Designing with FPGAs

Beyond Bigger, Faster, Cheaper...

Peter Alfke Xilinx, Inc.

peter.alfke@xilinx.com

XILINX, Virtex, and Spartan are registered trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners

Designing with FPGAs

- Why FPGAs ?
- Basic Architecture and New Features
- Designing for High Speed
- Designing for Signal Integrity
- Designing with BlockROMs
- Designing for Low Power
- Designing for Security
- Asynchronous Design Issues
- Tips and Tricks from the Xilinx Archives
- Virtex-II, the newest FPGA Family
- What's Coming Later in 2001?

Why FPGAs?

- Ideal for customized designs
 - Product differentiation in a fast-changing market
- Offer the advantages of high integration
 - High complexity, density, reliability
 - Low cost, power consumption, small physical size
- Avoid the problems of ASICs
 - high NRE cost, long delay in design and testing
 - increasingly demanding electrical issues

Fast Time-to-Market, fast response to market changes

FPGA Advantages

- Very fast custom logic
 - massively parallel operation
- Faster than microcontrollers and microprocessors
 - much faster than DSP engines
- More flexible than dedicated chipsets
 - allows unlimited product differentiation
- More affordable and less risky than ASICs
 - no NRE, minimum order size, or inventory risk
- Reprogrammable at any time
 - in design, in manufacturing, after installation

Makimoto's Wave

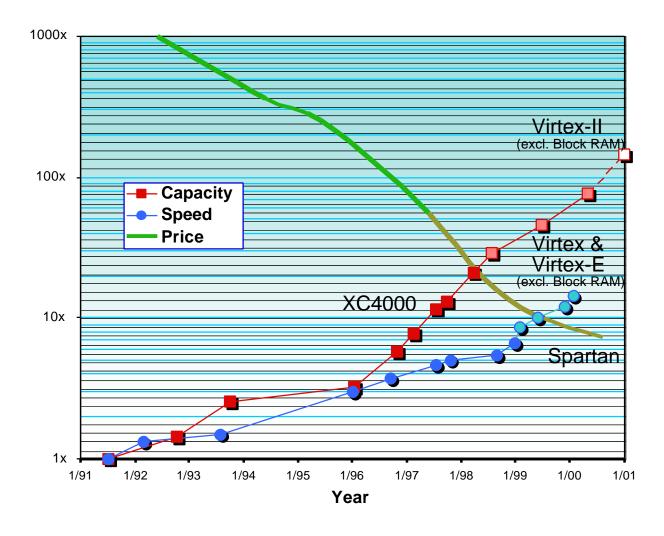
- 1957 to '67 Standard discrete devices (transistors, diodes)
- 1967 to '77 Custom LSI for calculators, radio, TV
- 1977 to '87 Standard microprocessors, custom software
- 1987 to '97 Custom logic in ASICs
- 1997 to '07 Standard Field-Programmable devices

We are in the early part of the FPGA cycle

Tsugio Makimoto, formerly Hitachi,
 Chairman of the Technology Board of Sony Semiconductor Network Co.

User Expectations

- Logic capacity at reasonable cost
 - 100,000 to a several million gates
 - On-chip fast RAM
- Clock speed
 - 150 MHz and above, global clocks, clock management
- Versatile I/O
 - To accommodate a variety of standards
- Design effort and time
 - synthesis, fast compile times,
 - tested and proven cores
- Power consumption
 - must stay within reasonable limits


Bigger, Faster, Cheaper FPGAs

- Millions of gates
 - ->1 million RAM bits
- >200 MHz system speed,
 - —800 Mbps I/O
- From 0.3 ¢ to 3¢ per Logic Cell (LUT plus flip-flop)
 - Lowest for SpartanXL in high volume and simplest package
 - Highest for Virtex-II in low volume

"FPGAs have evolved from glue logic to system platforms"

A Decade of Progress

Three Pillars of Progress

Technology

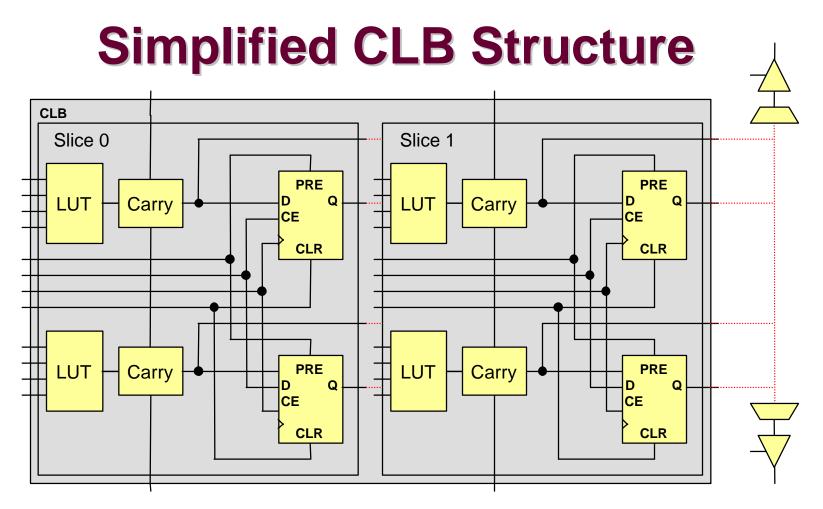
- smaller geometries, more and faster transistors
- better defect densities, larger chips, larger wafers, lower cost

Architecture

- system features: fast carry, memory, clock management
- hierarchical interconnect, controlled-impedance I/O

Design Methodology

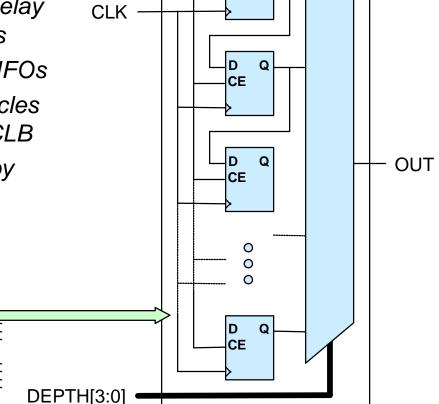
- powerful and reliable cores, faster compilation
- modular, team-based design, internet-based tools



Basic Architecture and New Features

Beyond Bigger, Faster, Cheaper

On-chip RAM
Efficient Arithmetic
Clock Management
Multi-standard I/O
Virtex-II, the next generation


- Two slices in each Virtex CLB, four slices in each Virtex-II CLB
 - Two BUFTs associated with each CLB, accessible by all CLB outputs
 - Fast dedicated carry logic runs vertically up

Shift Register LUT

- Dynamically addressable shift register (SRL)
 - Ultra-efficient programmable delay for balancing pipelined designs
 - Can also be used for simple FIFOs
 - Maximum delay of 16 clock cycles in one LUT, up to 128 in one CLB
 - Can be read asynchronously by toggling address lines

Virte

LUT

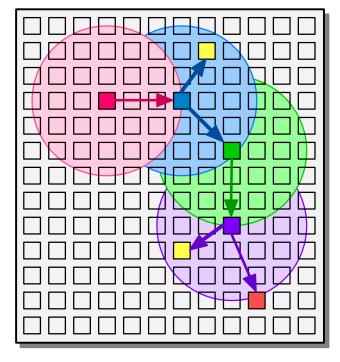
D CE

Slice

SRL16 Applications

- 1...16-bit shift register in one LUT
 - Up to 128 bits in one CLB
- Pipeline compensation (different length per branch)
- FIFO, pseudo-random number generator (LFSR)
- Serial frame synchronizer
- Running average calculator
- Pulse generator and clock divider
- Pattern generator, state machine
- Website:
 - http://support.xilinx.com/support/techxclusives/ SRL16-techxclusive2.htm

Dedicated Fast Carry

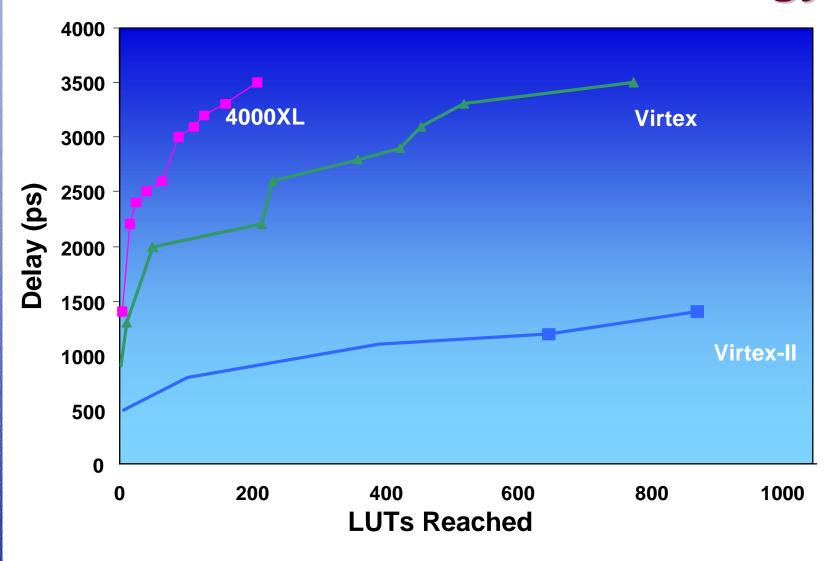

- 64-bit adders would require 128 levels of logic
 - Expensive complex carry schemes would be needed to preserve performance without using Carry Logic
- Virtex minimizes the carry propagation delay
 - < 100 ps per bit pair, <50 ps per bit, includes routing
- Fast adders, accumulators, and counters
 - —24-bit operation at up to 300 MHz in Virtex-II
 - 64-bit operation at up to 190 MHz in Virtex-II
- Fully synchronous operation
 - Same speed for add/subtract, accumulate, or count

