
Summary HyperTransport is a high-speed bus designed to move data from processors to peripherals at
speeds up to 60 times faster than a 32-bit PCI bus operating at 66 MHz. The HyperTransport
bus provides this performance enhancement while remaining compatible with PCI. A minimal
version of the HyperTransport protocol called HyperTransport Lite has been developed and is
described in this application note. The reference design is implemented in a Virtex™-II device
and can run at a frequency of up to 400 MHz.

Introduction The HyperTransport Lite reference design is a minimal slave interface for use at the end of a
HyperTransport chain. Data can be written to the HyperTransport Lite interface using a part of
the protocol known as posted writes. Posted writes are defined as write packets with set posted
bits. The write request will not receive a response from the receiver if a posted bit is set. Thus,
the buffer of the requester can be unallocated as soon as the write is transmitted. By initiating
a posted write, data can be read from the HyperTransport Lite interface. It is also capable of
generating interrupt packets. Currently, the reference design only supports an 8-bit link width
running at 400 MHz. The HyperTransport Lite interface is compatible with HyperTransport
devices, however, some features of the full HyperTransport protocol are not implemented in this
design.

The purpose of HyperTransport Lite is to allow large amounts of data to be transferred from
processors to peripherals, similar to a HyperTransport interface but with less overhead than a
complete HyperTransport core. The HyperTransport Lite interface is designed to use as few
resources as possible when fitted into an FPGA.

Interrupt packets are generated on the predefined events to report the status of the device.
Designers can pre-program the vector and destinations associated with the vectors.

Functions
The HyperTransport Lite interface will perform following functions:

1. Link initialization

2. Link sync-error detection

3. CRC frame detection and insertion

4. CRC generation or checking

5. Packet framing or de-framing

6. Command decoding and generating

7. Buffering commands and data packets (for posted writes only)

8. Buffer releasing

9. End-of-chain responding

Application Note: Virtex-II Family

XAPP639 (v1.0) January 7, 2003

HyperTransport Lite Interface for
Virtex-II FPGAs

R

XAPP639 (v1.0) January 7, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

HyperTransport Lite Interface for Virtex-II FPGAs
R

Functional
Layers

The HyperTransport Lite interface has three layers of operation (link, node, and device). The
lowest layer is the link layer. It carries an 8-bit HyperTransport link, takes care of CRC framing,
generation and detection. The link layer also does link initialization and sync error detection.

The node layer performs command encoding, decoding, end-of-chain handling, and buffer
management.

The device layer is the user layer. It connects to the intended function on the device. On the
receive side, it decodes the HyperTransport command, 38-bit address, 32-bit or 64-bit data,
4-bit or 8-bit byte masks, and 1-bit control/status. On the transmit side, it takes a 40-bit address,
4-bit count, 32-bit or 64-bit data fields, and 3-bit control/status. Since the device only does
posted double-word writes to double-word aligned addresses, it discards the lowest two
address bits. Table 1 shows the complete architecture.

Link Layer
The link layer carries the data path to the upper layers through a link synchronization unit and
a CRC unit. The data path can be divided into a receive and a transmit path where the receive
block accepts packets from a downstream device and the transmit block sends packets
upstream.

CRC Unit

A cyclic redundancy check (CRC) receive is generated from the receive bits according to the

HyperTransport specifications and compared against the CRC frame.

A CRC transmit is generated according to the HyperTransport specifications and transmitted

every 512 bits.

The CRC uses the following polynomial:

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X +1.

More information is available in the HyperTransport specifications.

Node Layer
The Node layer has a packet deframer, a framer end-of-chain unit, and buffer managers. The
block diagram in Figure 1 describes the relationship of individual units within the node layer.

