operand is any
register. This register is assigned the result of this operation. A second operand is also any
register, or an 8-bit constant value (Figure 25). Flags are affected by the OR operation. The OR
instruction provides a way to force setting any bit of the specified register, which can be used to
form control signals.

Each OR instruction (Figure 26) must specify the first operand register as “s” followed by two
hexadecimal digits. This register also forms the destination for the result. The second operand
must then specify a second register value in a similar way, or specify an 8-bit constant using two
hexadecimal digits. The assembler supports register naming and constant labels to simplify
programming.

Figure 25: OR Instruction

Figure 26: OR Instruction Specification

x627_24_111102

ConstantsXX

sYYsXX

sXX

sXX

k k k k k k k k

0CARRY ?ZERO

OR

OR

Set if all bits of result are zero.
Reset in all other cases.

x627_25_120402

OR sXX,kk

OR sXX, sYY

0 0 0 1 0 x x x x x k k k k k k k k

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 x x x x x y y y y y 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sXX Constant

sXX sYY
16 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

XOR
The XOR instruction performs a bit-wise logical XOR operation between two operands. For
example, 00001111 XOR 00110011 produces the result 00111100. The first operand is any
register, and this register is assigned the result of the operation. A second operand is also any
register, or an 8-bit constant value. Flags are affected by this operation (Figure 27). The XOR
operation inverts bits contained in a register, which is used in forming control signals.

Each XOR instruction (Figure 28) must specify the first operand register as “s” followed by two
hexadecimal digits. This register also forms the destination for the result. The second operand
must then specify a second register value in a similar way, or specify an 8-bit constant using two
hexadecimal digits. The assembler supports register naming and constant labels to simplify
programming.

Figure 27: XOR Instruction

Figure 28: XOR Instruction Specification

x627 26 111102

ConstantsXX

sYYsXX

sXX

sXX

k k k k k k k k

0CARRY ?ZERO

XOR

XOR

Set if all bits of result are zero.
Reset in all other cases.

x627_27_111102

XOR sXX,kk

XOR sXX, sYY

0 0 0 1 1 x x x x x k k k k k k k k

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 x x x x x y y y y y 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sXX Constant

sXX sYY
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Arithmetic
Group

ADD
The ADD instruction performs an 8-bit addition of two operands. The first operand is any
register, and it is this register that is assigned the result of the operation. A second operand is
also any register, or an 8-bit constant value (Figure 29). Flags are affected by this operation.
Note that this instruction does not use the CARRY as an input, and hence, there is no need to
condition the flags before use. The ability to specify any constant is useful in forming control
sequences or counters.

Each ADD instruction (Figure 30) must specify the first operand register as “s” followed by two
hexadecimal digits. This register forms the destination for the result. The second operand must
then specify a second register value in a similar way, or specify an 8-bit constant using two
hexadecimal digits. The assembler supports register naming and constant labels to simplify
programming.

Figure 29: ADD Instruction

Figure 30: ADD Instruction Specification

x627_28_012903

ConstantsXX

sYYsXX

sXX

sXX

k k k k k k k k

?CARRY ?ZERO

+

Set if all bits of result are zero.
Reset in all other cases.

+

Set if result of addition exceeds FF.
Reset in all other cases.

x627_29_111102

ADD sXX,kk

ADD sXX, sYY

0 0 1 0 0 x x x x x k k k k k k k k

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 x x x x x y y y y y 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sX Constant

sX sYY
18 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

ADDCY
The ADDCY instruction performs an addition of two 8-bit operands together with the contents
of the CARRY flag. The first operand is any register, and this register is assigned the result of
the operation. A second operand is also any register, or an 8-bit constant value (Figure 31).
Flags are affected by this operation. The ADDCY operation is used in the formation of adder
and counter processes exceeding eight bits.

Each ADDCY instruction (Figure 32) must specify the first operand register as “s” followed by
two hexadecimal digits. This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way, or specify an 8-bit constant
using two hexadecimal digits. The assembler supports register naming and constant labels to
simplify programming.

Figure 31: ADDCY Instruction

Figure 32: ADDCY Instruction Specification

x627_3_012903

ConstantsXX

sYYsXX

sXX

sXX

k k k k k k k k

?CARRY ?ZERO

 +

Set if all bits of result are zero.
Reset in all other cases.

+ +

 +

CARRY

CARRY

Set if result of addition exceeds FF.
Reset in all other cases.

x627_31_111202

ADDCY sXX,kk

ADDCY sXX, sYY

0 0 1 0 1 x x x x x k k k k k k k k

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 x x x x x y y y y y 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sXX Constant

sXX sYY
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

SUB
The SUB instruction performs an 8-bit subtraction of two operands. The first operand is any
register, and this register is assigned the result of the operation. The second operand is also
any register, or an 8-bit constant value (Figure 33). Flags are affected by this operation. Note
that this instruction does not use the CARRY as an input and, hence, there is no need to
condition the flags before use. The CARRY flag indicates when an underflow has occurred. For
example, if “s05” contains 27 hex and the instruction SUB s05,35 is performed, then the stored
result is F2 hex and the CARRY flag is set.

Each SUB instruction (Figure 34) must specify the first operand register as “s” followed by two
hexadecimal digits. This register also forms the destination for the result. The second operand
must then specify a second register value in a similar way, or specify an 8-bit constant using two
hexadecimal digits. The assembler supports register naming and constant labels to simplify
programming.

Figure 33: SUB Instruction

Figure 34: SUB Instruction Specification

x627_32_012903

ConstantsXX

sYYsXX

sXX

sXX

k k k k k k k k

?CARRY ?ZERO

 -

Set if all bits of result are zero.
Reset in all other cases.

-

Set if result is negative.
Reset in all other cases.

x627_33_111202

SUB sXX,kk

SUB sXX, sYY

0 0 1 1 0 x x x x x k k k k k k k k

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 x x x x x y y y y y 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sXX Constant

sXX sYY
20 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

SUBCY
The SUBCY instruction performs an 8-bit subtraction of two operands together with the
contents of the CARRY flag. The first operand is any register, and this register is assigned the
result of the operation. The second operand is also any register, or an 8-bit constant value
(Figure 35). Flags are affected by this operation. The SUBCY operation is used in the formation
of subtract and down-counter processes exceeding 8 bits.