Fast Logic Needs Fast Routing

- Typical designs need a routing delay of < 1.5 ns
- Virtex delivers this performance
- Virtex-II is even faster
- Delay is independent of direction
 - Dependably short delays provided by large numbers of short interconnect resources

Vector-based Interconnect

The circles show 1.4-ns routing delay


Virtex-II Provides Fast Routing

- Each Hex line spans six CLB rows or colums
- Each Hex interconnect delay < 300 ps
 - three cascaded Hex lines span 18 columns in any direction
- In 1 ns, a CLB output can reach 576 other CLBs
 - *i.e.* 4,608 other LUTs

The center of an XC2V500, can reach any logic or RAM input within less than one nanosecond

ActiveInterconnect Technology

XILINX®

On-Chip RAM

- Up to 120,000 Four-Input Look-Up Tables in Virtex-II
 - Each 16-bit ROM, RAM or shift register
 - 0.5 ns combin. delay, 0.5 ns set-up time, 0.5 ns clock-to-Q
- Up to 192 dual-ported synchr. BlockRAMs
 - Each 4096 bits in Virtex, 18K bits in Virtex-II
 - <3 ns access time, >200 MHz operation
- Fast interface to external RAM
 - Up to 840 Mbp I/O data transfer rate (420 MHz DDR)

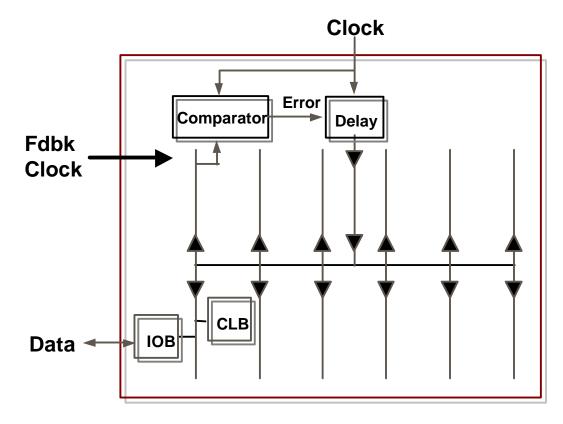
Efficient Arithmetic

Dedicated Carry

- For adders, accumulators, counters
- —<50 ps per bit incremental carry delay
- —200 MHz operation over 64 bits

2-s complement multipliers in Virtex-II

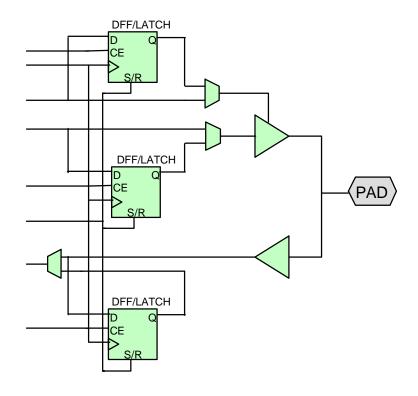
- 18 x 18 bits in <7 ns, 8 x 8 in 4 ns
 - Faster pipelined operation will be supported mid 2001
- Powerful and efficient for DSP
- Up to 192 independent multipliers
- Four in the smallest device, XC2V40


Clock Management with DLL

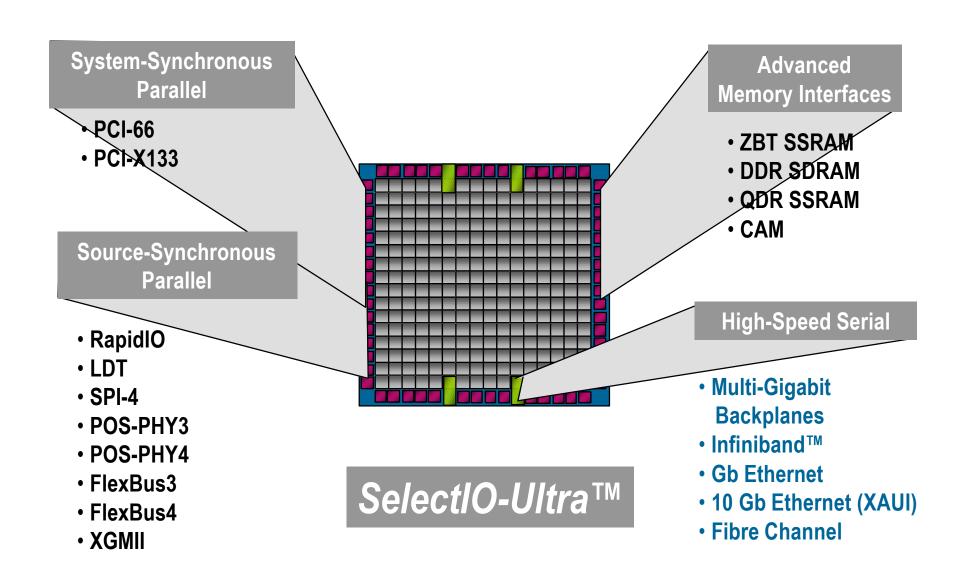
- Eliminates on-chip clock delay
 - Can also eliminate on-board clock delay
- Frequency division and multiplication
- Phase-coherent outputs
- Frequency modulation to reduce RFI

Solves the speed problem of large chips

4 to 12 Independent DLLs



- DLLs adjust clock delay to align internal and external clocks
 - Digital closed-loop control
 - 25 to 400-MHz range, 35-picosecond resolution

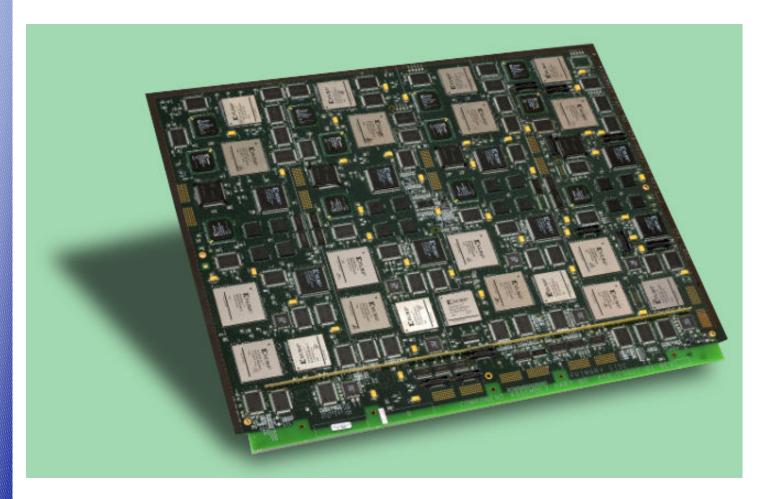

Simplified IOB Structure

- Fast I/O drivers
- Separate registers for input, output, 3-state control
 - Async/Sync set or reset
 - Common clock and separate clock enables improve usability
 - Configure as FF or latch
- Programmable slew rate and adjustable input delay
- Selectable I/O standards
 - Output drive, input threshold

Virtex-II SystemIO™ Technologies

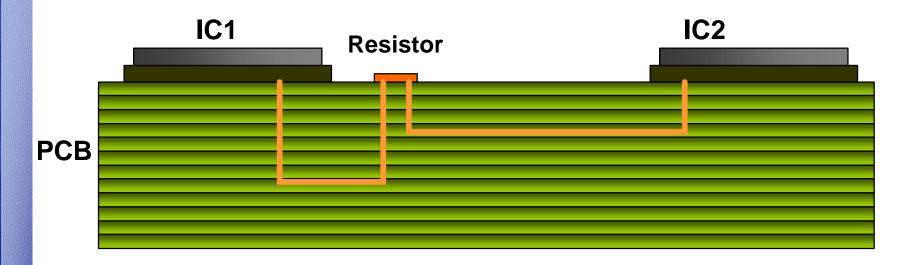
Multi-Standard I/O

- LV-TTL and LV-CMOS
 - for logic interfaces
- SSTL and HSTL (3.3, 2.5, 1.5 V)
 - for driving terminated lines
- GTL and GTL+
 - for driving double-terminated busses
- LVDS and LVPECL
 - high-speed differential signals
- Double-Data Rate interfaces
 - for ultra-fast data transfer


