
Summary HyperTransport is a high-speed bus designed to move data from processors to peripherals at 
speeds up to 60 times faster than a 32-bit PCI bus operating at 66 MHz. The HyperTransport 
bus provides this performance enhancement while remaining compatible with PCI. A minimal 
version of the HyperTransport protocol called HyperTransport Lite has been developed and is 
described in this application note. The reference design is implemented in a Virtex™-II device 
and can run at a frequency of up to 400 MHz.

Introduction The HyperTransport Lite reference design is a minimal slave interface for use at the end of a 
HyperTransport chain. Data can be written to the HyperTransport Lite interface using a part of 
the protocol known as posted writes. Posted writes are defined as write packets with set posted 
bits. The write request will not receive a response from the receiver if a posted bit is set. Thus, 
the buffer of the requester can be unallocated as soon as the write is transmitted. By initiating 
a posted write, data can be read from the HyperTransport Lite interface. It is also capable of 
generating interrupt packets. Currently, the reference design only supports an 8-bit link width 
running at 400 MHz. The HyperTransport Lite interface is compatible with HyperTransport 
devices, however, some features of the full HyperTransport protocol are not implemented in this 
design. 

The purpose of HyperTransport Lite is to allow large amounts of data to be transferred from 
processors to peripherals, similar to a HyperTransport interface but with less overhead than a 
complete HyperTransport core. The HyperTransport Lite interface is designed to use as few 
resources as possible when fitted into an FPGA. 

Interrupt packets are generated on the predefined events to report the status of the device. 
Designers can pre-program the vector and destinations associated with the vectors.

Functions
The HyperTransport Lite interface will perform following functions:

1. Link initialization 

2. Link sync-error detection

3. CRC frame detection and insertion

4. CRC generation or checking

5. Packet framing or de-framing

6. Command decoding and generating

7. Buffering commands and data packets (for posted writes only)

8. Buffer releasing

9. End-of-chain responding
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Functional 
Layers

The HyperTransport Lite interface has three layers of operation (link, node, and device). The 
lowest layer is the link layer. It carries an 8-bit HyperTransport link, takes care of CRC framing, 
generation and detection. The link layer also does link initialization and sync error detection. 

The node layer performs command encoding, decoding, end-of-chain handling, and buffer 
management.

The device layer is the user layer. It connects to the intended function on the device. On the 
receive side, it decodes the HyperTransport command, 38-bit address, 32-bit or 64-bit data, 
4-bit or 8-bit byte masks, and 1-bit control/status. On the transmit side, it takes a 40-bit address, 
4-bit count, 32-bit or 64-bit data fields, and 3-bit control/status. Since the device only does 
posted double-word writes to double-word aligned addresses, it discards the lowest two 
address bits. Table 1 shows the complete architecture.

Link Layer
The link layer carries the data path to the upper layers through a link synchronization unit and 
a CRC unit. The data path can be divided into a receive and a transmit path where the receive 
block accepts packets from a downstream device and the transmit block sends packets 
upstream.

CRC Unit

A cyclic redundancy check (CRC) receive is generated from the receive bits according to the 

HyperTransport specifications and compared against the CRC frame. 

A CRC transmit is generated according to the HyperTransport specifications and transmitted 

every 512 bits.

The CRC uses the following polynomial:

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X +1.

More information is available in the HyperTransport specifications.

Node Layer 
The Node layer has a packet deframer, a framer end-of-chain unit, and buffer managers. The 
block diagram in Figure 1 describes the relationship of individual units within the node layer.

Table  1:  HyperTransport Lite Device Architecture

Address Decode
DATA BUFFER

RETURN DESCRIPTORS
Interrupt Registers

User Functions
Interrupt Generator
Transmit Machine

Device
Layer

Address
[39:2/0]

Data
[63/31:0]
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[3:0]

B Mask
[7/3:0]

Control
[1:0]

Status
[1:0]

Frame / de-frame
End-of-chain
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Command Snooper

Node
Layer
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Initialization
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Link
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Packet Framer/Deframer

On the receive side, the deframer monitors the content of the received packet, extracts one 
packet at time from the receive FIFO, and submits it to the device. It also ensures that data 
packets are correctly attached to their command packets. On the transmit side, the packet 
framer generates posted double-word writes and posted byte writes.