Each SUBCY instruction (Figure 36) must specify the first operand register as “s” followed by
two hexadecimal digits. This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way, or specify an 8-bit constant
using two hexadecimal digits. The assembler supports register naming and constant labels to
simplify programming.

Figure 35: SUBCY Instruction

Figure 36: SUBCY Instruction Specification

x627_34_012903

ConstantsXX

sYYsXX

sXX

sXX

k k k k k k k k

?CARRY ?ZERO Set if all bits of result are zero.
Reset in all other cases.

CARRY

CARRY

Set if result is negative.
Reset in all other cases.

x627_35_111202

SUBCY sXX,kk

SUBCY sXX, sYY

0 0 1 1 1 x x x x x k k k k k k k k

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 x x x x x y y y y y 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sXX Constant

sXX sYY
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Shift and Rotate
Group

SR0, SR1, SRX, SRA, RR
The shift and rotate right group all modify the contents of a single register (Figure 37). All
instructions in the group have an effect on the flags.

Each instruction must specify the register as “s” followed by two hexadecimal digits (Figure 38).
The assembler supports register naming to simplify programming.

Figure 37: Right Shift Register Instructions

Figure 38: Right Shift Register Instruction Specification

x627_36_111202

sXX CARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

"0"

sXX CARRY

sXX CARRY

"1"

SR0 sXX

0ZEROSR1 sXX

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SRX sXX

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SRA sXX

?ZERO Set if all bits of result are zero.
Reset in all other cases.

RR sXX

sXX CARRY

sXX CARRY

x213_37_111202

1 0 0 x x x x x 0 0 0 0 1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 sXX

Bit 2 Bit 1 Bit0 Instruction1
1
1
0
0
1

1
1
1
0
0

0
1
0
0
0

SR0 sX
SR1 sX
SRX sX
SRA sX
RR sX

1 0
22 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

SL0, SL1, SLX, SLA, RL
The shift and rotate left group all modify the contents of a single register (Figure 39). All
instructions in the group have an effect on the flags.

Each instruction must specify the register as “s” followed by two hexadecimal digits (Figure 40).
The assembler supports register naming to simplify programming.

Figure 39: Left SHIFT Register Instructions

Figure 40: Left SHIFT Register Instruction Specification

x627_38_111202

sXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

"0"SL0 sXX

sXXCARRY

0ZERO"1"SL1 sXX

sXXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SLX sXX

sXXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SLA sXX

sXXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

RL sXX

x213_39x_120402

1 0 0 x x x x x 0 0 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 sXX

Bit 2 Bit 1 Bit0 Instruction1
1
1
1
0
0

1
1
0
0
1

0
1
0
0
0

SL0 sXX
SL1 sXX
SLX sXX
SLA sXX
RL sXX

1 0
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Input and
Output Group

INPUT
The INPUT instruction enables data values external to the PicoBlaze module to be transferred
into any one of the internal registers (Figure 41). The port address (in the range 00 to FF) is
defined by a constant value, or indirectly as the contents of the any other register. The flags are
not affected by this operation.

The user interface logic is required to decode the PORT_ID port address value and supply the
correct data to the IN_PORT. The READ_STROBE is set during an input operation (see READ
and WRITE STROBES), but is not vital for the interface logic to decode this strobe in most
applications. However, it can be useful for determining when data has been read, such as when
reading a FIFO buffer.

Each INPUT instruction (Figure 42) must specify the destination register as “s” followed by two
hexadecimal digits. It must then specify the input port address using a register value in a similar
way, or specify an 8-bit constant using two hexadecimal digits. The assembler supports register
naming and constant labels to simplify programming.

Figure 41: INPUT Instruction
x627_40_111202

ConstantsXX Port Value PORT_ID Address

p p p p p p p p

sYYsXX Port Value PORT_ID Address

Figure 42: INPUT Instruction Specification

0 0 0 x x x x x p p p p p p p p

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INPUT sXX,PP

sXX Constant PORT_ID

x627_41_111202

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 x x x x x y y y y y 0 0 0INPUT sXX,(sYY)

sXX sYY

1 1

1 0
24 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

OUTPUT
The OUTPUT instruction enables the contents of any register to be transferred to logic external
to the PicoBlaze module. The port address (in the range 00 to FF) is defined by a constant
value, or indirectly as the contents of the any other register (Figure 43). The flags are not
affected by this operation.

The user interface logic is required to decode the PORT_ID port address value and capture the
data provided by the OUT_PORT. The WRITE_STROBE is set during an output operation (see
READ and WRITE STROBES) and should be used to clock enable the capture register (or
write enable a RAM).

Each OUTPUT instruction (Figure 44) must specify the source register as “s” followed by two
hexadecimal digits. It must then specify the output port address using a register value in a
similar way, or specify an 8-bit constant using two hexadecimal digits. The assembler supports
register naming and constant labels to simplify programming.

Figure 43: OUTPUT Instruction

X627_2642_111202

ConstantsXXPort Value PORT_ID Address

p p p p p p p p

sYYsXXPort Value PORT_ID Address

Figure 44: OUTPUT Instruction Specification

x627_43_111202

0 0 1 X x x x x p p p p p p p p

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 X x x x x y y y y Y 0 0 0

OUTPUT sXX,PP

OUTPUT sXX,(sYY)

sXX Constant PORT_ID

sXX sYY

1 0

1 1
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 25
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

READ and WRITE STROBES
These pulses are used by external circuits to confirm input and output operations. In the
waveforms (Figure 45), it is assumed that the content of register s1E is 47, and the content of
register s1A is 42.

