Phoneline Home Networking Technology

Technology -Leveraging Standards

- Only protocols that have been extensively tested for many years in real use are ready for large scale deployment
- HPNA has chosen IEEE-802.3 layer 2 networking

 Uses 802.3 framing & Ethernet CSMA/CD MAC behavior
- Guarantees
 - Interoperability between equipment from multiple manufacturers
 - Support for networking standards, particularly IP suite

Technology - QoS Support

- HN applications such as transport of digital audio, video and voice (IP telephony) drive the need for QoS
 - Latency in voice connection must be controlled below 10 to 20 ms for voice quality to be maintained

HPNA 2.0 has an aggregate throughput of 10Mbps

- Adequate for many application scenerios
- Burst loads presented by TCP transfers between PCs without QoS makes the network unable to meet the latency & guaranteed bandwidth service requirements
- HPNA 2.0 MAC layer introduces 8 priority levels & an improved collision resolution technique

www.xilinx.com

Technology - Robustness

- Ad hoc home wiring topology results in
 - Reflections & frequency-dependent channel transfer functions
 - Uncharacterized & highly variable wire transmission parameters especially at higher frequencies
 - Telephone instruments on the same wiring that present a wide range of frequency-dependent impedance
 - POTS signaling & ringing which produces significant transients
 - Impulse noise coupled from AC power wiring that is seen on many phonelines
 - RF ingress & egress particularly in the amateur RF bands
- Phonelines are robust supporting up to 500 feet of phone wire between devices connected to RJ-11 jacks

www.xilinx.com

Technology - Performance

- Rating of up to 10Mbps
- HPNA 2.0 with a self-describing frame format with PHYlevel signals directly control equalizer training & demodulation

Technology - PHY Layer Privacy

- Powerline & wireless technologies allow users to share the same physical medium
 - Encryption at the link level helps attain a degree of privacy equivalent to the phone line
 - Requires some user user key configuration thus defeating the plug-and-play objective
- Privacy in phone wires is not a substitute for true cryptographic security

Technology -Future Safeness & Cost

- Future safeness
 - Once installed home networks remain in place for several years
 - Home networks interfaces become embedded in appliances and impossible to replace
 - Good HN technologies build future generation interoperability into current generations
- Cost
 - Home networks should be at consumer prices with few, additional requirements of external components

Phoneline HN Technology

- Based on HomePNA 2.0 the de facto industry standard
- Easy to use
 - User must install the software, set up the network through both the software settings & physically connect to the phone jack
- Security is excellent
 - Each home has a unique phone circuit (phone number) from the phone company's CO

Critical Aspects of the Phoneline HN Technology

- Foundation is based on Ethernet technology
 - Packet based architecture
- Spectral compatibility
 - Allows the network to coexist with other telephone services and emerging broadband Internet access
- High performance encoding scheme

Leveraging Ethernet Technology

- Home phoneline networking technology uses standard Ethernet technology
 - It is adapted to overcome challenges of the home phoneline environment
 - Enables phoneline HN to leverage the tremendous amount of Ethernet-compatible software that exists today while meeting the needs of the home environment
- IEEE 802.3 compliant MAC
- CSMA/CD as access method for sharing the baseband signal on the home network bus

– Carrier Sense Multiple Access with Collision Detect

CSMA/CD

- When a station has data to send, it first listens to the channel to see if any other station is transmitting
- If the channel is busy, the station waits until it becomes idle
- Collisions occur when 2 stations listen for traffic, hear none, and then transmit simultaneously
 - This causes both transmissions to be damaged
 - Stations must retransmit at some later time
- Back-off algorithm determines when the colliding stations should retransmit

Leveraging Ethernet Technology

Source: Intel Corporation

The home phoneline networking data frame is based on Ethernet standards with a specialized header

XILINX®

Leveraging Ethernet Technology

- Data originating from applications within the PC
 - Formed into standard 802.3 Ethernet data frames
 - Passed to the phoneline PHY
 - PHY circuitry strips off the first 8 octets of the Ethernet frame (preamble & delimiter fields) and replaces it with a PHY header designed specifically for phoneline networking
- Receiver Reverse is executed
 - PHY is used to establish the validity of the frame
 - PHY header is stripped off & replaced by a IEEE 802.3 compatible preamble & delimiter field
 - At this point the PHY can pass the frame to a standard Ethernet controller for passage to upper layer applications

Peaceful Co-existence: Spectral Compatibility

- Ensure compatibility with other communication services within the home
 - Home phoneline networking must work with voice & emerging UADSL (universal asynchronous DSL) data services
- Home phoneline networking uses filtering technology -Frequency Division Multiplexing (FDM)
 - Allows simultaneous operation of multiple services over single pair of wires
 - In POTS bandwidth is segregated into channels for each type of traffic power, analog voice, digital information (audio, data & video)