End-of-Chain Unit

The end-of-chain unit generates the Read response signal for read requests and the Target 
Done signal for the non-posted writes to conform to HyperTransport specifications. It can also 
generate data packets with all ones of a requested size. If a Read response is received, the 
end-of-chain unit will discard the associated data packet since the HyperTransport Lite 
interface cannot handle a Read response. The intent of responding to a Read is to prevent 
configuration software from freezing up.

Buffer Manager

The transmit and receive units have separate buffer managers. Although the device does not 
take commands other than posted writes, it will logically maintain the buffer count of one for all 
other buffer types. It will maintain at least three buffers for posted write data and command. The 
buffer release manager will issue three posted command and data tokens after reset.

Every time a command is decoded or a packet of data is removed from the queue, a posted 
command and data buffer release NOP packet is generated.

Every time a buffer release is received at the receiver, the available buffer count is updated and 
will take a maximum of seven buffer releases.

Figure 1:  Relationship of Individual Units in a Node Layer
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Receiver Data Path

The receiver unit contains an 8-bit HyperTransport link and an 8-to-32 bit demultiplexer. As the 
packets are coming through the receiver unit, they are forwarded to the snooper unit. The 
purpose of the snooper unit is to determine if the incoming packet is a NOP packet. If it is, the 
snooper unit latches the buffer-release tokens. If the incoming packet is a posted write request 
packet, it is pushed onto the HyperTransport command FIFO. Otherwise, the data is ignored.

The HyperTransport Lite interface supports posted write requests only and does not support 
the read requests and non-posted write requests. This is one of the differences between 
HyperTransport Lite and the HyperTransport protocol. However, since the HyperTransport Lite 
interface is compatible with the HyperTransport protocol, appropriate flags are set whenever 
those commands are received. The HyperTransport protocol also requires returning all ones of 
a requested size. Therefore, the count field of a read request is also latched and forwarded to 
the end-of-chain unit. All data packets following posted writes are sent to the data FIFO in the 
device layer. Other data packets are simply dropped.

The data path is always connected to the CRC checker circuit. This CRC circuit keeps track of 
the CRC frame time and performs CRC checking according to the HyperTransport specification 
version 1.0.3 (http://www.hypertransport.org/)

As data progresses through the command and data FIFOs, it is fed into the deframer unit to 
determine if a data frame has byte masks. All fields are latched into separate registers.

This reference design contains switches to choose between big or little Endian format for data 
sent to the HyperTransport Lite interface, and a 32-bit or 64-bit internal data path. Eight byte-
mask bits are provided for future use and are grouped into two 4-bit fields for each double word 
(32 bit). Bits in each group share same value.

Transmitter Data Path

The transmit data path has a 40-bit address, a 4-bit count field, and 32 or 64 data bits from the 
device layer along with some control signals.

The HyperTransport Lite command can either be a posted write request to a 40-bit addressed 
destination, an interrupt request packet, or an internal response packet. To conform to the 
HyperTransport protocol, response packets are generated in response to a read request or a 
non-posted write request. The size of a data packet can be up to one cache line, or 32 bytes per 
posted write request. Either 32-bit or 64-bit wide data can be arranged to big or little Endian 
format. 

An interrupt packet is a posted write byte request with user-defined vector and destination 
fields. The vector and interrupt destination fields must be programmed before using the device. 
An end-of-chain unit generates the response packets to conform to the HyperTransport 
specifications.

There is a CRC unit to monitor CRC frame time and CRC bits. The transmitter generates CRC 
frames and inserts CRC frames according to the HyperTransport specification.

The buffer manager monitors available upstream and downstream buffers between the next 
hop device. Upstream buffer counts are updated whenever the receiver gets a valid NOP with 
a non-zero buffer release. Whenever a downstream packet is processed only count fields for 
posted write request fields, posted write request data, and downstream buffers are updated. 
Upstream includes all types of tokens since the device must keep at least one each buffer count 
to avoid deadlock of the channel.
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User-Defined 
Layer

Device Layer
The device layer is modified by the user to performs the required tasks. At a minimum, it 
maintains the return descriptor FIFO to retain the necessary information to send data out of the 
device. The FIFO must store the return address and size of each unit of data plus any optional 
flags. The device layer must also have a set of event associated interrupt registers. This section 
of the application note describes all the necessary blocks of the device layer. The 
implementations are examples of how to design a device layer.