PORT_ID[7:0] is provided with the full two clock cycles to be decoded by external logic. The
WRITE_STROBE is provided on the second clock cycle to confirm an active write by the
PicoBlaze module. In most cases, the READ_STROBE is not utilized by the external decoding
logic, but again occurs in the second cycle and indicates the actual clock edge on which data is
read into the specified register.

Notes:
1. For timing critical designs, timing specifications can allow two clock cycles for PORT_ID and data

paths, and only the strobes need to be constrained to a single clock cycle.

Figure 45: READ and WRITE Strobes

CLK

ADDRESS[9:0] 18B 18C 18D 18E 18F

inst instOUTPUT s1A,65inst

18A

INPUT s12, (s1E)

PORT_ID[7:0] 6547

OUT_PORT[7:0] 42

WRITE_STROBE

READ_STROBE

Use WRITE_STROBE to clock
enable external circuit and capture
data on this clock edge

PicoBlaze module captures data
into s12 register on this clock edge

x627_44_01300

NSTRUCTION[17:0]
26 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

RESET
The PicoBlaze module contains an internal reset control circuit to ensure the correct start up of
PicoBlaze following device configuration or global reset. This reset can also be activated within
the user’s design.

The PicoBlaze reset is sampled synchronous to the clock and used to form a controlled internal
reset signal which is distributed locally as required. A small ‘filter’ circuit (Figure 46) ensures
that the release of the internal reset is clean and controlled. The reset input can be tied to logic
0 if not required, and the filter is still used to ensure correct power-up sequence. See (Figure 47
and Figure 48)

PicoBlaze
Assembler

The PicoBlaze Assembler (Figure 49) is provided as a simple DOS executable file together with
two template files. The files KCPSM2.EXE, ROM_form.vhd, and ROM_form.coe should be
copied into the user’s working directory.

Programs are best written with either the standard Notepad or Wordpad tools. The file is saved
with a .psm file extension (8-character name limit).

Open a DOS box and navigate to the working directory. Then run the assembler
kcpsm2 <filename>[.psm] to assemble the program. It all happens very fast.

Figure 46: PicoBlaze Filter Circuit

reset

internal_reset
FDS FDS

x627_45_111202

Figure 47: Release of Reset after Configuration

ADDRESS[9:0]

INSTRUCTION[17:0]

internal_reset

000 001 002 003 004

inst0 inst1 inst2 inst3

CLK

x627_46_121302

GSR=1

Figure 48: Application of User Reset Input

CLK

RESET

124 000 001 002

inst123 inst0 inst1

123

inst124

ADDRESS[9:0]

internal_reset

X627_47_012903

INSTRUCTION[17:0]
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 27
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Assembler Errors
The assembler stops as soon as an error is detected (Figure 50). A short message is displayed
to help determine the reason for the error. The assembler also displays the line it was analyzing
when the problem was detected. The user should fix each reported problem in turn and re-
execute the assembler.

Since the execution of the assembler is very fast, the display appears to be immediate. The
user can review everything that the assembler has written to the screen, by redirecting the DOS
output to a text file using: kcpsm2 <filename>[.psm] > screen_dump.txt

Figure 49: PicoBlaze Assembler

<filename>.vhd <filename>.coe

Virtex-II Block RAM program ROM definition files

x627_48_111202

Figure 50: Assembler Error Display

Line being processed

Error message

Previous Progress

x627_49_111202
28 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Assembler Files
The PicoBlaze Assembler actually reads three input files and generates thirteen output files.
See Figure 51 for a diagram of these files.

Notes:
1. All output files are overwritten each time the assembler is executed.

The hex and dec files provide the program ROM contents in unformatted hexadecimal and
decimal for conversion to other formats not supported directly by the assembler. There is no
further description in this application note.

ROM_form.vhd File

This file provides the template for the VHDL file generated by the assembler and suitable for
synthesis and simulation. This file is provided with the assembler and must be placed in the
working directory.

The supplied ROM_form.vhd template file defines a single-port block RAM for Virtex-II devices
configured as a ROM. The user can adjust this template to define the type of memory desired.
The template supplied includes additional notes on how the template works.

The assembler reads the ROM_form.vhd template and simply copies the information into the
output file <filename>.vhd. There is no checking of syntax, so any alterations are the
responsibility of the user.

The template contains some special text strings surrounded by {} brackets. These are {begin
template}, {name}, and a whole family of initialization identifiers, such as {INIT_01}. The
assembler uses {begin template} to identify where the VHDL definition begins. It then intercepts
and replaces all other special strings with the appropriate information. {name} is replaced with
the name of the input program .psm file. See Figure 52.

Figure 51: Files Associated with Assembler

<filename>.vhd

<filename>.coe

KCPSM2.EXE

<filename>.psm

ROM_form.vhd

ROM_form. coe

<filename>.log

constant.txt

labels.txt

 <filename>.fmt

pass1.dat
pass2.dat
pass3.dat
pass4.dat
pass5.dat

ROM definition
files for design Assembler

report files

Formatted version of
user input file

Assembler
intermediate
processing files
(may be useful
for debugging)

Program file

<filename>.hex

<filename>.dec

ROM definition files
for other utilities

x627_50_111202
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 29
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Figure 52: ROM_form.vhd

ROM_form.coe File

This file provides the template for the coefficient file generated by the assembler and suitable
for the Core Generator. This file is provided with the assembler and must be placed in the
working directory.

The supplied ROM_form.coe template file defines a Dual Port Block RAM for a Virtex-II device
in which the A-port is read only and the B-port is read/write. The user can adjust this template
to define the type of memory for the Core Generator to implement.

The assembler reads the ROM_form.coe template and simply copies the information into the
output file <filename>.coe. There is no checking of syntax, so any alterations are the
responsibility of the user.

The template can contain the special text string {name} which the assembler intercepts and
replaces with the name of the program file. In Figure 53, {name} has been replaced with
“simple.”