Multi-Standard I/O

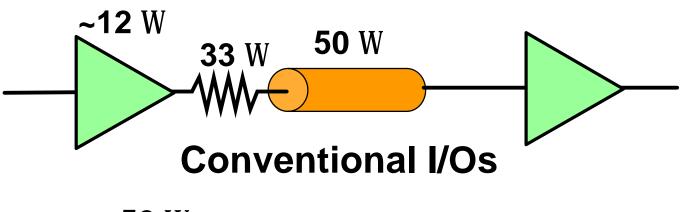
- Essential for system-level FPGAs
 - directly interfacing to many different circuits
- Essential for fast interconnects
 - requiring different features and trade-offs
- Essential for driving terminated lines
 - Demanded by the fast transition times
- On-chip termination simplifies pc-boards
 - Eliminates need for external resistor packs

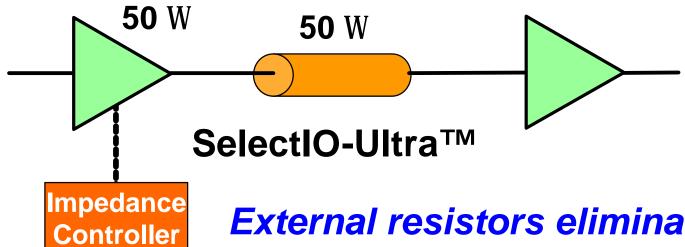
Optimized interface to any type of logic



Typical 20-Layer PCB: A Very Tough Design Problem

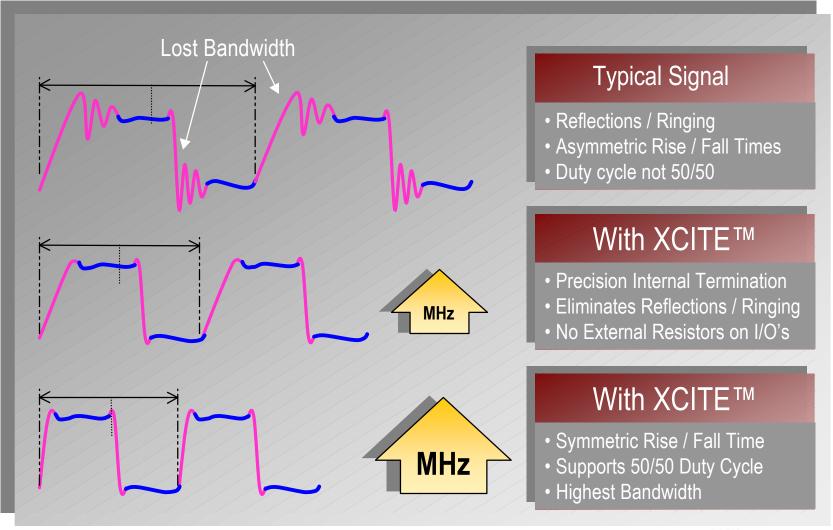
PC-Board Routing Impact




Multiply this by 1000 pins per chip, and by the N chips per board!

8+ weeks for pc-board layout

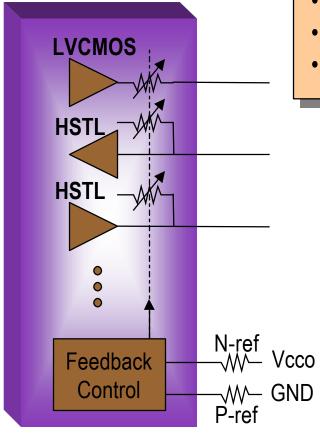
SelectIO-Ultra™



External resistors eliminated Impedance maintained by FPGA

XCITETM

The Evolution of Signal Integrity



XCITE TM

Xilinx Controlled Impedance Technology
World's 1st Digitally Controlled Impedance Technology

XCITE™ I/O Bank

Eliminate Reflections, Ringing

- Precision internal termination
- 10% tolerance with 1% ref resistors
- Compensated over Voltage, Temp

Eliminate External Resistors

- Built-in impedance control for I & O
- Simplify PCB layout
- Improve system reliability
- Reduce component count

Symmetric Rise/Fall Times

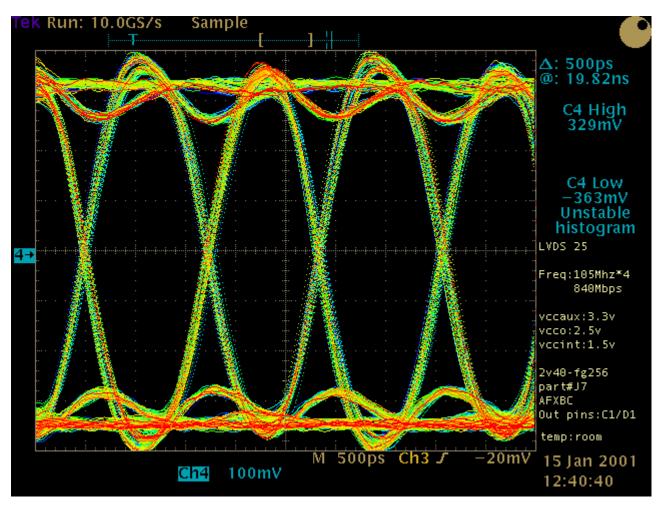
- Separate ref resistors for rise/fall
- Supports 50%/50% clock outputs

Controlled-Impedance Benefits

- Better signal integrity,
 - —higher systems reliability
- Smaller PC-boards,
 - —easier to layout,
 - —easier to manufacture

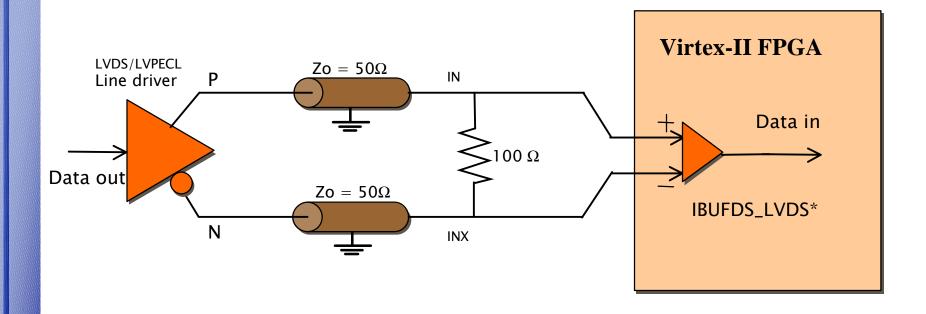
XCITE I/O is the only practical way to interconnect high pin-count fine-pitch ball-grid packages

Differential Signaling: 840Mbps


Full LVDS Programmable Solution:

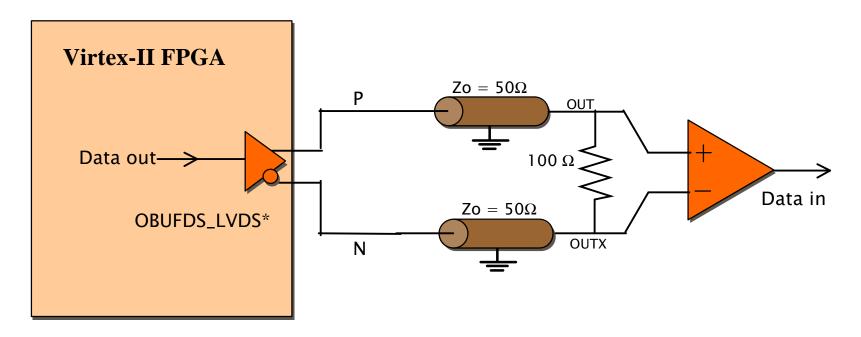
- 2.5 V : 250 mV - 400 mV - 3.3 V : 250 mV - 400 mV - Ext. 2.5 V : 350 mV - 750 mV - Ext. 3.3 V : 350 mV - 750 mV Integrated current driver

Data_1 DDR Data_2 FF N N IOB


840 Mbps Eye Pattern from Virtex-II LVDS

LVDS Termination

LVDS Receiver: Point-to-point configuration



All LVDS receivers require standard termination.