The device layer manages the following functions:

1. Address decoding

2. Accepting writes

3. Retrieving descriptors, issuing a series of writes

4. Generating interrupts

5. Routing data traffic

Return Descriptor

As data packets are sent from the FPGA, the information on where to send them and the size 
of the data packets is stored in the return descriptor FIFO. Return descriptors can be in the form 
of a FIFO or as a set of registers. This reference design uses a FIFO structure. 

According to HyperTransport protocol, the return address field must be in the full 40-bit format. 
The two LSBs are ignored since the device only performs posted double-word writes. The 
device must break the data block into small packets of 32 bytes or less. 

In this reference design, a 64-bit descriptor is used. It contains 40 address bits, an 18-bit count 
field, and a 6-bit flag field.

Interrupt Registers

Interrupt registers are 16-bits long. There are 16 registers associated with 16 IRQ pins in the 
node layer. Each register is divided into an 8-bit vector field and 8-bit interrupt destination bits. 
These bits are assembled into the interrupt packets by the packet framer in the node layer. 

Address Decoder

The device layer further decodes the address to determine if a Write is for the descriptor FIFO, 
the data FIFO, or the on board registers (such as the interrupt registers). The address decoder 
can ignore unused addresses.

Programming Rules

A CPU can write to the port using un-cached accelerated writes or using the data mover to 
DMA packets out of memory. Un-cached accelerated writes allow a bus unit to merge write 
packets. Some rules should be observed in using the device for data streaming. 

• There must be a sufficient amount of data in the data buffer/FIFO before writing a 
descriptor to keep the data FIFO from underflow.

• The HyperTransport Lite unit can mix descriptor writes with the data mover writes of earlier 
packets.

• Software must keep track of outstanding descriptors to avoid FIFO overflow.

Device Layer Operation

Receiver

The address decoder in the device layer decodes the address from the receive address field in 
the descriptor FIFO. Whenever the write bit is true, if a function is selected, the receiver 
determines the amount of data to be transferred. Writes can be double-word sized and up to 
one cache line (eight double words or 32 bytes). If writing to an interrupt register, it can be 
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double word or quad word. Extra bits are ignored. If an address does not select any device layer 
commands, the command is ignored. 

One set of control and status registers exists for transmit and receive channels. These bits are 
signals between the device layer and the node layer. Control signals originate in the device 
layer and status signals originate in the node layer. These signals are used to interface the 
node layer and the device layer functions.

Receiver Control and Status

Table 2 shows the receiver status signal. Table 3 shows the receiver control signal. If the device 
is idle, it asserts RX_NXCMD to allow the deframer to submit a command. A valid command is 
recognized if RX_WR_L is Low. Both command and data are then available to the device. The 
device can de-assert RX_NXCMD to enter a busy state. Otherwise an address decoder 
generates register selects and the register loading takes place. The node layer may hold 
RX_WR_L to repeat writes if RX_NXCMD is High. Figure 2 shows the receiver waveforms. 

Transmitter

Whenever a block of data is ready to be sent back to the host, the transmit state machine 
retrieves the descriptor from the FIFO. It then determines if it is necessary to generate multiple 
writes.

For packets less than 32 bytes long, the transmitter loads the transmit address from the FIFO 
address field, sets the count field, and lets the packet framer go. For longer packets, it breaks 
the transfer into multiple writes where the number of writes is derived from the count field bits 

Table  2:  Receiver Status Signals

Signal Name Status Name Description

RX_WR_L Write Request A posted Write request received

Table  3:  Receiver Control Signals

Signal Name Command Name Description

RX_NXCMD Get Next Set to Low to enable framer to unload next 
command packet from HyperTransport Lite 
queue

Figure 2:  Receiver Waveforms
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[17:6]. The transmitter repeats writes while decrementing write count and adjusting the 
address. 