Figure 53: ROM_form.coe File

entity {name} is
 Port (address : in std_logic_vector(9 downto 0);
 instruction : out std_logic_vector(17 downto 0);
 clk : in std_logic);
 end {name};
--
architecture low_level_definition of {name} is

..
attribute INIT_00 of ram_1024_x_18 : label is “{INIT_00}”;
attribute INIT_01 of ram_1024_x_18 : label is “{INIT_01}”;
attribute INIT_02 of ram_1024_x_18 : label is “{INIT_02}”;

ROM_form.coe
component_name={name};
width_a=18;
depth_a=1024;
.
.
memory_initialization_radix=16;
global_init_value=00000;
memory_initialization_vector=

<filename>.coe
component_name=simple;
width_a=18;
depth_a=1024;
.
.
memory_initialization_radix=16;
global_init_value=00000;
memory_initialization_vector=
01400, 23412, 09401, 100A0, 0C018, 35401, 34000, 00000, ...

KCPSM2 Assembler
30 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Note: It is vital that the last line of the template contains the key words:

 memory_initialization_vector=

These words are used by the Core Generator to identify the data values that follow. The
assembler appends the 1024 values required. Indeed, the template could simply contain this
one line provided the Core Generator GUI is used to set up all other parameters.

<filename>.fmt File

When a program passes through the assembler, additional files to the .vhd and .coe files are
produced to assist the programmer. One of these files is called <filename>.fmt, which is
the original program but in a formatted state. Looking at this file is an easy way for the
programmer to see that everything has been interpreted correctly. The <filename>.fmt file:

• Formats labels and comments

• Puts all commands in upper case

• Correctly spaces operands

• Gives registers an ‘sXX’ format

• Converts hex constants to upper case

See Figure 54. The user can write a PSM program quickly and then use KCPSM2 to make a
formatted version.

Figure 54: <filename>.fmt File

<filename>.psm
constant max_count, 18;count to 24 hours
namereg s14,counter_reg;define register for counter
constant count_port, 12
start: load counter_reg,00;initialise counter
loop:output counter_reg,count_port
add counter_reg,01;increment
load s00,counter_reg
sub s00,max_count;test for max value
jump nz,loop;next count
jump start;reset counter

<filename>.fmt
CONSTANT max_count, 18 ;count to 24 hours

 NAMEREG s14, counter_reg ;define register for counter
 CONSTANT count_port, 12
start: LOAD counter_reg, 00 ;initialize counter
 loop: OUTPUT counter_reg, count_port
 ADD counter_reg, 01 ;increment
 LOAD s00, counter_reg
 SUB s00, max_count ;test for max value
 JUMP NZ, loop ;next count
 JUMP start ;reset counter

KCPSM2 Assembler
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 31
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

<filename>.log File

The .log file (Figure 55) provides the user with the most detail about the assembly process
which has been performed. This is where the user can observe how each instruction and
directive has been used. Address and opcode values are associated with each line of the
program and the actual values of addresses, registers, and constants defined by labels are
specified.

constant.txt and labels.txt Files

These two files (Figure 56) provide a list of line labels and their associated addresses and a list
of constants and their values as defined by constant directives in the program file. These are
useful during the development of larger programs.

Figure 55: <filename>.log File

KCPSM-II Assembler log file for program 'simple.psm'.

Generated by KCPSM2 version 1.01

Ken Chapman (Xilinx Ltd) 2002.

Addr Code

000 CONSTANT max_count, 18 ;cou nt to 24 hours

000 NAMEREG s14, counter_reg ;def ine register for counter

000 CONSTANT count_port, 12

000 01400 start: LOAD counter_reg[s14], 00 ; initialise counter

001 23412 loop: OUTPUT counter_reg[s14], count_port[12]

002 09401 ADD counter_reg[s14], 01 ;inc rement

003 100A0 LOAD s00, counter_reg[s14]

004 0C018 SUB s00, max_count[18] ;tes t for max value

005 35400 JUMP NZ, loop[001] ;next count

006 34000 JUMP start[000] ;res et counter

Address

Op-Code

Label

Instruction
Comment

Values contained in [] brackets indicates

the value associated with the label

i.e., �loop� is resolved to be address �001�.

x627_52_1120402

<filenam>.log File
32 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

pass.dat Files

The pass.dat files (Figure 57) are internal files to the assembler and represent intermediate
stages of the assembly process. These files are typically ignored, but can help in identifying
how the assembler has interpreted the program file syntax. The files are automatically deleted
at the start of the assembly process. If there is an error detected by the assembler, the .dat
files are only complete until the point of the last successful processing.

The .dat. files segment the information from each line into the different fields. Each pass
resolves more information. The example shown here is related to the line:

ADD counter_reg, 01 ;increment

Figure 56: constant.txt and labels.txt Files

Table of constant values and their specified

constant labels.

18 max_count

12 count_port

constant.txt

Value

Constant

Label

Table of addresses and their specified labels.

000 start

001 loop

labels.txt

Address

Line

Label

x627_53_111402
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 33
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

It can be seen that pass1.dat has purely segmented the fields of the line. In the final
pass5.dat, the assembler has resolved all the relevant information

Program Syntax Probably the best way to understand what is and what is not valid syntax is to look at the
examples and try the assembler. However, some simple rules are of assistance from the
beginning. To ensure that the correct program syntax is used, the following suggestions are
recommended:

No blank lines. A blank line is ignored by the assembler and removed from any formatted files.
To keep a line, use a blank comment (a semicolon).

Comments. Any item on a line following a semi-colon (;) is ignored by the assembler. Concise
comments should be used to keep the program manageable and make it easy to print out
programs and log files.

Registers. All registers should be defined as the letter ‘s’ immediately followed by two
hexadecimal digits the range 00 to 1F. The assembler will accept any mixture of upper and
lower case characters and automatically convert them to the ‘sXX’ format where ‘XX’ is one of
00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F,10,11,12,13,14,15,16,17,18,19,1A,1B,1C,
1D,1E,1F.

Constants. A constant is specified in the form of a two-digit hexadecimal value (range 00 to
FF). The assembler accepts any mixture of upper and lower case characters and automatically
converts them to upper case.