LVDS Termination

LVDS Transmitter: Point-to-point configuration

- True current-mode driver eliminates the need for external source-termination.
- The OBUFDS_LVDS primitive= True current-mode driver

Designing for High Performance

Performance Parameters I

Parameter

Virtex-II-5 (ns)

-CLB

 Combinatorial LUT delay 	0.41
 Set-up time through LUT 	0.65
 Carry delay per bit 	0.045
 Clock-to-Q delay 	0.40

— BlockRAM:

set-up time (A,D)	0.30
Clock-to-out	2 89

—Input

 Data pin to clock pin set-up 	0.78
Data in delay	0.70

— Output

 Data to output pad 	2.45	
 Clock-to-output pad 	3.45	

Performance Parameters II

Internal register-to-register	Virtex-II-5	
16-bit adder	317 MHz	
18 x 18 multiplier	155 MHz	
24-bit synchronous counter	305 MHz	
64-bit synchronous counter	190 MHz	
DLL max output frequency	420 MHz	

Package-pin to package pin delays

64-bit decode, 6.8 ns
32 : 1 multiplexer 7.8 ns
One-LUT combinatorial function 4.5 ns

Virtex-II parameters are preliminary and conservative

Designing for High Speed

- Understand the architecture, strength and limitations
 - LUTs,, LUT-RAMs, SRL16, Carry
 - Registered I/O, Output 3-state control flip-flop
 - Longlines, 3-state buffers,
 - Synchronous dual-ported BlockRAM
 - Global clocks with glitch-free enable and input multiplexer
 - DLLs, Digital Frequency Synthesizer, Phase control
 - Constant-coefficient multipliers in LUTs
 - 18x18 multipliers in Virtex-II,

The synthesizer cannot do all your homework

Provide High-Level Floorplanning

- Intelligent pin assignment
 - —prevents routing congestion and poor performance
- Natural structure:
 - —Data flows horizontally, Control flows vertically
 - Vertical adders and counters, carry going upwards
- Pick the best I/O standard, observe banking rules

Place & route tool should not do all your homework

Design Synchronously, Use Global Clocks

- Up to 16 Global Clocks are available
 - Very low skew on these clock nets
- DLL eliminates clock distribution delay
 - Inside the chip, or even on the pc-board
- Do not gate the clock, use CE instead
 - But you may need clock gating for lowest power
 - Virtex-II has glitch-free clock gate and clock mux
- Use Carry for adders, counters and comparators
 - Superior speed, less logic, forces vertical orientation
- Use predefined cores
 - They have been tested and are guaranteed to work at speed

Use Global Buffers to Reduce Clock Skew

- Global buffers are connected to dedicated routing
 - Global clock network is balanced to minimize skew
- All Xilinx FPGAs have global buffers
 - XC4000 and Spartan have 8
 - Virtex and Spartan-II have 4
 - Virtex-II has 16 BUFGs with glitch-free input mux
- You can always use a BUFG symbol and the software will choose an appropriate buffer type
 - All major synthesis tools can infer global buffers onto clock signals that come from off-chip

Why Use Timing Constraints?

- The implementation tools do NOT try to find the placement and routing that achieves the fastest speed
 - they just try to meet your performance expectations
- YOU must communicate your expectations
 - through Timing Constraints
- Timing Constraints improve performance
 - by placing logic closer together and shortening the routing

Timing constraints are the best high-level tool to achieve guaranteed performance

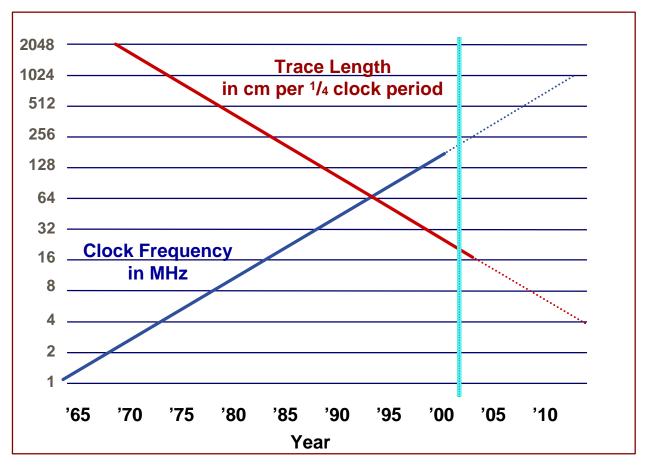
More About Timing Constraints

- Timing constraints define your performance objectives
 - Tight timing constraints increases compile time
 - Unrealistic constraints causes the Flow Engine to stop
 - Logic Level Timing Report tells whether constraints are realistic
- After implemention,
 - review the Post Layout Timing Report to determine if performance objectives were met
- If your constraints were not met,
 - use the Timing Analyzer to determine the cause

Designing for Signal Integrity

Transmission Lines

- Long traces are transmission lines, they can ring
 - "transmission line" if round trip > transition time
 - "lumped-capacitance" if round trip < transition time
- Signal delay on a pc-board:
 - 140 to 180 ps per inch (50 to 70 ps per cm)
- Avoid reflection by terminating the line
 - either series termination at the source or parallel termination at the destination
- Longest trace that behaves as a lumped-capacitance:
 - 3 inches max for a 1-ns transition time (7.5 cm)
 - 6 inches max for a 2-ns transition time (15 cm)


Evolution

	1965	1980	1995	2010 (?)
Max Clock Rate (MHz)	1	10	100	1000
Min IC Geometry (μ)	-	5	0.5	0.05
Number of IC Metal Layers	1	2	3	10
PC Board Trace Width (μ)	2000	500	100	25
Number of Board Layers	1-2	2-4	4-8	8-16

- Every 5 years:
 System speed doubles, IC geometry shrinks 50%
- Every 7-8 years: PC-board min trace width shrinks 50%

Moore Meets Einstein

* Speed Doubles Every 5 Years...
...but the speed of light never changes

Designing for Signal Integrity

- Devices need good Vcc bypassing
 - Bypass capacitor is the only source of dynamic current
- Output driver needs IBIS models
 - http://www.xilinx.com/support/troubleshoot/htm_index/sw_ibis.htm
- User needs understanding of transmission line effects
 - Characteristic impedance, reflections, dV/dt
 - series termination, parallel termination,
- Model the pc-board with HyperLynx
 - Multi-Layer with undisturbed ground/power planes
 - Controlled-impedance signal lines (50 to 75 Ohms)
- Website:
 - http://www.xilinx.com/support/techxclusives/ CircuitBoard-techX6.htm

Signal Integrity Tools

- IBIS models
 - http://www.xilinx.com/support/troubleshoot/htm_index/sw_ibis.htm
- HyperLynx
- Fast oscilloscope and fast probes
 - Beware of slow scopes measuring 1 ns rise time:
 - A 1 GHz scope with a 1 GHz probe displays 1.2 ns rise time
 - A **250 MHz** scope and probe displays: **3.0 ns** rise time
- Measure eye patterns
 - Use LFSR to generate pseudo-random sequence
- Spectrum analyzer
 - Measure the effect of decoupling capacitors, etc.
- Website:
 - http://www.xilinx.com/support/techxclusives/signals-techX5.htm

Power Supply Decoupling

- CMOS current is dynamic
 - Icc current spike on every active clock edge
- Peak current can be 5x the average current
 - Instantaneous current peaks can only be supplied by decoupling capacitors
- Use one 0.1 uF ceramic chip capacitor per Vcc pin
 - Low L and R are more important than high C
 - Double up for lower L and R if necessary
 - Use direct vias to the supply planes, extremely close to the power-supply pins
 - On-chip plus package capacitance is ~0.01μF

Tricks of the Trade

- Reduce the output strength
 - LVTTL and LVCMOS offer 2, 4, 6, 8, 12, 16, and 24 mA
- Use SLOW attribute where available
 - Increases transition time
 - especially when driving transmission lines
- Explore different I/O standards
 - Different supply voltages, input thresholds
 - Unidirectional, bidirectional, bus-oriented, differential
- Reduce fan-out and load capacitance
- Add virtual ground to alleviate SSO problems
 - Ground output pin inside and outside, give it max strength

Testing for Performance and Reliability

- Manipulate circuit speed for testing purposes:
 - Hot and low Vcc = slow operation
 - Cold and high Vcc = fast operation
- If it fails hot: insufficient speed
 - Use a faster speed grade
 - Modify the design, add pipelining
- If it fails cold: signal integrity and hold time issues
 - Look for clock reflections
 - Look for excessive internal clock delays
 - Look for decoding spikes driving clocks
 - Look for "dirty asynchronous tricks"

Model and Measure

- Model device, package, pc-board
 - Avoids pc-board re-spin
- Measure performance and noise margin
 - Avoids field disasters
- Do not panic:
 - It's only 1 and 0, High and Low that count
 - Noise immunity takes care of the rest
- References:
 - Classes: see www.hyperlynx.com, then go to TRAINING
 - Book: Johnson & Graham High-Speed Digital Design
- Website:
 - www.xilinx.com/support/techxclusives/techX-home.htm

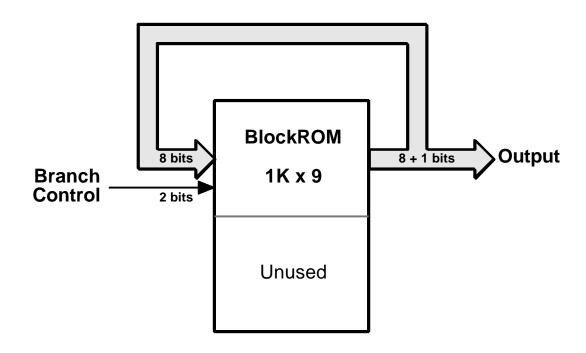
Designing with BlockROMs

Designing with BlockRAMs

- Dual-ported synchronous BlockRAMs
 - Synchronous read and write
- Two Ports share nothing but the common data array
 - Individual address, data, clock,read/write, CE
- Each port can be configured individually
 - Parallel-serial (or S-P) converter "for free"
- 4K bits per BlockRAM in Virtex
 - 4K, 2K, 1K or 512 deep (256 x 16 with ports combined)
- 18K bits per BlockRAM in Virtex-II
 - 16K, 8K, 4K, 2K, 1K or 512 deep (256 x 72 combined)
- Max 180 BlockRAMs in Virtex, max 192 in Virtex-II