Special cycles must be generated if a return buffer start address is not cache-line aligned. The 
transmit machine writes out all the words to the next aligned address and continues writing the 
rest of data block.

Only if the buffer manager reports available posted request channel buffers at the next hop, can 
the transmitter issue a Write command. The device layer must ensure sufficient buffering within 
itself to handle worst-case traffic. 

Transmitter Control and Status

Whenever there is a block of data to send, and the TX_IDLE is High, the transmitter state 
machine starts by popping the descriptor FIFO. When TX_IDLE is High, at least one posted-
write request packet and a data packet up to 32 bytes can be sent. The first write takes place 
three clocks after sensing TX_IDLE High. The device layer uses these clock times to get the 
return address, count, and data. It then asserts TX_WR_L and TX_DS_L on the following 
clock. TX_WR_L loads the address and count fields into the framer. TX_DS_L loads the data 
into data buffer. If the device has more than 32 bits or 64 bits of data, it holds TX_DS_L for up 
to four clocks in a 64-bit system, eight clocks in a 32-bit system, or until the double word or quad 
word count is zero. After the whole write packet is sent to the node layer, the device goes into 
the "next packet" state where it updates address and count fields. If the node layer still has 
available write buffers, it will assert TX_IDLE at this time. If TX_IDLE is High, the device 
continues sending the next write packet on the following clock. The transmitter repeats 
generating write packets until the computed write-packet-count field is zero.

Table 4 and Table 5 show the transmitter status and control signal definitions. Figure 3 shows 
the transmitter waveforms.

Table  4:  Transmitter Status Signal Definition

Signal Name Status Name Description

TX_IDLE Posted write request 
buffers available

At least one PWR and PWRD buffer is available. If 
this bit is zero the device must not assert TX_WR_L.

Table  5:  Transmitter Control Signals Definition

Signal Name Command Name Description

TX_WR_L Generate Write 
Packet

Set to Low to let framer go. Loads count field and 
address fields.

TX_DS_L Data Strobe Device sets this bit to load more data.
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Device Layer Interrupt Mechanism

Interrupts can be generated to report the status of the device. At the least, there should be 
interrupt signals defined to alert the system when the descriptor FIFOs are Full and Empty. In 
this reference design, 16 registers and interrupt pins. An interrupt event will set a bit in the 
interrupt pin field and cause the device layer to generate an interrupt packet using the 
corresponding interrupt register. The interrupt register must be pre-programmed with the 
appropriate vector number and destination field. If the interrupt register that is used is not 
initialized, device will generate a non-maskable interrupt (NMI).

Interrupt Signals

Interrupt events are generally generated by the device layer (Table 6). A device layer may 
submit a vector to the node layer to generate an interrupt packet. An interrupt vector is 16 bits: 
an 8-bit vector number and an 8-bit interrupt destination. It checks if the interrupt FIFO is not full 
in the node layer by polling TX_NOINTR. If TX_NOINTR is High, the device raises the 
TX_LD_IVECT to load the 16-bit vector TX_IVECT.

Every interrupt register has an extra bit to reset on LOGIC_RESET_L and set on write hits. This 
bit is fed to the TX_NMI signal when a corresponding interrupt occurs. If this bit is Low, NMI is 
generated, and the host ignores the vector bits.

If producing more than one interrupt at a time is likely, the device should also implement an 
interrupt arbitration mechanism. Interrupt logic must ensure that only one interrupt packet is 
generated for an event, otherwise it will flood the node layer with interrupt request (IRQ) 
packets. The interrupt logic is shown in Figure 4.

Figure 3:  Transmitter Waveforms
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Clock Requirements
There are two major clock sources, the HyperTransport receive clock (driven by the adjacent 
HyperTransport device), and the FPGA clock (generated on board). The HyperTransport 
specification requires all nodes to run at least at 200 MHz. This reference design uses two 
DCMs and four global clock lines. The reference design will run at a 400 MHz link speed with a 
200 MHz core clock. 

The link layer divides the LDT_RX_CLKI clock by two to generate clock CLK100 for the CRC 
checker circuitry. The transmit CRC circuit uses CLK100 and it is multiplied by two for the TX 
clock. The two times TX clock also has a 180° phase-shifted version to drive the FDDR cells.