Table 1: HyperTransport Lite Device Architecture

Address Decode
DATA BUFFER

RETURN DESCRIPTORS
Interrupt Registers

User Functions
Interrupt Generator
Transmit Machine

Device
Layer

Address
[39:2/0]

Data
[63/31:0]

Count
[3:0]

B Mask
[7/3:0]

Control
[1:0]

Status
[1:0]

Frame / de-frame
End-of-chain

Buffer Manager
Command Snooper

Node
Layer

PWR FIFO /PWRD FIFO
NOP RDREQ NON PW LATCH

8-32 Demultiplexer/Multiplexer

Initialization
Sync Error Detection

CRC Framing
CRC Generation

Link
Layer
2 www.xilinx.com XAPP639 (v1.0) January 7, 2003
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

Packet Framer/Deframer

On the receive side, the deframer monitors the content of the received packet, extracts one
packet at time from the receive FIFO, and submits it to the device. It also ensures that data
packets are correctly attached to their command packets. On the transmit side, the packet
framer generates posted double-word writes and posted byte writes.

End-of-Chain Unit

The end-of-chain unit generates the Read response signal for read requests and the Target
Done signal for the non-posted writes to conform to HyperTransport specifications. It can also
generate data packets with all ones of a requested size. If a Read response is received, the
end-of-chain unit will discard the associated data packet since the HyperTransport Lite
interface cannot handle a Read response. The intent of responding to a Read is to prevent
configuration software from freezing up.

Buffer Manager

The transmit and receive units have separate buffer managers. Although the device does not
take commands other than posted writes, it will logically maintain the buffer count of one for all
other buffer types. It will maintain at least three buffers for posted write data and command. The
buffer release manager will issue three posted command and data tokens after reset.

Every time a command is decoded or a packet of data is removed from the queue, a posted
command and data buffer release NOP packet is generated.

Every time a buffer release is received at the receiver, the available buffer count is updated and
will take a maximum of seven buffer releases.

Figure 1: Relationship of Individual Units in a Node Layer

NOP

NXA

RX buffer MGR
Deframer

END CHAIN UNIT

Framer

com
m

and

data

LINK LAYER

DEVICE LAYER

data

com
m

and

interrupt

MUX

+
outin

avail

release

PW
IRQ

SNOOPER

TX buffer MGR

rd/npw

Ldt_txmux36o2ldt_rx36

A
ddress

data

control

x639_01_092302
XAPP639 (v1.0) January 7, 2003 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

Receiver Data Path

The receiver unit contains an 8-bit HyperTransport link and an 8-to-32 bit demultiplexer. As the
packets are coming through the receiver unit, they are forwarded to the snooper unit. The
purpose of the snooper unit is to determine if the incoming packet is a NOP packet. If it is, the
snooper unit latches the buffer-release tokens. If the incoming packet is a posted write request
packet, it is pushed onto the HyperTransport command FIFO. Otherwise, the data is ignored.

The HyperTransport Lite interface supports posted write requests only and does not support
the read requests and non-posted write requests. This is one of the differences between
HyperTransport Lite and the HyperTransport protocol. However, since the HyperTransport Lite
interface is compatible with the HyperTransport protocol, appropriate flags are set whenever
those commands are received. The HyperTransport protocol also requires returning all ones of
a requested size. Therefore, the count field of a read request is also latched and forwarded to
the end-of-chain unit. All data packets following posted writes are sent to the data FIFO in the
device layer. Other data packets are simply dropped.

The data path is always connected to the CRC checker circuit. This CRC circuit keeps track of
the CRC frame time and performs CRC checking according to the HyperTransport specification
version 1.0.3 (http://www.hypertransport.org/)

As data progresses through the command and data FIFOs, it is fed into the deframer unit to
determine if a data frame has byte masks. All fields are latched into separate registers.

This reference design contains switches to choose between big or little Endian format for data
sent to the HyperTransport Lite interface, and a 32-bit or 64-bit internal data path. Eight byte-
mask bits are provided for future use and are grouped into two 4-bit fields for each double word
(32 bit). Bits in each group share same value.

Transmitter Data Path

The transmit data path has a 40-bit address, a 4-bit count field, and 32 or 64 data bits from the
device layer along with some control signals.

The HyperTransport Lite command can either be a posted write request to a 40-bit addressed
destination, an interrupt request packet, or an internal response packet. To conform to the
HyperTransport protocol, response packets are generated in response to a read request or a
non-posted write request. The size of a data packet can be up to one cache line, or 32 bytes per
posted write request. Either 32-bit or 64-bit wide data can be arranged to big or little Endian
format.