Peaceful Coexistence: Spectral Compatibility

Source: Intel Corporation

Spectral usage of three services (POTS, UADSL & home phoneline networking) share the same line by operating at different frequencies

www.xilinx.com

XILINX®

Spectral Compatibility

- Frequency Division Multiplexing (FDM)
 - Each communications service is assigned a frequency spectrum different from all others
 - Using frequency-selective filters devices using one type of service can exchange information without interference from other services that communicate in another frequency band
- Frequency range
 - Home network operates between 5.5MHz 9.5MHz
 - Passband filters attenuate frequencies below 5.5MHz very rapidly to eliminate interference very rapidly to eliminate interference with other potential services sharing wire
 - Standard voice communications operate in 20Hz 3.4kHz
 - UADSL services occupy 25kHz 1.1MHz

www.xilinx.com

High Performance Encoding

- Home phoneline networking technology uses time modulation line coding method
 - Developed & patented by Tut Systems
 - Increases data throughput
 - Allows reliable transmission of data over the unknown cabling system of home phone wiring at 1Mbps
 - Incorporates an adaptive circuit
 - Can dynamically correct for varying environmental conditions characteristic of residential phonelines

High Performance Encoding

- Both transmit & receive circuits continually monitor line conditions & adjust settings accordingly
 - The receiver circuit of the PHY layer adapts to the varying noise levels on the wire
 - The transmitting circuit is adapting output signal strength to match requirements of other receivers
- 'Squelch' algorithm sets the minimum & maximum signal levels
 - The receiver can filter out extraneous noise that otherwise might compromise data transmission & reception

HomePNA 2.0 Specification

HPNA 2.0 Spec Introduction

HPNA 2.0 defines the PHY & MAC layers for a system

- PHY-layer payload transmission rates of 4 32 Mbps with throughput rates equivalent to 10Base-T Ethernet
 - Provides ability to extend transmission rates to over 100 Mbps
- Rate adaptive transceivers
 - Optimize data rates and packet error rates for dynamically varying channel conditions on a per-packet basis
- Frequency Diverse QAM techniques provides robust communication over highly frequency selective channels

Spec Introduction (contd.)

- IEEE Std 802.3 "Ethernet" MAC
- Compatibility with IEEE Std 802.3 MII
- Backward Compatible with HomePNA 1M8
 - Allows interleaved transmissions at 1 Mbit/s rates and 10M8 compatibility mode rates
- Compatibility with other phoneline services such as POTS, V.90, ISDN and G.lite
- Spectrum notching for compatibility with Amateur Radio services

HomePNA Protocol Network Stack and Responsibilities

- PHY layer
 - Framing, scrambling, symbol mapping, modulation
- MAC layer
 - CSMA/CD
 - Collision resolution
- MII (media independent interface)
 - MAC-PHY interface
- Link layer protocols
 - Rate negotiation, link integrity, link ARQ, capability announcement

HomePNA 2.0

Current 2.0 spec was introduced in late 1999 by HPNA

- This revised spec is backward compliance with the 1.0 spec
- Throughput rating of 10Mbps
 - Products show an active throughput in 7-8Mbps range
 - Sufficient for most home networking applications
 - Not sufficiently fast for users engaged in streaming video applications
- HPNA 2.0 spec can support up to 25 PCs, peripherals & other network devices

View of the HPNA 2.0 Stack & Spectrum

Source: 2000 IEEE, HPNA 2.0

HPNA 2.0 System from Point of View of the Network Stack and Frequency Spectrum

www.xilinx.com

XILINX®

Physical Layer

- System is FDM on the same wire as used by the std. analog phone service & splitterless ADSL
 - Analog telephony uses low part of the spectrum below 35kHz
 - ADSL uses spectrum up to 1.1 MHz
 - HPNA selected 4 to 10 MHz band
 - Lower limit of 4 MHz makes it feasible to implement the filters needed to reduce out-of-band interference between HPNA & ADSL
 - Modeling phone networks shows the spectrum above 10 MHz to be have wider & deeper nulls caused by reflections
 - Cross talk between phone lines increases with frequency
 - Analog front end is harder to implement at higher frequencies
 - Choice of 4-10 MHz only overlaps a single amateur radio band (40m) which simplifies ingress & egress filtering

Physical Layer

HPNA 1.0 uses pulse position modulation (PPM)