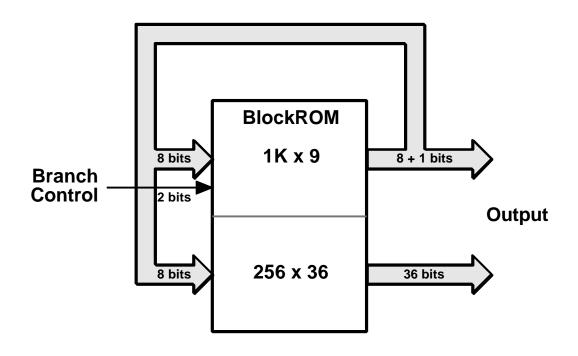
BlockROM State Machines

- BlockRAM can be initialized as BlockROM
- Virtex has 4086 bits per BlockROM
- Counters
 - Two 8-bit Gray counters
 - with additional binary outputs
 - Two 1-digit decimal counters
 - with 7-segment read-out
 - 16-bit up/down binary counter
 - 4-digit BCD up/down counter
- Finite State Machines
 - Two 4-input 32-state state machines

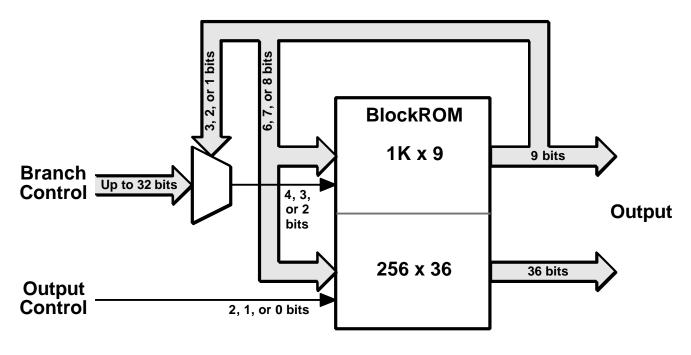


BlockROM State Machines

- Virtex-II has 18K bits per BlockROM
- Counters
 - One 20-bit Gray counter
 - One 6-digit decimal counter
 - using one additional CLB
 - One 20-bit binary counter
- Finite State Machines (FSMs)
 - Two 5-input 64-state state machines
 - Two 4-input 128-state state machines


Fast FSM in ¹/₂ BlockROM...

- 256 states, 4-way branch, 150 MHz operation
 - or 128 states, 8-way branch, same speed
 - or 64 states, 16-way branch, same speed


...plus 36 Additional Outputs

- 36 additional parallel outputs
 - from the other half of the BlockRAM

...and Many Control Inputs

64, 128, or 256 states with multi- branch capability 36 freely assigned + 8 encoded outputs optional multiplexed control inputs

All in one BlockRAM plus two CLBs

BlockROM Code Converters

- Virtex has 4096 Bits per BlockROM
- Simultaneous Sine and Cosine table
- Two 9-bit binary to 3-digit BCD converters
 - Binary and BCD have identical LSB
- ◆ Two telecom 8-bit µ-law or A-law to linear converters
- 3-digit BCD to 9-bit binary converter
- Wallace-tree adder
 - —22, 44, or 48 inputs in several BlockROMs

BlockROM Code Converters

- Virtex-II has 18K bits per BlockROM
- High-resolution simultaneous Sine and Cosine table
- Two 11-bit binary to 4-digit BCD converters
 - Binary and BCD have identical LSB
- Two telecom 8-bit µ-law / A-law to linear converters
- Two 3-digit BCD to 10-bit binary converter
 - BCD and binary have identical LSB
- Wide-input Wallace-tree adder in multiple BlockROMs

Designing for Low Power

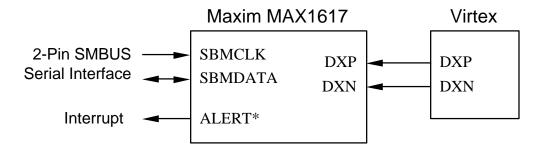
Designing for Low Power Consumption

- To extend battery life
- To reduce chip temperature and cooling requirements
 - Tjmax = 125 degr.C (150 degre.C in ceramic)
 - Delays increase 0.35% / degr.C
 above the guaranteed 85 degr.C junction temperature
- Use the free Xilinx Power Estimator
 - http://www.xilinx.com/cgi-bin/powerweb.pl

Power is proportional to CV²f Minimize all three!

Designing for Low Power

- Clock Power + I/O Power + Logic Power
- Clock Power
 - Minimize # of high-speed clock nets
 - Use DLLs for phase-aligned sub-clocks
 - CE does not reduce clock power
- I/O power
 - Avoid wasted current in input buffers
 - Use fast, full-swing input signals
 - Use output registers to avoid output glitches



Low Logic Power

- Control Vcc tightly
 - Power is proportional to Vcc²
- Minimize logic transitions and glitches
- Optimize counters:
 - Gray and Johnson are best
 - Binary counters double the power
 - Linear Feedback Shift Register are even worse
- Minimize internal node capacitance
 - Use aggressive timespecs
 - Design for the highest speed possible, even if not needed
 - This assures lowest interconnect capacitance and provides the lowest power at the lower clock frequency

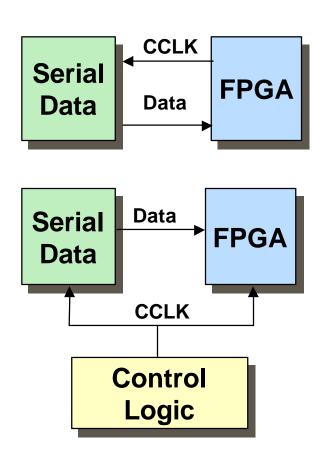
Thermal Solution

Remote Die Sensor

- Specially designed to be used with the maxim MAX1617
- Simple 2-pin interface with no calibration required
- Provides two channels
 - FPGA die temp reported from -40 to +125 degr.C (+/- 3 degr.C)
- Programmable over-temperature & under-temp. alarms
- Originally intended for the Pentium II

Precise thermal management is now easy

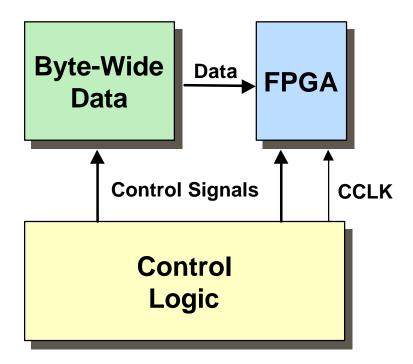
Designing for Security


Designing for Security

- Configuration bitstream can be intercepted
 - But not interpreted or reverse-engineered
 - Some users are concerned about IP theft
- Virtex -II offers security through encryption
 - Triple-DES with 3 x 56 bits
 - Triple-DES has never been cracked

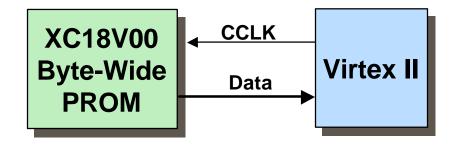
Configuration Modes: Serial Modes

- Data is loaded one bit per CCLK
- Master serial
 - FPGA drives configuration clock (CCLK)
 - FPGA provides all control logic
 - Note that CCLK is also an input!
- Slave serial
 - External control logic generates
 CCLK
 - Microprocessor
 - Xilinx download cable
 - Another FPGA



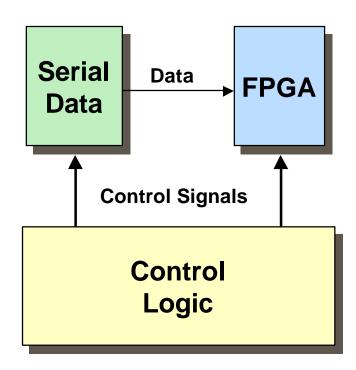
Configuration Modes: Byte-Wide SelectMAP Mode