Labels. Labels are any user-defined text string and are case sensitive for additional flexibility.
No spaces are allowed, but the underscore character is supported. Valid characters are 0 to 9,
a to z, and A to Z. Labels should be reasonably concise to keep the program formatting clean.
Labels which could be confused with hexadecimal addresses and constants or register
specifications are rejected by the assembler.

Figure 57: pass.dat Files

ADDRESS-002

LABEL-

FORMATTED-ADD counter_reg, 01

LOGFORMAT-ADD counter_reg[s14], 01

INSTRUCTION-ADD

OPERAND1-counter_reg

OP1 VALUE-s14

OPERAND2-01

OP2 VALUE-01

COMMENT-;increment

Part of pass5..dat

LABEL-

INSTRUCTION-add

OPERAND1-counter_reg

OPERAND2-01

COMMENT-;increment

Part of pass1..dat

x627_54_012903
34 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Line Labels. A label used to identify a program line for reference in a JUMP or CALL instruction
should be followed by a colon (:). Figure 58 shows the use of a label to identify a program line
and its use later in a JUMP instruction.

Program
Instructions

The instructions should be as shown in PicoBlaze Instruction Set. The assembler is very
forgiving over the use of spaces and <TAB> characters, but instructions and the first operand
must be separated by at least one space. Instructions with two operands must ensure that a
comma (,) separator is used.

The assembler accepts any mixture of upper and lower case characters for the instruction and
automatically converts them to upper case. The following examples show acceptable
instruction specifications, but the formatted output shows how it was expected.

Most other syntax problems are solved by reading the error messages provided by the
assembler.

Assembler
Directives

The assembler supports three assembler directives. These commands are used purely by the
assembly process and do not correspond to instructions executed by PicoBlaze module

CONSTANT Directive
This directive provides a way to assign an 8-bit constant value to a label. In this way, the
program can declare constants such as port addresses and particular data values needed in
the program. By defining constant values in this way, it is often easier to understand their
meaning in the program rather than as actual hexadecimal constant values in the program
lines. Figure 59 illustrates the directive syntax and its uses.

Figure 58: Line Label Example

loop: OUTPUT counter_reg, count_port
 ADD counter_reg, 01 ;increment
 LOAD s00, counter_reg
 SUB s00, max_count ;test for max value
 JUMP NZ, loop ;next count

load s15,7E

Assembler

LOAD s15, 7E

AddCY s08, S1E ADDCY s08, s1E

ENABLE interrupt ENABLE INTERRUPT

Output S12, (S08) OUTPUT s12, (s08)

jump Nz, 267 JUMP NZ, 267

ADD s1F, step_value ADD s1F, step_value

INPUT S19,28 INPUT s19, 28

sl1 s0e SL1 s0E

RR S08 RR s08
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 35
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Figure 59: CONSTANT Directive

Notes:
1. A constant is global. Even if a constant is defined as the end of the program file, it can be used in

instructions anywhere in the program.
2. Constant names must not contain any spaces although the underscore character is supported. Valid

characters are 0 to 9, a to z, and A to Z.

In Figure 59, “max_count” is being used to specify a data constant of 18 hex. In the program,
this is used to test the value of a counter. By using a constant directive, the code is more
readable. It would also be possible to change the constant value and its effect would be applied
to multiple places in the program.

“count_port” is being used to specify a port address. In the program, the OUTPUT instruction
refers to the port by name rather than absolute value. By using a constant directive, the code is
more readable. It would also be possible to change the constant value once in the directive and
its effect would be applied to multiple places in the program. This is particularly useful when
defining the hardware interface. Indeed, the program can be developed before the I/O
addresses are defined.

NAMEREG Directive
This directive provides a way to assign a new name to any of the 32 registers. In this way, the
program refers to “variables” by name rather than as absolute register specifications. By
naming registers in this way, it is easier to understand the meaning in the program without so
many comments. It also helps to prevent inadvertent reuse of a register with associated data
corruption. See Figure 60.

Figure 60: NAMEREG Directive

Notes:
1. Register names must not contain any spaces although the underscore character is supported. Valid

characters are 0 to 9, a to z, and A to Z.

In Figure 60, the register s14 has been renamed to be “counter_reg” and is then used in
multiple instructions, making it clear what the meaning of the register contents actually are.

CONSTANT max_count, 18 ;count to 24 hours
 NAMEREG s14, counter_reg ;define register for counter
 CONSTANT count_port, 12
start: LOAD counter_reg, 00 ;initialize counter
 loop: OUTPUT counter_reg, count_port
 ADD counter_reg, 01 ;increment
 LOAD s00, counter_reg
 SUB s00, max_count ;test for max value
 JUMP NZ, loop ;next count
 JUMP start ;reset counter

CONSTANT max_count, 18 ;count to 24 hours
 NAMEREG s14, counter_reg ;define register for counter
 CONSTANT count_port, 12
start: LOAD counter_reg, 00 ;initialize counter
 loop: OUTPUT counter_reg, count_port
 ADD counter_reg, 01 ;increment
 LOAD s00, counter_reg
 SUB s00, max_count ;test for max value
 JUMP NZ, loop ;next count
 JUMP start ;reset counter
36 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Important: The NAMEREG directive is applied in-line with the code by the assembler. Before
the NAMEREG directive, the register is named in the ‘sXX’ style. Following the directive, only
the new name applies.

It is also possible to rename a register again (i.e., NAMEREG counter_reg, hours) and only the
new name applies in the subsequent program lines. This can be useful in making portable code
and subroutines.

ADDRESS Directive
ADDRESS directive (Figure 61) provides a way to force the assembly of the following
instructions commencing at a new address value. This is useful for separating subroutines into
specific locations and vital for handling interrupts. The address must be specified as a three-
digit hexadecimal value in the range 000 to 3FF.

Figure 61: ADDRESS Directive

In Figure 62, the log file shows that the ADDRESS directive is used to force the last instruction
into the highest memory location in the program RAM. This is the address to which the program
counter is forced during an active interrupt.