An interrupt packet is a posted write byte request with user-defined vector and destination
fields. The vector and interrupt destination fields must be programmed before using the device.
An end-of-chain unit generates the response packets to conform to the HyperTransport
specifications.

There is a CRC unit to monitor CRC frame time and CRC bits. The transmitter generates CRC
frames and inserts CRC frames according to the HyperTransport specification.

The buffer manager monitors available upstream and downstream buffers between the next
hop device. Upstream buffer counts are updated whenever the receiver gets a valid NOP with
a non-zero buffer release. Whenever a downstream packet is processed only count fields for
posted write request fields, posted write request data, and downstream buffers are updated.
Upstream includes all types of tokens since the device must keep at least one each buffer count
to avoid deadlock of the channel.
4 www.xilinx.com XAPP639 (v1.0) January 7, 2003
1-800-255-7778

http://www.xilinx.com
http://www.hypertransport.org/

HyperTransport Lite Interface for Virtex-II FPGAs
R

User-Defined
Layer

Device Layer
The device layer is modified by the user to performs the required tasks. At a minimum, it
maintains the return descriptor FIFO to retain the necessary information to send data out of the
device. The FIFO must store the return address and size of each unit of data plus any optional
flags. The device layer must also have a set of event associated interrupt registers. This section
of the application note describes all the necessary blocks of the device layer. The
implementations are examples of how to design a device layer.

The device layer manages the following functions:

1. Address decoding

2. Accepting writes

3. Retrieving descriptors, issuing a series of writes

4. Generating interrupts

5. Routing data traffic

Return Descriptor

As data packets are sent from the FPGA, the information on where to send them and the size
of the data packets is stored in the return descriptor FIFO. Return descriptors can be in the form
of a FIFO or as a set of registers. This reference design uses a FIFO structure.

According to HyperTransport protocol, the return address field must be in the full 40-bit format.
The two LSBs are ignored since the device only performs posted double-word writes. The
device must break the data block into small packets of 32 bytes or less.

In this reference design, a 64-bit descriptor is used. It contains 40 address bits, an 18-bit count
field, and a 6-bit flag field.

Interrupt Registers

Interrupt registers are 16-bits long. There are 16 registers associated with 16 IRQ pins in the
node layer. Each register is divided into an 8-bit vector field and 8-bit interrupt destination bits.
These bits are assembled into the interrupt packets by the packet framer in the node layer.

Address Decoder

The device layer further decodes the address to determine if a Write is for the descriptor FIFO,
the data FIFO, or the on board registers (such as the interrupt registers). The address decoder
can ignore unused addresses.

Programming Rules

A CPU can write to the port using un-cached accelerated writes or using the data mover to
DMA packets out of memory. Un-cached accelerated writes allow a bus unit to merge write
packets. Some rules should be observed in using the device for data streaming.

• There must be a sufficient amount of data in the data buffer/FIFO before writing a
descriptor to keep the data FIFO from underflow.

• The HyperTransport Lite unit can mix descriptor writes with the data mover writes of earlier
packets.

• Software must keep track of outstanding descriptors to avoid FIFO overflow.

Device Layer Operation

Receiver

The address decoder in the device layer decodes the address from the receive address field in
the descriptor FIFO. Whenever the write bit is true, if a function is selected, the receiver
determines the amount of data to be transferred. Writes can be double-word sized and up to
one cache line (eight double words or 32 bytes). If writing to an interrupt register, it can be
XAPP639 (v1.0) January 7, 2003 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

double word or quad word. Extra bits are ignored. If an address does not select any device layer
commands, the command is ignored.

One set of control and status registers exists for transmit and receive channels. These bits are
signals between the device layer and the node layer. Control signals originate in the device
layer and status signals originate in the node layer. These signals are used to interface the
node layer and the device layer functions.