- This technique adapts to the modulation rate
- HPNA 2.0 uses quadrature amplitude modulation (QAM)
 - Get more throughput in the same bandwidth
 - Achieve greater robustness
- Both techniques are used
 - Because the channels may have very deep nulls & multiple nulls in band

Physical Layer

- The transmitter may vary the packet encoding from 2-8 bits/symbol on a packet-by-packet basis
 - This is instead of having a fixed number of bits/symbol
 - A packet header is always encoded at 2 bits/symbol so that every receiver can demodulate at least the packet's header
 - System uses a fixed 7MHz carrier freq. & can operate at either
 2 or 4 Mbaud with modulation encoding of 2-8 bits/symbol
 - Base symbol rate is 2 Mbaud
 - At this rate, the system has a peak data rate ranging from 4 to 16 Mbps
 - Overhead reduces the actual throughput the system can achieve
 - In practice, to achieve performance equivalent to 10Base-T Ethernet, a packet must be sent at 6 bits/symbol

Frequency-Diverse QAM

- HPNA 2.0 implements a modified version of QAM at its 2-Mbaud rate called frequency-diverse QAM (FDQAM)
 - The nature of channel nulls can be such that even rate adaptation down to 2 bits per symbol is not sufficient to guarantee that the packet can be received
 - In a traditional QAM system, if there is an extreme null (i.e., one with which the equalizer can't cope) in the band, the system will fail to operate
- HPNA 2.0 allows for a higher performance 4-Mbaud mode, which achieves peak data rates up to 32 Mbps & through-put above 20 Mbps
 - In cases where the channel nulls are not particularly deep

Frequency-Diverse QAM

- Signal is frequency diverse, motivating the name FDQAM
 - The baud rate is less than half the filter's width
 - Output signal has 2 (redundant) copies of the baseband signal
 - In a traditional QAM system, a single copy of the baseband signal is sent & received
 - One copy of the signal will still make it through
 - On channels with a low SNR ratio, where a large part of the spectrum is severely attenuated, FDQAM works robustly in many cases where uncoded QAM would fail
 - Such channels are common on home phone lines
 - Simplified protocol enables robust performance over time-varying channels
 - Unlike other methods of handling severe channels, in FDQAM does not require the transmitter to have knowledge of the channel characteristics

XILINX®

www.xilinx.com

Frame Format

Frame includes

Preamble, frame control, 802.3 Ethernet frame, CRC16, padding and EOF (end-of-frame) sequence

Frame Format Fields

Preamble

- 64-symbols at the beginning of the frame
- It supports robust carrier sensing & collision detection, equalizer training, timing recovery & gain adjustment

Frame control

- 8-bit frame type which follows the preamble
- Following the frame type is an 8-bit field that specifies the modulation format (bits per symbol, for example)
- There are other miscellaneous control fields in frame control including an 8-bit CRC header

Frame Format Fields

- IEEE 802.3 Ethernet frame
- CRC-16
 - Cyclic Redundancy Check
 - It covers the header and payload, & reduces the undetected error rate for severely impaired networks
- Padding and EOF sequence

Frame Format - Key to Operation

- The first 120 bits of the frame are sent at the most robust 2-Mbaud, 2-bits/symbol rate
- Any station able to demodulate a packet can do it at this encoding
- Even if the payload is encoded at a rate (bits/symbol) that the receiver can't demodulate, it will be possible to demodulate the header
- In this situation, the receiver sends a rate request control frame (RRCF) to the sender, asking it to reduce the number of bits/symbol or the symbol rate

Frame Format - In Practice

- System starts out sending at 2 bits/symbol
 - Unless the receiver sends an RRCF, asking for future packets to be sent at higher data rates
 - Several algorithms can be used to determine when to send RRCFs and to estimate the channel capacity using an approximate SNR and bit error statistics
 - The rate adaptation algorithm can optimize the rate used when sending to multicast and broadcast groups

Medium Access Control (MAC)

- HPNA 2.0 is a CSMA/CD system
 Like the standard IEEE 802.3 Ethernet
- HPNA 2.0 introduces 8 levels of priority and uses a new collision resolution algorithm called distributed fair priority queuing (DFPQ)
- Using the Ethernet MAC does not guarantee any real service
 - Voice telephony requires a low-latency network service, and streaming audio or video applications require a guaranteed bandwidth service

MAC - Access Priority for VoIP

- Different access priorities with the VoIP station having a higher priority than best-effort file transfer traffic
- HPNA 2.0 accomplishes access priority by organizing the time following the interframe gap into an ordered series of priority slots
 - Access priority lets software define different service classes
 - Such as low-latency, controlled-bandwidth, guaranteedbandwidth, best effort, and penalty
 - Each uses a different priority level