Figure 62: ADDRESS Directive Example

KCPSM Code
Compatibility

KCPSM and KCPSM2 have many similarities. However, each has been tuned to specific device
architecture so there are differences. KCPSM2 has more program space and more registers
and, therefore, it can accommodate a program written for KCPSM. However, there are some
details to be considered when moving programs.

Registers
The key difference from a user perspective is that there are 32 registers with names “sXX”
rather than 16 registers with names “sX.” If existing code is to be used with KCPSM2, the
NAMEREG directive can make the code compatible.

JUMP NZ, inner_long
 RETURN
 ;Interrupt Service Routine
ISR: LOAD wait_light, 01 ;register press of switch
 OUTPUT wait_light, wait_light_port ;turn on light
 RETURNI DISABLE ;continue light sequence but no more interrupts
 ADDRESS 3FF ;Interrupt vector
 JUMP ISR
 ;end of program

246 35644 JUMP NZ, inner_long[244]
247 24000 RETURN
248 ;Interrupt Service Routine
248 01201 ISR: LOAD wait_light[s12], 01 ;register press of switch
249 23210 OUTPUT wait_light[s12], wait_light_port[10] ;turn on light
24A 2C000 RETURNI DISABLE ;continue light sequence but no
3FF ADDRESS 3FF ;Interrupt vector
3FF 34248 JUMP ISR[248]
3FF ;end of program
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 37
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Simply add the following lines before any active instructions:

• namereg s00,s0

• namereg s01,s1

• .

• .

• namereg s0F,sF

Now the lower 16 registers have the same identifiers as that for KCPSM. However, the input
code must use the “sX” format correctly and not an upper case “S” or lower case hexadecimal
digit. Therefore, the “format.psm” output from KCPSM should be used where possible.

Address Range
Since the KCPSM2 module supports 1024 program instructions and the KCPSM module
supports 256, it is always possible that the program will fit. However, the different address range
does make a difference to ADDRESS directives.

Any address directives used in the program code need to be adjusted to specify the desired
assembly address as three hexadecimal digits rather than two.

Interrupt Vector
During an active interrupt, the program counter of KCPSM is forced to the last memory location
“FF.” In a similar way, the program counter of KCPSM2 is also forced to the last memory
location, but this is now “3FF” due to the larger program space. Therefore, it is vital that
programs using interrupts adjust the location of the interrupt vector. This typically involves
adjusting the associated ADDRESS directive from address FF to 3FF.

Label Validity
The assembler has slightly different rules concerning which labels for lines, constants, and
registers are acceptable. For example, a constant label cannot be “s1e” because this can be
confused with a default register name of the KCPSM2 macro. Therefore, it may be necessary
to adjust some of the user names in the program code. Typically, labels are descriptive so this
issue should not be encountered.

Interrupt
Handling

Effective interrupt handling requires skill, and this document does not explain how and when an
interrupt should be used. The information supplied should be adequate for the user to assess
the capability of the PicoBlaze module and to create interrupt-based systems.

Default State
By default, the interrupt input is disabled. This means that the entire 1024 words of program
space are used without any regard to interrupt handling or use of the interrupt instructions.

Enabling Interrupts
For an interrupt to take place, the ENABLE INTERRUPT command must be used. At critical
stages of program execution where an interrupt is unacceptable, a DISABLE INTERRUPT is
used. Since an active interrupt automatically disables the interrupt input, the interrupt service
routine ends with a RETURNI instruction, which also includes the option to ENABLE or
DISABLE the interrupt input as it returns to the main program.

During an interrupt (Figure 63), the program counter is pushed onto the stack and the values of
the CARRY and ZERO flags are preserved (for restoration by the RETURNI instruction). The
38 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

interrupt input is automatically disabled. Finally, the program counter is forced to address 3FF
(last program memory location) from which the next instruction is executed.

Basics of
interrupt
Handling

Since the interrupt forces the program counter to address 3FF, it will generally be necessary to
ensure that a jump vector to a suitable interrupt service routine is located at this address.
Without a JUMP instruction, the program rolls over to address zero.

In typical cases, an interrupt service routine is provided. The routine can be located at any
position in the program and jumped to by the interrupt vector located at the 3FF address. The
service routine performs the required tasks and then ends in RETURNI with ENABLE or
DISABLE.

Figure 64 illustrates a very simple interrupt handling routine. The PicoBlaze module generates
waveforms to an output by writing the values 55 and AA to the waveform_port (port address
02). It does this at regular intervals by decrementing a register (s00) based counter seven times
in a loop.

When an interrupt is asserted, the PicoBlaze module stops generating waveforms and simply
increments a separate counter register (s1A) and writes the counter value to the counter_port
(port address 04).

Figure 63: Effects of an Active Interrupt
x627_55_120402

Stack

PC New Address ZERO

CARRY
Preserved

CARRY

Interrupt
Enable

Preserved
ZERO

"0"

1 1 1 1 1 1 1 1 1 1

Figure 64: Interrupt Handling Example

Interrupt_event

CE

D Q

PORT_ID[7:0]

PORT_ID1

PORT_ID2

Waveforms

Counter

INPORT[7:0]

PORT_ID[7:0]INTERRUPT

INSTRUCTION[17:0]

OUT_PORT[7:0]

ADDRESS[9:0]

CLK

READ_STROBE

WRITE_STROBE

KCPSM2

RESET

CE

D Q

x627_56_120402
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 39
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Design VHDL Example
The following VHDL shows the addition of the data capture registers to the processor. Note the
simplified port decoding logic through careful selection of port addresses. The complete VHDL
file is supplied as kcpsm2_int_test.vhd.

Figure 65: Design VHDL Example

Interrupt Service Routine
In the assembler log file for the example, it can be seen that the interrupt service routine has
been forced to compile at address 2B0, and that the waveform generation is based in the
normal lower addresses. This makes it easier to observe the interrupt in action in the operation
waveforms. This program is supplied as int_test.psm for the user to compile.