Receiver Control and Status

Table 2 shows the receiver status signal. Table 3 shows the receiver control signal. If the device
is idle, it asserts RX_NXCMD to allow the deframer to submit a command. A valid command is
recognized if RX_WR_L is Low. Both command and data are then available to the device. The
device can de-assert RX_NXCMD to enter a busy state. Otherwise an address decoder
generates register selects and the register loading takes place. The node layer may hold
RX_WR_L to repeat writes if RX_NXCMD is High. Figure 2 shows the receiver waveforms.

Transmitter

Whenever a block of data is ready to be sent back to the host, the transmit state machine
retrieves the descriptor from the FIFO. It then determines if it is necessary to generate multiple
writes.

For packets less than 32 bytes long, the transmitter loads the transmit address from the FIFO
address field, sets the count field, and lets the packet framer go. For longer packets, it breaks
the transfer into multiple writes where the number of writes is derived from the count field bits

Table 2: Receiver Status Signals

Signal Name Status Name Description

RX_WR_L Write Request A posted Write request received

Table 3: Receiver Control Signals

Signal Name Command Name Description

RX_NXCMD Get Next Set to Low to enable framer to unload next
command packet from HyperTransport Lite
queue

Figure 2: Receiver Waveforms

X

X

X

X

X

X

X

X

X

A0

D0

dw0

D1 D2 D3

Wr#0 WR#1 WR#2 WR#3

WE#0 WE#1 WE#2 WE#3

X

0ns 50ns 100ns

rx_addr

rx_data

rx_dw

rx_nxcmd

rx_discd_l

rx_wr_l

internal write enables

clk

READ

Wait state
x639_02_092302
6 www.xilinx.com XAPP639 (v1.0) January 7, 2003
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

[17:6]. The transmitter repeats writes while decrementing write count and adjusting the
address.

Special cycles must be generated if a return buffer start address is not cache-line aligned. The
transmit machine writes out all the words to the next aligned address and continues writing the
rest of data block.

Only if the buffer manager reports available posted request channel buffers at the next hop, can
the transmitter issue a Write command. The device layer must ensure sufficient buffering within
itself to handle worst-case traffic.

Transmitter Control and Status

Whenever there is a block of data to send, and the TX_IDLE is High, the transmitter state
machine starts by popping the descriptor FIFO. When TX_IDLE is High, at least one posted-
write request packet and a data packet up to 32 bytes can be sent. The first write takes place
three clocks after sensing TX_IDLE High. The device layer uses these clock times to get the
return address, count, and data. It then asserts TX_WR_L and TX_DS_L on the following
clock. TX_WR_L loads the address and count fields into the framer. TX_DS_L loads the data
into data buffer. If the device has more than 32 bits or 64 bits of data, it holds TX_DS_L for up
to four clocks in a 64-bit system, eight clocks in a 32-bit system, or until the double word or quad
word count is zero. After the whole write packet is sent to the node layer, the device goes into
the "next packet" state where it updates address and count fields. If the node layer still has
available write buffers, it will assert TX_IDLE at this time. If TX_IDLE is High, the device
continues sending the next write packet on the following clock. The transmitter repeats
generating write packets until the computed write-packet-count field is zero.

Table 4 and Table 5 show the transmitter status and control signal definitions. Figure 3 shows
the transmitter waveforms.

Table 4: Transmitter Status Signal Definition

Signal Name Status Name Description

TX_IDLE Posted write request
buffers available

At least one PWR and PWRD buffer is available. If
this bit is zero the device must not assert TX_WR_L.

Table 5: Transmitter Control Signals Definition

Signal Name Command Name Description

TX_WR_L Generate Write
Packet

Set to Low to let framer go. Loads count field and
address fields.

TX_DS_L Data Strobe Device sets this bit to load more data.
XAPP639 (v1.0) January 7, 2003 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

Device Layer Interrupt Mechanism

Interrupts can be generated to report the status of the device. At the least, there should be
interrupt signals defined to alert the system when the descriptor FIFOs are Full and Empty. In
this reference design, 16 registers and interrupt pins. An interrupt event will set a bit in the
interrupt pin field and cause the device layer to generate an interrupt packet using the
corresponding interrupt register. The interrupt register must be pre-programmed with the
appropriate vector number and destination field. If the interrupt register that is used is not
initialized, device will generate a non-maskable interrupt (NMI).