Slave SelectMAP


- CCLK is driven by external logic
- Data is loaded one byte per CCLK

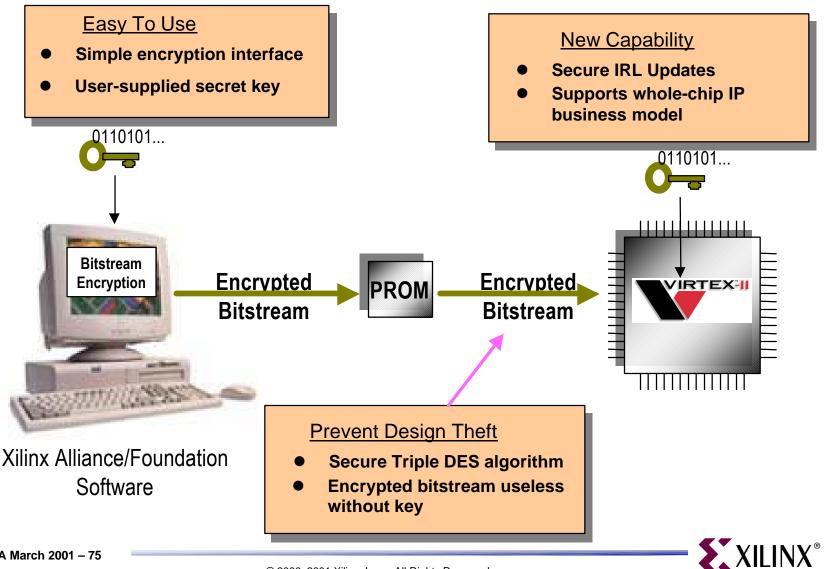
Configuration Modes: Master SelectMAP Mode

- Master SelectMAP
 - CCLK is driven by the Virtex II FPGA
 - Data is loaded one byte per CCLK



New to Virtex II by popular demand...

Configuration Modes: Boundary Scan Mode

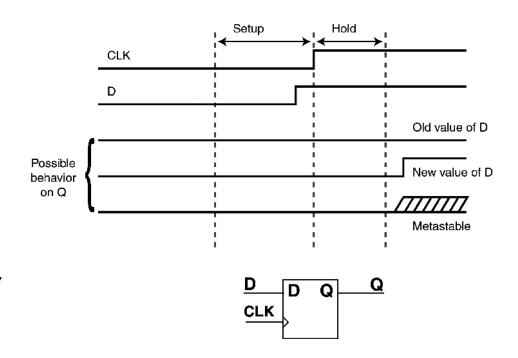

- External control logic required
- Control and data drive the boundary scan pins (TDI, TMS, TCK)
- Data is loaded bit-serially one bit per TCK

DesignSecurity

Bitstream Encryption

Asynchronous Issues

Understanding Asynchronous Design Issues


- Most systems operate synchronously inside
 - But asynchronous inputs are a fact of life
- Occasionally, an asynchronous input will cause a flip-flop to go metastable
 - This is a rare, but unavoidable, probabilistic event
- Solution:
 - Faster flip-flops recover faster
 - Double-synchronization reduces probability

Awareness and understanding are crucial

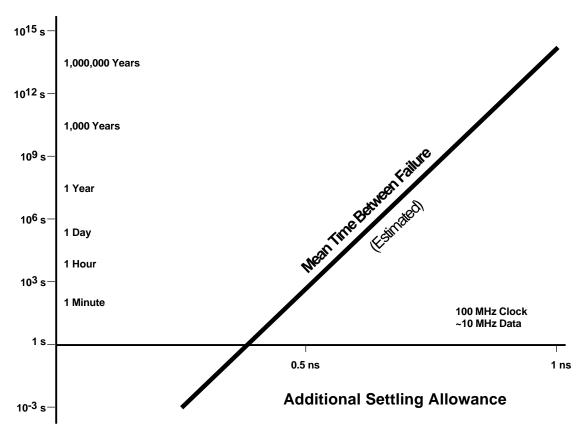
Setup and Hold Time Violations

- Violations occur when the flip-flop input changes too close to a clock edge
- Three possible results:
 - Flip-flop clocks in old data value
 - Flip-flop clocks in new data value
 - Flip-flop output becomes metastable

Metastability is a rare, random event

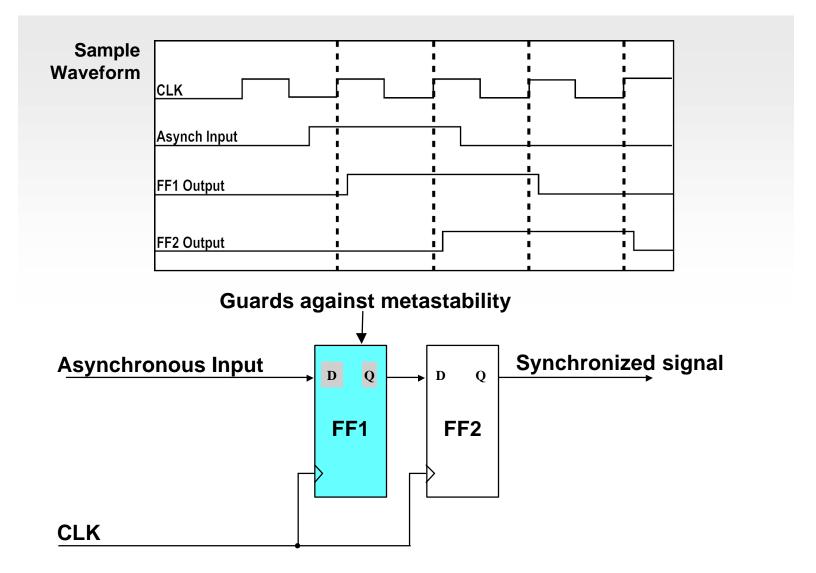
Metastability

- Caused by asynchronous data input
 - Violates set-up time requirement
 - Usually gets synchronized in the flip-flop without problem
- But if data changes within a tiny set-up time window
 - Then the flip-flop can go metastable
 - Resulting in unpredictable delay to reach stable 1 or 0
- The 0 vs. 1 uncertainty is irrelevant
 - The slightest timing change would give a correct 1 or 0
- The unpredictable delay is the problem
 - It can violate set-up times in the system, causing erratic operation or even crashes



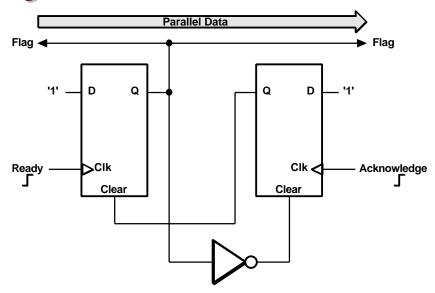
Mean Time Between Failure

- Measure MTBF = f (extra delay)
 - Assume a given clock and data rate
- MTBF is exponential function of delta t
 - Slope determined by gain-bandwidth product
- Modern CMOS resolves extremely fast
 - But modern system have little time slack
- The problem is as unavoidable as death and taxes
 - but probability can be reduced by design


Metastability Data

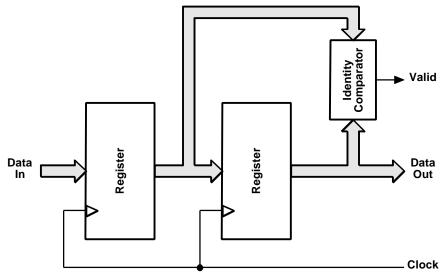
- Website (will be updated in March 2001):
 - http://www.xilinx.com/xapp/xapp094.pdf

Synchronization Circuit

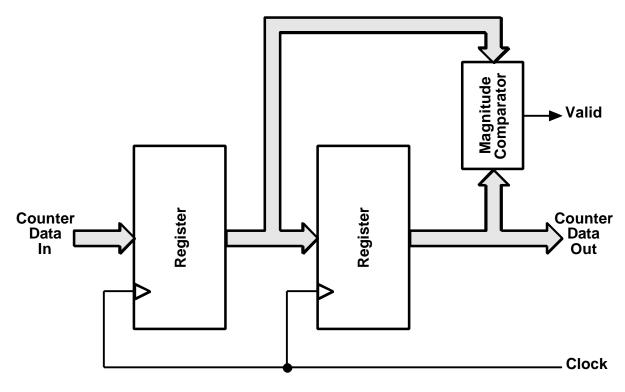


Moving Data Across Asynchronous Clock Boundaries

- Worst-case timing happens, sooner or later
- Murphy never sleeps!
- Never use parallel flip-flops to synchronize an asynchronous input signal
 - Always synchronize at a single point
- Don't try to synchronize parallel data
 - Use the methods described on the following slides
 - The problem is data corruption, not metastability
- Use cascaded stages to combat metastability
- Website:
 - http://www.isdmag.com/editorial/2000/design0003.html


Moving Parallel Data with Asynchronous Handshake

- Transmitter: Data available raises Ready, sets Flag
 - Receiver scans F, accepts parallel data, raises Acknowledge
- Acknowledge sets flip-flop, which resets Flag
 - Benign race condition between flip-flops
- Both sides must observe and obey the Flag


Moving Parallel Datawithout Handshake

- If Rx is much faster than Tx:
- Double-buffer the Data and compare
 - If both buffers are identical: good data
 - If both are not identical: wait
- Identity detector can also be transition detector