MAC - Access Priority for VoIP

- Within a given priority level, HPNA 2.0 uses a new algorithm for collision resolution
 - Each station keeps track of a back-off level & after a collision, randomly chooses to increment the back-off level by 0, 1, or 2
 - During a collision resolution cycle, stations incrementally establish a partial ordering
 - Eventually, only one station remains at the lowest back-off level and gains access to the channel

MAC - Access Priority for VoIP

- In practice & even on saturated networks, HPNA 2.0 behaves very well
 - Unlike traditional Ethernet it does not exhibit the capture effect
 - As the offered load increases, Ethernet experiences delays of hundreds of frame times for several percent of transmission attempts
 - When compared with the Ethernet delay, the HPNA 2.0 access latency distribution reveals a negligible tail beyond twice the minimum time to service each active station, even at high offered loads

Link Layer Protocols

- Home networks using no-new-wires technology have another problem : impulse noise
 - On phone wires, impulse noise exists due to phone ringing, switch-hook transitions, & noise coupled from the AC power wiring
 - Fortunately, the impulses tend to be short and destroy only a single packet
 - There are coding techniques that might reduce the number of packets destroyed by impulses
 - HPNA 2.0 has however chosen to use a fast retransmission mechanism called limited automatic repeat request (LARQ)

Link Layer Protocols - LARQ

- LARQ is implemented (in software) at Layer 2
- Because it only operates on a single segment of the network, it is very effective in hiding packet erasure from TCP/IP

Source: 2000 IEEE, HPNA 2.0

User-level Throughput versus Impulse Noise Events/sec

www.xilinx.com

Link Layer Protocols -Link Integrity

HPNA 2.0 implements a link integrity mechanism

- It can be implemented either in hardware or at low levels of a software driver
- It provides a quick & easy way for the end user to determine if the network has basic connectivity
- Link integrity frames are sent once per second, unless there is traffic on the wire, in which case a reduced number of frames may be sent

HPNA 2.0 MAC/PHY Block Diagram

HPNA 2.0 Analog Front End Block Diagram

Source: 2000 IEEE, HPNA 2.0

www.xilinx.com

HPNA 2.0 Technology

- Tut Systems & Epigram (Broadcom Corp.) are the alliance's initial technology providers
- Comparison with IEEE1394/FireWire specification
 - Firewire is a high-speed technology requiring new optical fiber or high grade copper wiring throughout the home
 - Firewire technology is used for special applications requiring enormous amounts of bandwidth
 - HPNA will be widely popular for applications with multiple PCs & for those looking for existing wires solutions

HPNA 2.0 Technology

Phoneline based home networking

- Will ensure interoperable & coexistence with wireless, powerline, Universal ADSL/G.Lite & Ethernet networks
 - Co-exists with the new splitterless Universal ADSL standard
 - Fully compatible with the Ethernet MAC layer standard (IEEE 802.3 CSMA/CD)
 - Meets FCC requirements
- Complement high speed Internet access technolgies such as cable modems, ISDN, xDSL, satellite
 - Ensures sharing Internet access with all other PCs or devices in the home simply by plugging into the telephone jack with an adapter or NIC

HPNA 2.0 Technology

- Does not require any hubs or new Cat 5 wiring
- Supports the complex, random-tree type of wiring typically found in the home
- Such an arrangement requires no special terminations, filters or splitters
- Provides QoS
 - Allows streaming audio, video & telephony over the same wires through which Internet access occurs

Key Consumer Applications Require HPNA 2.0

- High speed Internet access sharing
- High speed file sharing
- Peripheral sharing
 - Printer, scanner
- Voice over IP (VoIP)
- Multimedia
 - Streaming digital audio & video throughout the home
- Backward compatibility & support for applications supported by HomePNA specification 1.0

Examples of Products that are Expected to Use the Technology • PCs

- Modems (including cable, xDSL, satellite, analog)
- Network hubs
- IP telephones
- Digital TVs and set-top boxes
- Home security & automation
- Network appliances
- 'Bridges' to Ethernet, wireless, powerline, 1394, USB

XILINX®

Performance Requirements

- HPNA Spec 2.0 shall be capable of achieving nominal data rates of 10 Mbps over typical phonelines
 Based on 10 Mbps 10BaseT Ethernet network
- Coverage over phoneline networks for HPNA spec 2.0 is defined as follows:
 - Achieve full rate throughput operation over at least 80% of home networks
 - Provide ability to connect, at no specified rate, in 100% of home networks
- Maximum internode distances are required to be greater than or equal to the HPNA spec 1.0