Interrupt Signals

Interrupt events are generally generated by the device layer (Table 6). A device layer may
submit a vector to the node layer to generate an interrupt packet. An interrupt vector is 16 bits:
an 8-bit vector number and an 8-bit interrupt destination. It checks if the interrupt FIFO is not full
in the node layer by polling TX_NOINTR. If TX_NOINTR is High, the device raises the
TX_LD_IVECT to load the 16-bit vector TX_IVECT.

Every interrupt register has an extra bit to reset on LOGIC_RESET_L and set on write hits. This
bit is fed to the TX_NMI signal when a corresponding interrupt occurs. If this bit is Low, NMI is
generated, and the host ignores the vector bits.

If producing more than one interrupt at a time is likely, the device should also implement an
interrupt arbitration mechanism. Interrupt logic must ensure that only one interrupt packet is
generated for an event, otherwise it will flood the node layer with interrupt request (IRQ)
packets. The interrupt logic is shown in Figure 4.

Figure 3: Transmitter Waveforms

A0 A1

d0 dn

nn

d0 d1 dn

0ns 50ns 100ns 150ns

tx_addr

tx_cnt

tx_data

tx_wr_l

tx_ds_l

tx_idle

clk1

Wait state

Write

d1

x639_04_093002
8 www.xilinx.com XAPP639 (v1.0) January 7, 2003
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

Clock Requirements
There are two major clock sources, the HyperTransport receive clock (driven by the adjacent
HyperTransport device), and the FPGA clock (generated on board). The HyperTransport
specification requires all nodes to run at least at 200 MHz. This reference design uses two
DCMs and four global clock lines. The reference design will run at a 400 MHz link speed with a
200 MHz core clock.

The link layer divides the LDT_RX_CLKI clock by two to generate clock CLK100 for the CRC
checker circuitry. The transmit CRC circuit uses CLK100 and it is multiplied by two for the TX
clock. The two times TX clock also has a 180° phase-shifted version to drive the FDDR cells.

Table 6: Interrupt Signal Definitions

Signal Name Command Name
Direction

from Device Description

TX_NMI_L Non-Maskable Interrupt Output If this bit is clear, a NMI packet
is generated instead of a fixed
physical type.

TX_IVECT[15:0]

Interrupt Vector Number
Bits [15:8]

Output

If corresponding register is
preprogrammed, it will
generate a fixed interrupt in
physical mode. Otherwise, an
NMI will be generated.

Destination Field
Bits [7:0]

TX_LD_IVECT Load interrupt vector Output Signal to node layer to load the
TX_VECT bits.

TX_NOINTR No interrupts pending Input Set High if the interrupt packet
framer is idle and ready to
receive a new vector.

Figure 4: Interrupt Logic

Q

Write Hit

Reset

D[15:0] TX_IVECT[15:0]

LD

SET

CLR

Interrupt Event
TX_LD_IVECT

TX_NMI_L

Interrupt Vector Flag

Interrupt Register [15:0]

Interrupt Logic x639_05_093002
XAPP639 (v1.0) January 7, 2003 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

Receive Clocks

The receive clock LDT_RX_CLKI will clock in the command-address and data bus (CAD) and
the control (CTL) bits into a receiver.

This clock is driven from the next-hop node and is fed to a clock phase adjustment circuit (aligns
the phase of the clock to the data). The phase adjusted version of receive clock is called
LDT_CLK200.

Receive CLK100

As the internal data path is 32-bits wide, it can be processed at half the speed of
LDT_RX_CLKI. CLK100 is the name of the clock that drives the internal data path. It drives the
latches, the command snooper, and the FIFO input as well as the NOP latch and the other-
commands latch.

Transmit Clocks

Transmit CLK100

A copy of a 100 MHz clock to drive the CRC unit, the link synchronization unit, and the transmit
slot machine. It is generated from CLK100 and can also be generated from the FPGA clock
DEV_CCLKG.