Table  6:  Interrupt Signal Definitions

Signal Name Command Name
Direction

from Device Description

TX_NMI_L Non-Maskable Interrupt Output If this bit is clear, a NMI packet 
is generated instead of a fixed 
physical type. 

TX_IVECT[15:0]

Interrupt Vector Number
Bits [15:8]

Output

If corresponding register is 
preprogrammed, it will 
generate a fixed interrupt in 
physical mode. Otherwise, an 
NMI will be generated.

Destination Field
Bits [7:0]

TX_LD_IVECT Load interrupt vector Output Signal to node layer to load the 
TX_VECT bits.

TX_NOINTR No interrupts pending Input Set High if the interrupt packet 
framer is idle and ready to 
receive a new vector.

Figure 4:  Interrupt Logic
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Receive Clocks

The receive clock LDT_RX_CLKI will clock in the command-address and data bus (CAD) and 
the control (CTL) bits into a receiver. 

This clock is driven from the next-hop node and is fed to a clock phase adjustment circuit (aligns 
the phase of the clock to the data). The phase adjusted version of receive clock is called 
LDT_CLK200.

Receive CLK100

As the internal data path is 32-bits wide, it can be processed at half the speed of 
LDT_RX_CLKI. CLK100 is the name of the clock that drives the internal data path. It drives the 
latches, the command snooper, and the FIFO input as well as the NOP latch and the other-
commands latch.

Transmit Clocks

Transmit CLK100

A copy of a 100 MHz clock to drive the CRC unit, the link synchronization unit, and the transmit 
slot machine. It is generated from CLK100 and can also be generated from the FPGA clock 
DEV_CCLKG.

LDT_TX_CLKO

The transmit clock is derived from the phase-adjusted input clock. It is used to drive the 
HT_TX_CAD/CTL IOBs. It is a 180° apart two-phase clock. It is required for the FDDR cells.

As the clock is in the middle of the data window, the clock driving the LDT_TX_CLKO pin has 
to be phase shifted 90° from the clock driving DATA FDDR cells. It is driven through another 
FDDR cell to ensure a clock-to-data phase relationship is maintained at the pins. This clock is 
also a dual phase clock (separated by 180°).

DEV_CCLKG

DEV_CCLKG is a 200 MHz clock used by the node layer. It clocks deframer, framer, and the 
end-chain unit.

The device clock DEV_CLK may be 100 MHz if a 64-bit data path is used, and 200 MHz with a 
32-bit data path. Figure 5 shows all the clock domain descriptions.

Figure 5:  Clock Domains
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Reset
There are two resets, FPGA reset and HyperTransport link reset. The FPGA reset asserts the 
LOGIC_RESET_L signal to the logic to reset FPGA registers and state machines to a known 
state. The HyperTransport reset follows the HyperTransport specifications. It has two 
HyperTransport signals, LDT_RESET_L and LDT_PWROK. LDT_RESET_L is held Low during 
FPGA reset. 

When HyperTransport link is in reset, there is no valid clock signal on LDT_RX_CLK, so the 
DLL must be held in reset mode. After LDT_PWROK is deasserted, the DLL will be released 
from reset, re-synchronized to its input clock (LDT_RX_CLK), and will also restart the phase 
detection logic as described in Receive Clocks.

LDT_RESET_L resets the receive command snooper and transmit slot state machines and all 
related latches. LOGIC_RESET resets the node layer and the device layer.

The device can also be reset in software by writing to an address, e0_00ff_0000 in this 
reference design.

Signal 
Definition

Table 7 and Table 8 describe signals for the HyperTransport Lite interface.