-- adding the output registers to the processor

 IO_registers: process(clk)
 begin

 -- waveform register at address 02

 if clk'event and clk='1' then
 if port_id(1)='1' and write_strobe='1' then
 waveforms <= out_port;
 end if;
 end if;

 -- Interrupt Counter register at address 04

 if clk'event and clk='1' then
 if port_id(2)='1' and write_strobe='1' then
 counter <= out_port;
 end if;
 end if;

 end process IO_registers;
40 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Figure 66: Interrupt Service Routine

Interrupt
Operation

The waveforms in Figure 67 taken from an actual ModelSim-XE simulation show the operation
of PicoBlaze module when executing the example program at the time of an interrupt. The
VHDL test bench used to generate these waveforms is supplied as testbench.vhd.

By observing the address bus, it is possible to see that the program is busy with generating the
waveforms and even shows the port 02 being written the AA pattern value. Then while in the
delay loop which repeats addresses 005 and 006, it receives an interrupt pulse.

It can be seen that PicoBlaze module took a few cycles to respond to this particular pulse (see
timing of interrupt pulses) before forcing the address bus to 3FF. From 3FF, the obvious JUMP
to the service routine located at 2B0 can be seen to follow and a resulting counter value (in this
case 03) is written to the port 04.

Main program delay
loop where most
time is spent

Interrupt service routine (here
located at address 2B0 onwards)

Interrupt vector set at address 3FF
and causing JUMP to service routine

x627_57_121302

000 ;Interrupt example

000 ;

000 CONSTANT waveform_port, 02 ;bit0 will be data

000 CONSTANT counter_port, 04

000 CONSTANT pattern_10101010, AA

000 NAMEREG s1A, interrupt_counter

000 ;

000 01A00 start: LOAD interrupt_counter[s1A], 00 ;reset int count

001 002AA LOAD s02, pattern_10101010[AA] ;start pattern

002 3C001 ENABLE INTERRUPT

003 ;

003 22202 drive_wave: OUTPUT s02, waveform_port[02]

004 00007 LOAD s00, 07 ;delay size

005 0C001 loop: SUB s00, 01 ;delay loop

006 35405 JUMP NZ, loop[005]

007 062FF XOR s02, FF ;toggle waveform

008 34003 JUMP drive_wave[003]

009 ;

2B0 ADDRESS 2B0

2B0 09A01 int_routine: ADD interrupt_counter[s1A], 01 ;increment counter

2B1 23A04 OUTPUT interrupt_counter[s1A], counter _port[04]

2B2 2C001 RETURNI ENABLE

2B3 ;

3FF ADDRESS 3FF ;set interrupt vector

3FF 342B0 JUMP int_routine[2B0]

Figure 67: Interrupt Operation

AA

03

00 02 07 01 06 01 05 01 04 00 01 04 01 04 01

 008

34003 22202 00007 0C001 35405 0C001 35405 0C001 35405 342B0 09A01 23A04 2C001 35405

003 004 005 006 005 006 005 006 3FF 2B0 2B1 2B2 006 005

Point of interrupt

Delay loop

Write to ‘waveforms’ port Write to ‘counter’ port

Interrupt
vector

Service routine

x627_60_020303

clk
address

instruction
port_id

write_strobe
counter

waveforms
Interrupt_event
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 41
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

The operation of an interrupt in PicoBlaze module is also visible. It can be seen that the last
address active before the interrupt is 006. The JUMP NZ instruction obtained at this address
(opcode 35405) is not executed. The flags preserved are those which were set at the end of the
instruction at the previous address (SUB s00,01). The RETURNI has restored the flags and
returned the program to address ‘006’ so that the JUMP NZ instruction can at last be executed.

Timing Of Interrupt Pulses
It is clear from the previous simulation waveforms that the constant two cycles per instruction is
maintained at all times. Since this includes an interrupt, the use of single cycle pulses for
interrupt can be risky. However, the waveform in Figure 68 can be used to determine the exact
cycle on which the interrupt is observed and the true reaction rate of KCPSM2.

Therefore, it is advisable that an interrupt signal should be active for a minimum of two
KCPSM2 rising clock cycle edges. An improvement would be for the interrupt service routine to
acknowledge the interrupt to the external logic. There are three ways to achieve this:

• Service routine writes to a specific port to acknowledge interrupt and reset driving pulse
(wasteful).

• Read a specific port to determine the reason for interrupt and use READ_STROBE as a
register reset pulse.

• Decode the address bus to identify the when the address 3FF has been forced by the
active interrupt.

CALL/RETURN
Stack

The PicoBlaze module contains an automatic embedded stack which is used to store the
program counter value during a CALL instruction (or interrupt) and restore the program counter
value during a RETURN (or RETURNI) instruction. The stack does not need to be initialized or
require any control by the user. However, the stack can only support nested subroutine calls to
a depth of 31.

This simple program can calculate the sum of all integers up to a certain value, i.e.,
‘sum_of_value’ when value=5 is 1+2+3+4+5 = 15. In this case, the sum of integers up to the
value 31 (1F hex) is calculated to be 496 (01F0 hex). This is achieved by using a recursive call
of a subroutine and results in the full depth of the call/return stack being utilized. Obviously, this
is not an efficient implementation of this algorithm, but it does fully test the stack.

Figure 68: Interrupt Timing

CLK

ADDRRESS[9:0]

INSTRUCTION[17:0]

006 005 006 3FF 2B0

OC001 0C001 35405 342B0

005

35405

INTERRUPT

2 cycles

Interrupt sampled on clock edge associated
with change of address

X627_58_120402
42 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Hints and Tips Compare Operations

COMPARE Instruction

The PicoBlaze module does not directly support a compare instruction, so a combination of
instructions based on a subtraction should be used. Here are three ideas:

Case 1 - A subtract instruction is destructive, so if the value in the register to be tested is
valuable, then copy it to a temporary register before performing the test. In this example, the
operation jumps to a routine if the value in s0F is 27.

LOAD s00, s0F
SUB s00, 27
JUMP Z, my_routine

Case 2 - The use of a temporary register may not be ideal, and the additional instructions to
perform the compare can seem wasteful. Sometimes, the compare operation can be usefully
combined with the operation being performed. In this example, a counter is being formed in the
s0F register and the next step is to jump to routine when the counter reaches the value 27.