LDT_TX_CLKO

The transmit clock is derived from the phase-adjusted input clock. It is used to drive the
HT_TX_CAD/CTL IOBs. It is a 180° apart two-phase clock. It is required for the FDDR cells.

As the clock is in the middle of the data window, the clock driving the LDT_TX_CLKO pin has
to be phase shifted 90° from the clock driving DATA FDDR cells. It is driven through another
FDDR cell to ensure a clock-to-data phase relationship is maintained at the pins. This clock is
also a dual phase clock (separated by 180°).

DEV_CCLKG

DEV_CCLKG is a 200 MHz clock used by the node layer. It clocks deframer, framer, and the
end-chain unit.

The device clock DEV_CLK may be 100 MHz if a 64-bit data path is used, and 200 MHz with a
32-bit data path. Figure 5 shows all the clock domain descriptions.

Figure 5: Clock Domains

LD
T

 R
X

 C
LK

LD
T

 T
X

 C
LK

D
E

V
 C

LK

CRC

INIT

P
W

R
C

 F
IF

O

P
W

R
D

 F
IF

O

O
T

H
S

N
O

D
E

 F
IF

O

D
E

V
 F

IF
O

FRAMER

EOC

INTR REGDESC FIFO DATA FIFO

DEFRAMER

RX BUF MGR

IRQ GEN

Link Layer

Node Layer

Device Layer

RECV LOGIC TXMT SM

C
LK

10
0

(r
x/

2)

TX BUF MGR

SlotSMSnooper

C
C

LK
G

32~8 mux 8 ~ 32 Demux

x639_06_093002
10 www.xilinx.com XAPP639 (v1.0) January 7, 2003
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

Reset
There are two resets, FPGA reset and HyperTransport link reset. The FPGA reset asserts the
LOGIC_RESET_L signal to the logic to reset FPGA registers and state machines to a known
state. The HyperTransport reset follows the HyperTransport specifications. It has two
HyperTransport signals, LDT_RESET_L and LDT_PWROK. LDT_RESET_L is held Low during
FPGA reset.

When HyperTransport link is in reset, there is no valid clock signal on LDT_RX_CLK, so the
DLL must be held in reset mode. After LDT_PWROK is deasserted, the DLL will be released
from reset, re-synchronized to its input clock (LDT_RX_CLK), and will also restart the phase
detection logic as described in Receive Clocks.

LDT_RESET_L resets the receive command snooper and transmit slot state machines and all
related latches. LOGIC_RESET resets the node layer and the device layer.

The device can also be reset in software by writing to an address, e0_00ff_0000 in this
reference design.

Signal
Definition

Table 7 and Table 8 describe signals for the HyperTransport Lite interface.

Table 7: HyperTransport Lite Top Layer Signal Definitions

Signal Name Pin Type Description

LDT_RX0_CTL DDR-DS1 LDT receive CTL pin

LDT_RX0_CAD[7:0] DDR-DS1 LDT receive command/data pins

LDT_RX0_CLK DDR-DS1 LDT receive clock

LDT_TX0_CTL DDR-DS1 LDT transmit CTL pin

LDT_TX0_CAD[7:0] DDR-DS1 LDT transmit command/data pins

LDT_TX0_CLK DDR-DS1 LDT transmit clock

LDT_RESET_L OD/PP LVCMOS2 LDT reset

LDT_PWROK OD/PP LVCMOS2 Power OK

Notes:
1. DDR-DS = dual data rate differential signaling according to HyperTransport electrical specifications

version 0.77.
2. OD/LVCMOS = Open Drain signal is used, LVCMOS signal allowed for compliance.

Must have pull-up to 2.5V.
XAPP639 (v1.0) January 7, 2003 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

Table 8: Device Layer Signal Definition

Signal Name Direction from Device Layer Description

Transmit Side (Uplink)

TX_Addr[39:0] Output Address bits

TX_Data[31:0] Output Data bits, byte lane order depends on
jumper setting Endian.

TX_Data[63:32] Output More data bits if 64 bit is selected by
jumper. Byte lane order depends on
jumper setting Endian.

TX_CNT[3:0] Output Count field value for the Write packet.

TX_WR_L Output Device sets Low to start a Write cycle.