Transfer Counter Value without Handshake

- Comparator detects "reasonable" difference
- Rejects absurd differences only

Moving Data at Full Speed

- 200 MHz asynchronous FIFO in Virtex-II
 - 16K deep, n bits wide
 - -to
 - —512 deep, 36n bits wide
- Uses n BlockRAMs for data storage
- Only eight to eleven CLBs for control

See new app note in March 2001

Moving Data at Full Speed

- 200 MHz asynchronous FIFO in Virtex
 - 4K deep, n bits wide
 - -to
 - —512 deep, 8n bits wide
- Uses n BlockRAMs for data storage
- Only 12 to 16 CLBs for control

See new app note in March 2001

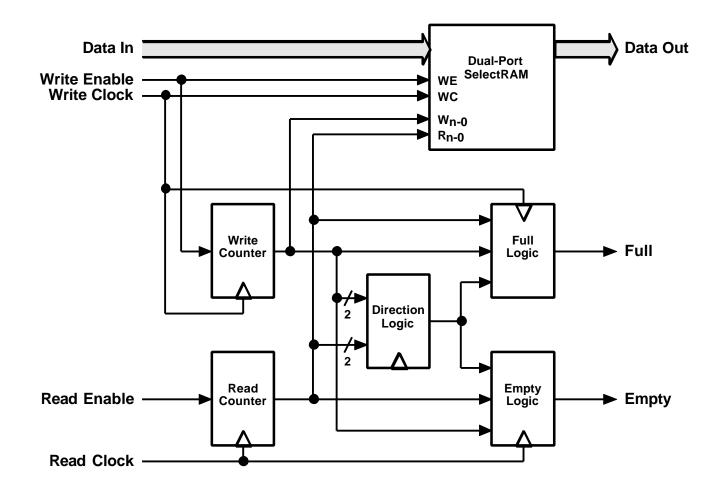
Asynchronous FIFOs

- Parameters: width, depth, clock frequency
- Data path = dual-ported BlockRAM
- Control = 2 addresses + Full, Empty
- Synchronous control is very simple:
 - Two counters + trivial state machines
- Asynchronous control is very tricky
 - Asynchronous addresses must control FULL and EMPTY

Many (most?) FIFOs are asynchronous

Full and Empty Control

Identity-compare write and read addresses


— identical addresses mean either Full or Empty

Two problems:

- Comparing two asynchronously changing binary addresses will cause glitches
- Distinguish between Full and Empty
 - both are indicated by address identity

FIFO Block Diagram

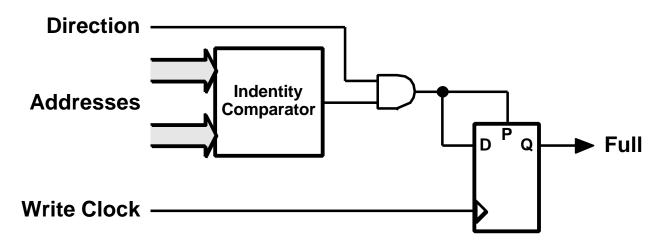
Gray-Coded Addresses

- Only one bit per address changes any time
 - no glitches from the identity comparator
- Implementation:
 - Build binary counter
 - Generate XOR of two adjacent D-inputs
 - Feed these XORs to a register = Gray code
 - --MSB binary =MSB Gray
- Advantage:
 - Very fast and easily expandable, binary as a bonus
 - Takes advantage of the fast carry structure

No pipeline delay, but twice the binary counter cost

Separate Full from Empty

- Divide address space into 4 quadrants, defined by the counter MSBs
 - This works in binary as well as in Gray
- Monitor the quadrant relationship of the write and read address counters
- Set a flag to distinguish between potentially going Full or Empty
 - include this in the address identity comparator


Synchronize to the Proper Clock

- FULL must be synchronous to write clock
 - Read is not concerned with fullness
- EMPTY must be synchronous to read clock
- Leading edges are naturally synchronous:
 - Full is the result of a write clock
 - Empty is the result of a read clock

Trailing edges are caused by the other clock

Synchronizing the Trailing Edges

- Combinatorial FULL is the result of a write.
 - Use it to asynchronously preset a flip-flop.
 - Use it also as D-input, clocked by the write clock.

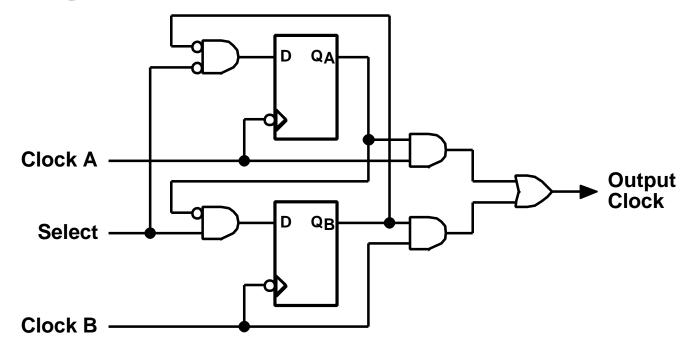
This synchronizes both edges to the write clock.

Do the Same with EMPTY

- EMPTY can share the identity decoder
 - Then individually gated by Direction
- You can also put the binary outputs to good use:
 - they can provide "dipstick" indication:
 - Subtract, but beware of glitches.

Asynchronous FIFO in Virtex

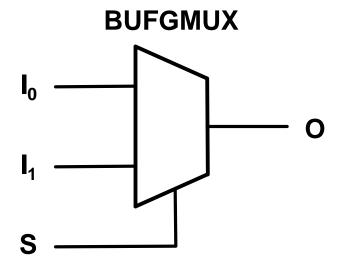
- 180 MHz asynchronous operation
 - 4K deep, 1n bits wide
 - -2048 deep, 2n bits wide
 - 1024 deep, 4n bits wide
 - —512 deep, 8n bits wide
- Uses n BlockRAMs plus 16 to 20 CLBs
 - BlockRAMs for data storage
 - CLBs for address counters, direction detection, EMPTY and FULL detection across asynchronous boundary



Asynchronous FIFO in Virtex-II

- 200 MHz asynchronous operation
 - 16K deep, n bits wide
 - -8K deep, 2n bits wide
 - 4K deep, 4n bits wide
 - -2048 deep, 9n bits wide
 - 1024 deep, 18n bits wide
 - —512 deep, 36n bits wide
- Uses n BlockRAMs plus 8 to 11 CLBs
 - BlockRAMs for data storage
 - CLBs for address counters, direction detection, EMPTY and FULL detection across asynchronous boundary

Asynchronous Clock MUXing


- This circuit waits for the present clock to go Low
 - Output then stays low until the new clock is Low

Guaranteed to switch glitch-free, no runt pulses

- http://www.xilinx.com/xcell/xl24/xl24_20.pdf

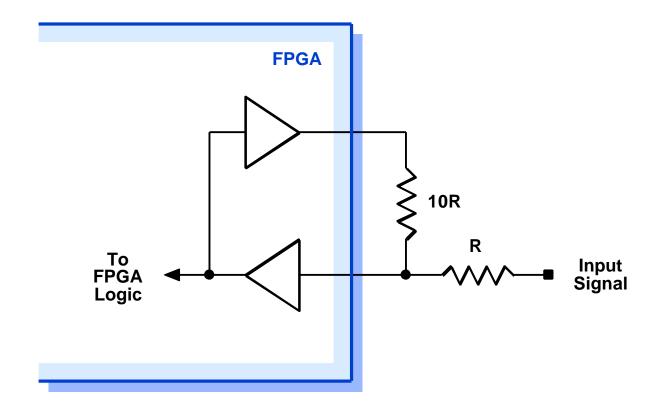
Virtex-II Clock Multiplexer

- Each global clock buffer is a mux
 - can switch between 2 clock sources
 - configured for rising or falling edge
- Can also do clock gating (enable)

Dangerous stuff, but these circuits do it safely

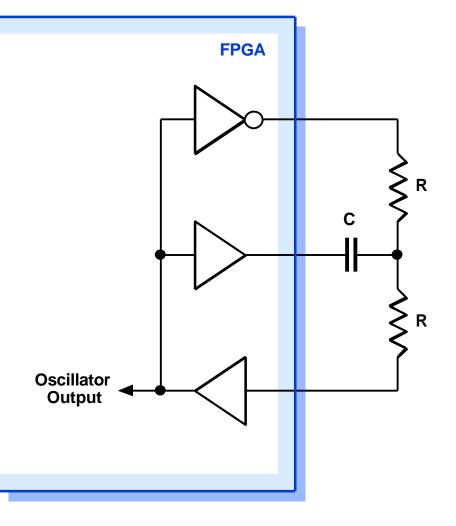
Conclusions

- Asynchronous data transfer is dangerous
 - but not if you understand the issues and know how to design around them
- Clock gating is unhealthy
 - but not if you use smart circuits
- Metastabilty can hurt very badly
 - —but only if inside a very tight timing budget