Performance Requirements

- Number of nodes supported on one network greater than or equal to HomePNA spec 1.0
- It is desirable that specifications feature adaptive capability above and below the nominal 10 Mbps rate
 - This allows optimization of throughput over the widest range of phoneline network topologies
 - This extends the coverage of homes served by HPNA spec
 2.0 relative to the HPNA Spec 1.0
- It is desirable that specifications show scalability to future higher data rates well over 10 Mbps

Compatibility Requirements

- HPNA spec 2.0 addresses the physical and logical interface point between the phoneline and HomePNA network devices
 - This ensures interoperability between Promoter's/Adopter's home phoneline network products
- HPNA spec 2.0 should be electrically compatible with other services
 - POTS, V.90, ISDN & G.lite should coexist on the same phoneline

Backwards Compatibility With Earlier Specs

- HPNA Spec 2.0 specifies a mode for backward compatibility with HPNA Spec 1.0
 - The minimum requirement specifies a 'fall back' mode which selects operation of HPNA Specification 1.0 for all nodes
 - In a mixed network of HPNA Specs 1.0 and 2.0 nodes, all HPNA Spec 2.0 stations should communicate at their full 10Mbps rate
 - Regardless of the presence of HomePNA Spec 1.0 nodes
 - Without interfering with the HomePNA Spec 1.0 nodes

Interoperability

With HomeRF products

- HomeRF products work with HPNA-based products
 - TCP/IP is used in HPNA based products & HomeRF products fully supports TCP/IP
 - Consumer requires a bridge to interface the phoneline network to wireless HomeRF network
 - HomeRF SWAP spec defines this bridging
 - Vendors are currently developing future bridging products

With Ethernet products

 HomePNA is an Ethernet based technology and are seamlessly interoperable

So, Can We Use Powerlines for Home Networking?

Powerlines are also an Omnipresent, 'No New Wires' Solution!

Powerline Home Networking

- Uses existing power & electric lines in the homes
 Quite similar to phoneline networks
- Several AC/power sockets/outlets in a home
- Powerline capabilities
 - Data rates up to 10Mbps are possible
- Low cost solution

Powerline Home Networking Pros

- Multiple power outlets can be fund in each room
- AC outlets are ubiquitous in virtually every existing home
- Powerline networking takes advantage of the unused capacity of the power cable to transmit data over the existing home power cabling
- Is capable of distributing data as fast as 10+ Mbps

Powerline Home Networking Cons

- Widely varying transfer response- frequency & attenuation
- Different types of noise impairments at unpredictable times
- RF jammers (particularly at night)
- Time delay spread (multipath)
- Usable bandwidth is not contiguous due to impairments or regulations
- Channel Adaptation is required to achieve high data rates and reliability

Noise Sources

Switching power supplies

- Rich in harmonics with oscillator 20Kh to > 1MHz
- Conduct oscillator noise onto power line
- Frequency often varies with load
- Universal series wound motors
 - Vacuum cleaners, kitchen appliances, drills
 - High repetition rate impulses

Noise Sources

Light dimmers

- Produce large impulses at 100-120 Hz
- Large 20V to 50V impulses
- Power line intercoms
 - 3Vpp to 7Vpp from 150KHz to 400KHz
 - Large harmonics of about 30KHz bandwidth

Powerline Technologies

X10

- X-10 controllers send signals over existing AC wiring to receiver modules
- X-10 power line technology transmits binary data using an Amplitude Modulation (AM) technique

Intellon CEBus

- Open standard that provides separate PHY layer specification documents for communication on power lines & other media
- Data packets are transmitted by the transceiver at about 10Kbps employing spread spectrum technology
- Uses a Carrier Sense Multiple Access/Collision Detection and Resolution (CSMA/CDCR) protocol to avoid data collisions

Powerline Technologies

- Echelon LONWorks
 - Provides a peer-to-peer communication protocol, implementing Carrier Sense Multiple Access (CSMA) techniques
- Adaptive Networks
 - Utilizes a hybrid token passing media access scheme as opposed to the peer-to-peer CSMA/CDCR schemes

Powerline Applications

- Industrial
 - Utility telemetering, automated storage, factory and machine automation, shipboard refrigerated container monitoring
- Commercial
 - Point-of-sale networks, public transit vehicles, residential LAN, vending machines monitoring

Issues to Overcome in Powerline HN

- Immature technology
 - Interference Issues
 - Low Speed and Attenuation
- Lack of standards
- Lack of consumer adoption
- Regulatory issues
- There is an added cost for the extra safety isolation needed with power connections
 - This type of modem is likely to remain significantly more costly than phoneline models but below the cost of wireless systems