Table  7:  HyperTransport Lite Top Layer Signal Definitions

Signal Name Pin Type Description

LDT_RX0_CTL DDR-DS1 LDT receive CTL pin

LDT_RX0_CAD[7:0] DDR-DS1 LDT receive command/data pins

LDT_RX0_CLK DDR-DS1 LDT receive clock

LDT_TX0_CTL DDR-DS1 LDT transmit CTL pin

LDT_TX0_CAD[7:0] DDR-DS1 LDT transmit command/data pins

LDT_TX0_CLK DDR-DS1 LDT transmit clock

LDT_RESET_L OD/PP LVCMOS2 LDT reset

LDT_PWROK OD/PP LVCMOS2 Power OK

Notes: 
1. DDR-DS = dual data rate differential signaling according to HyperTransport electrical specifications 

version 0.77.
2. OD/LVCMOS = Open Drain signal is used, LVCMOS signal allowed for compliance. 

Must have pull-up to 2.5V.
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Table  8:  Device Layer Signal Definition

Signal Name Direction from Device Layer Description

Transmit Side (Uplink)

TX_Addr[39:0] Output Address bits 

TX_Data[31:0] Output Data bits, byte lane order depends on 
jumper setting Endian.

TX_Data[63:32] Output More data bits if 64 bit is selected by 
jumper. Byte lane order depends on 
jumper setting Endian.

TX_CNT[3:0] Output Count field value for the Write packet.

TX_WR_L Output Device sets Low to start a Write cycle.

TX_DS_L Output Device sets Low to pass more data to 
node layer.

TX_IDLE Input Node layer is ready to receive write.

Interrupt

TX_IVECT[15:0] Output IRQ pins, vector and interrupt 
destination will be extracted from 
pre-programmed registers.

TX_LD_IVECT Output Load vector 

TX_NMI_L Output If clear, NMI will be generated instead 
of a fixed type.

TX_NOINTR Input IRQ acknowledge, 
Resets the IRQ FF in device.

Receive Side (Downlink)

RX_Addr[39:2] Input Address bits 

RX_Data[31:0] Input Data bits, Endian based on jumper 
setting.

RX_Byte Mask[3:0] Input Four mask bits are provided for future 
use. All bits carry same value. A High 
indicates valid data.

RX_Data[63:32] Input More data bits if 64 bit is selected by 
a jumper. Byte lane order depends on 
Endian.

RX_Byte Mask[7:4] Input More byte mask bits, if 64 bit mode is 
selected by jumper. Four mask bits 
are provided for future use. All bits 
carry same value. A High indicates 
valid data.

RX_NXCMD Output Sets to get next command reset to 
enter busy state.

RX_WR_L Input Valid Write command strobe

RX_DW Input Bit 2 of Write command 
1 = Double word 0 = byte sized.
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Reference 
Design

Table 9 lists the device utilization of the HyperTransport Lite reference design. The 
HyperTransport Lite interface reference design is available on the Xilinx FTP site at: 
ftp://ftp.xilinx.com/pub/applications/xapp/xapp639.zip. It includes Verilog source code, 
constraints files, and a pre-synthesized EDIF. The design was tested on a
Virtex-II XC2V1000FG256-6 at 400 MHz link speed. 

Conclusion The HyperTransport protocol is designed to deliver a high-performance and scalable 
interconnect between CPU, memory, and I/O devices. The protocol is engineered to operate 
with a top signaling rate of 1.6 GHz on each wire pair supporting a peak aggregate bandwidth 
of 12.8 GBytes/s. However, when implemented in an FPGA, the full-sized core takes up nearly 
7,000 slices, or nearly half of a Virtex-II XC2V3000. A simplified version of the HyperTransport 
core, called HyperTransport Lite, has been developed as a reference design to perform the 
basic data transfer functions of the original HyperTransport core. This HyperTransport Lite 
reference design is compatible (although not fully compliant) with the HyperTransport 
specifications albeit using less device resources. The XAPP639 reference design currently 
uses less than 2000 slices and occupies about one-quarter of a Virtex-II XC2V1000 device. 
The design is verified with RTL and full-timing simulations to run at a 400 MHz link speed.

Revision 
History

The following table shows the revision history for this document.  

Table  9:  HyperTransport Lite Reference Design Device Utilization

Tested link speed 400 MHz in a Virtex-II XC2V1000FG256-6
200 MHz in a Virtex-II XC2V1000FG256-4

Number of slices 1900

Number of DCMs 2

Number of global clocks 4

Date Version Revision

01/07/03 1.0 Initial Xilinx release.
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