TX_DS_L Output Device sets Low to pass more data to
node layer.

TX_IDLE Input Node layer is ready to receive write.

Interrupt

TX_IVECT[15:0] Output IRQ pins, vector and interrupt
destination will be extracted from
pre-programmed registers.

TX_LD_IVECT Output Load vector

TX_NMI_L Output If clear, NMI will be generated instead
of a fixed type.

TX_NOINTR Input IRQ acknowledge,
Resets the IRQ FF in device.

Receive Side (Downlink)

RX_Addr[39:2] Input Address bits

RX_Data[31:0] Input Data bits, Endian based on jumper
setting.

RX_Byte Mask[3:0] Input Four mask bits are provided for future
use. All bits carry same value. A High
indicates valid data.

RX_Data[63:32] Input More data bits if 64 bit is selected by
a jumper. Byte lane order depends on
Endian.

RX_Byte Mask[7:4] Input More byte mask bits, if 64 bit mode is
selected by jumper. Four mask bits
are provided for future use. All bits
carry same value. A High indicates
valid data.

RX_NXCMD Output Sets to get next command reset to
enter busy state.

RX_WR_L Input Valid Write command strobe

RX_DW Input Bit 2 of Write command
1 = Double word 0 = byte sized.
12 www.xilinx.com XAPP639 (v1.0) January 7, 2003
1-800-255-7778

http://www.xilinx.com

HyperTransport Lite Interface for Virtex-II FPGAs
R

Reference
Design

Table 9 lists the device utilization of the HyperTransport Lite reference design. The
HyperTransport Lite interface reference design is available on the Xilinx FTP site at:
ftp://ftp.xilinx.com/pub/applications/xapp/xapp639.zip. It includes Verilog source code,
constraints files, and a pre-synthesized EDIF. The design was tested on a
Virtex-II XC2V1000FG256-6 at 400 MHz link speed.

Conclusion The HyperTransport protocol is designed to deliver a high-performance and scalable
interconnect between CPU, memory, and I/O devices. The protocol is engineered to operate
with a top signaling rate of 1.6 GHz on each wire pair supporting a peak aggregate bandwidth
of 12.8 GBytes/s. However, when implemented in an FPGA, the full-sized core takes up nearly
7,000 slices, or nearly half of a Virtex-II XC2V3000. A simplified version of the HyperTransport
core, called HyperTransport Lite, has been developed as a reference design to perform the
basic data transfer functions of the original HyperTransport core. This HyperTransport Lite
reference design is compatible (although not fully compliant) with the HyperTransport
specifications albeit using less device resources. The XAPP639 reference design currently
uses less than 2000 slices and occupies about one-quarter of a Virtex-II XC2V1000 device.
The design is verified with RTL and full-timing simulations to run at a 400 MHz link speed.

Revision
History

The following table shows the revision history for this document.

Table 9: HyperTransport Lite Reference Design Device Utilization

Tested link speed 400 MHz in a Virtex-II XC2V1000FG256-6
200 MHz in a Virtex-II XC2V1000FG256-4

Number of slices 1900

Number of DCMs 2

Number of global clocks 4

Date Version Revision

01/07/03 1.0 Initial Xilinx release.
XAPP639 (v1.0) January 7, 2003 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp639.zip

	Summary
	Introduction
	Functions

	Functional Layers
	Link Layer
	CRC Unit

	Node Layer
	Packet Framer/Deframer
	End-of-Chain Unit
	Buffer Manager
	Receiver Data Path
	Transmitter Data Path

	User-Defined Layer
	Device Layer
	Return Descriptor
	Interrupt Registers
	Address Decoder
	Programming Rules

	Device Layer Operation
	Receiver
	Receiver Control and Status

	Transmitter
	Transmitter Control and Status
	Device Layer Interrupt Mechanism

	Interrupt Signals

	Clock Requirements
	Receive Clocks
	Receive CLK100

	Transmit Clocks
	Transmit CLK100
	LDT_TX_CLKO

	DEV_CCLKG

	Reset

	Signal Definition
	Reference Design
	Conclusion
	Revision History