Count_up: ADD s0F, 01 ; Increment the counter
 SUB s0F, 27 ; test if counter is 27
 JUMP Z, my_routine ; Counter was value 27
 ADD s0F, 27 ; Count value was not 27 so restore the value.
 JUMP count_up

Note that the act of testing the counter value in s0F does destroy the value and when the
compare value is not 27, it needed to be restored using addition. However, when the count
value was 27, the effect was also to reset the counter value which is probably what would have
been required anyway.

Figure 69: CALL/RETURN Stack

Increasing value to 20 (32 decimal) will result in incorrect
operation of the PicoBlaze Module. The stack is a cyclic buffer,
so the bottom of the stack becomes overwritten by the top of
the stack caused by the 32nd nested CALL instruction.

x627_59_012903

 NAMEREG s10, total_low
 NAMEREG s11, total_high
 NAMEREG s08, value
 ;
 start: LOAD value, 1F ;find sum of all values to 31
 LOAD total_low, 00 ;clear 16-bit total
 LOAD total_high, 00
 CALL sum_to_value ;calculate sum of all numbers up to value
 OUTPUT total_high, 02 ;Result will be 496 (01F0 hex)
 OUTPUT total_low, 01
 JUMP start
 ;
 ;Subroutine called recursively
 ;
 sum_to_value: ADD total_low, value ;perform 16-bit addition
 ADDCY total_high, 00
 SUB value, 01 ;reduce value by 1
 RETURN Z ;finished if down to zero
 CALL sum_to_value ;recursive call of subroutine
 RETURN ;definitely finished!
XAPP627 (v1.1) February 4, 2003 www.xilinx.com 43
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices
R

Case 3 - It is possible to test if a register is zero without destroying the contents and only using
a single instruction. In this example, s0F reads the status of an input port and a test is made to
see if any switches have been pressed (indicated by a 1).

INPUT s0F, switch_port
AND s0F,s0F ; test for zero
JUMP NZ, switch_routine

Reference
Design Files

All files described in this application note (plus some additional files) are available on the Xilinx
Xilinx PicoBlaze Lounge site at:
http://www.xilinx.com/ipcenter/processor_central/picoblaze/index.htm

Conclusion A microprocessor module does not have to be large or expensive when implemented in a
Virtex-II device. The Virtex-II architectural features (block memory, distributed memory,
dedicated multiplexers, and carry logic) are ideal for the construction of fully embedded
microprocessor modules.

The PicoBlaze module is a simple 8-bit processor with an instruction set for basic control
functions and data manipulation. This is achieved with just 84 slices and one block RAM. Even
with a silicon utilization over performance objective, over 50 MIPs of processing power shows
the very high performance provided by Xilinx devices. Most typical applications do not exploit
this performance, but simply benefit from the small size and the design methodology.

When a processor is completely embedded within an FPGA, no I/O resources are required to
communicate with other modules in the same FPGA. Additionally, system design flexibility is
included along with savings on PCB requirements, power consumption, and EMI. Whenever a
special type of instruction is required, it can be created in hardware (other CLBs) and
connected to the PicoBlaze solution as a kind of coprocessor. Indeed, there is nothing to
prevent a coprocessor from being another PicoBlaze module. In this way, even the 1024-
instruction program length is not a limitation.

PicoBlaze has been used successfully by thousands of Xilinx customers. Many references to its
use and alternative software development tools can be found when searching the web (search
for KCPSM and PicoBlaze). The author welcomes any feedback from PicoBlaze users.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

12/17/02 1.0 Initial Xilinx release.

02/04/03 1.2 Minor edits done.
44 www.xilinx.com XAPP627 (v1.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_entry2.jsp?sMode;login&group+picoblaze
http://www.xilinx.com/ipcenter/processor_central/picoblaze/index.htm

	Summary
	Introduction
	PicoBlaze Resource Information

	PicoBlaze Architecture
	PicoBlaze Feature Set
	General-Purpose Registers
	Arithmetic Logic Unit
	Flags Program Flow Control
	Reset
	Input/Output
	Interrupt

	Constant (k) Coded Values
	Constant Cycles
	Constant Program Length

	Using the PicoBlaze Macro
	Connecting the Program ROM
	Alternative Design Flows
	kcpsm2.ngc
	prog_rom.coe
	Simulation

	PicoBlaze Instruction Set
	Program Control Group
	Logical Group
	Arithmetic Group
	Shift and Rotate Group
	Input/Output Group
	Interrupt Group

	Program Control Group
	JUMP
	CALL
	RETURN

	Interrupt Group
	RETURNI
	ENABLE INTERRUPT and DISABLE INTERRUPT

	Logical Group
	LOAD
	AND
	OR
	XOR

	Arithmetic Group
	ADD
	ADDCY
	SUB
	SUBCY

	Shift and Rotate Group
	SR0, SR1, SRX, SRA, RR
	SL0, SL1, SLX, SLA, RL

	Input and Output Group
	INPUT
	OUTPUT
	READ and WRITE STROBES
	RESET

	PicoBlaze Assembler
	Assembler Errors
	Assembler Files
	ROM_form.vhd File
	ROM_form.coe File
	<filename>.fmt File
	<filename>.log File
	constant.txt and labels.txt Files
	pass.dat Files

	Program Syntax
	Program Instructions
	Assembler Directives
	CONSTANT Directive
	NAMEREG Directive
	ADDRESS Directive

	KCPSM Code Compatibility
	Registers
	Address Range
	Interrupt Vector
	Label Validity

	Interrupt Handling
	Default State
	Enabling Interrupts

	Basics of interrupt Handling
	Design VHDL Example
	Interrupt Service Routine

	Interrupt Operation
	Timing Of Interrupt Pulses

	CALL/RETURN Stack
	Hints and Tips
	Compare Operations
	COMPARE Instruction

	Reference Design Files
	Conclusion
	Revision History