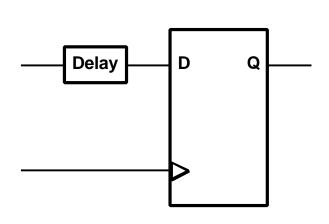

Modern CMOS resolves very fast (within a few ns)

Tips and Tricks from the Xilinx Archives

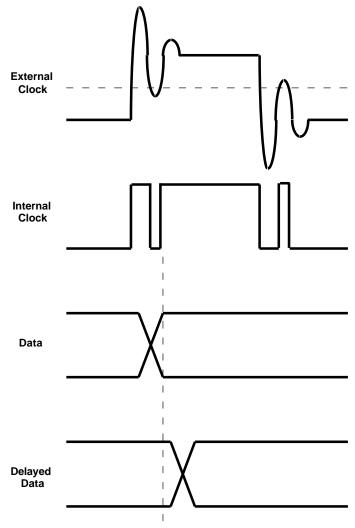
Schmitt Trigger



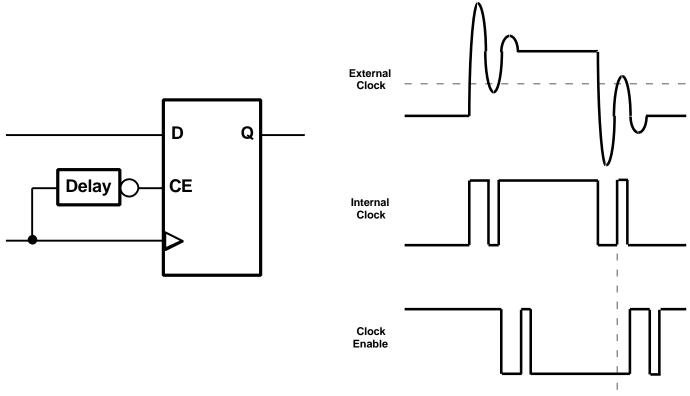
Hysteresis = 10% of Vcc


RC Oscillator

- Wide frequency range, Hz to MHz
 - 100 Ohm to 100 kilohm
 - 100 pF to 1 uF
- Reliable start-up is absolutely guaranteed
- Oscillator can be started and stopped internally



Coping with Clock Reflections



- Problem: Double pulse on the active edge
- Solution: Delay D, to prevent the flip-flop from toggling soon again

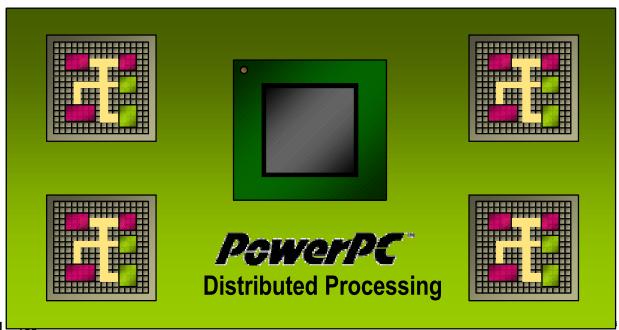
Coping with Clock Reflections

- Problem: Double pulse on the inactive edge
- Solution: Disable flip-flop, by using the clock level
 - http://www.xilinx.com/xcell/xl34/xl34_54.pdf

5V-Tolerant 3.3V Output Driving 5V CMOS-Level Input

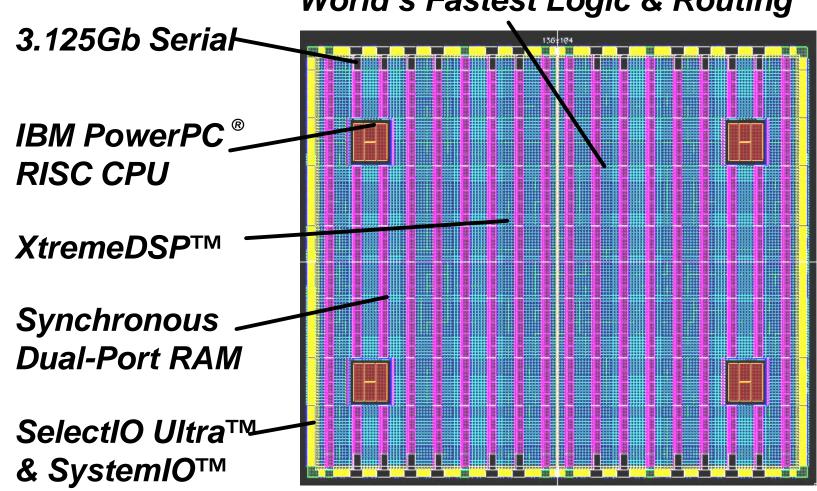
Virtex-II, the Next Generation

- 0.13 μ, 8-layer metal CMOS process
 - Cu power distribution and interconnect
- Up to 10 million system gates
 - —>100,000 LUTs and flip-flops
 - —>1000 BlockRAMs and multipliers
 - ->200 MHz clock rate, multi-Gbps serial I/O
- On-chip PowerPC with cache
- 3 Gigabit Serial I/O

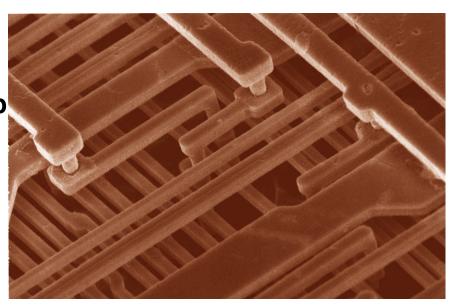


PowerPC - the Leading Embedded CPU Architecture in Telecom & Networking Infrastructure

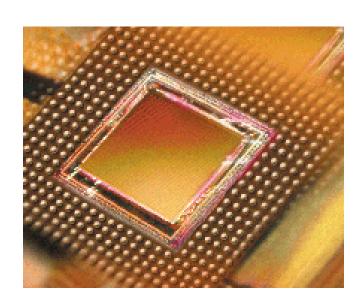
Virtex-II Platform FPGA Adds Distributed PowerPC Processing with <u>Application-Specific Hardware Acceleration</u>



PA March 2001


Putting it all together: The Virtex-II Series Platform FPGA.

World's Fastest Logic & Routing


Advanced 0.13 micron CMOS

- World Logic Partnership
 - IBM, Xilinx, UMC, Infineon
- Ultra-high speed
 92 nm transistor
 technology
- 8-layer Cu combined with low-K dielectric
- 12" volume-production on three continents

FPGAs circa 2005

- ♦50 Million system gates
- ♦2 Billion transistors on one chip
- ♦70-nm process technology
- ♦10-layer Cu technology
- ♦ Hard and soft IP blocks
- ♦1 GHz embedded processor
- ♦ Mixed-signal IP
- ♦10-Gigabps I/O channels

Beyond Bigger, Faster, Cheaper ...

On-chip RAM
Efficient Arithmetic
Intelligent Clock Management
Multi-standard I/O, Built-In Termination

FPGAs have evolved from glue logic to cost-effective system platforms

Additional Information on the Following Pages:

- List of good URLs
- Virtex-II architecture
- Clock distribution nets
- Clock management

Clock de-skew

Frequency Synthesizer

Phase shifter

Clock gating

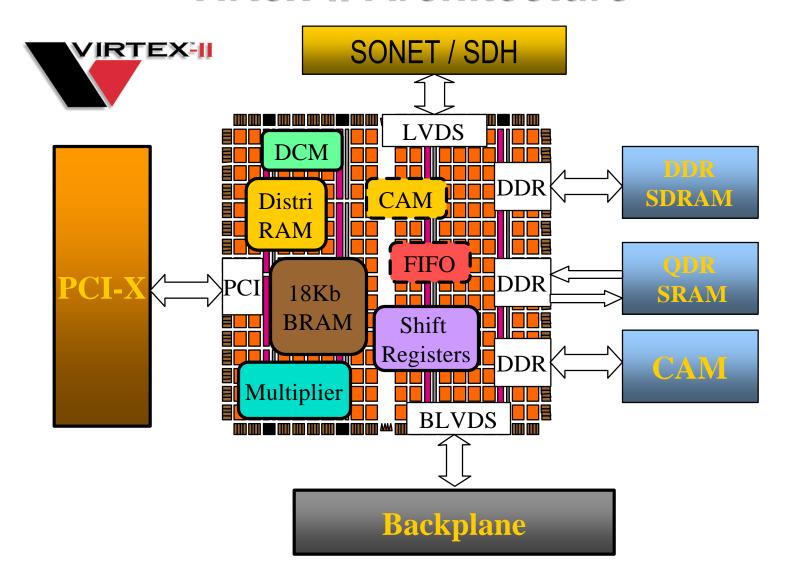
Clock multiplexing

List of Good URLs

- www.xilinx.com
- www.xilinx.com/support/sitemap.htm
 - www.xilinx.com/products/virtex/handbook/index.htm
 - www.xilinx.com/support/techxclusives/techX-home.htm
 - www.xilinx.com/support/troubleshoot/psolvers.htm

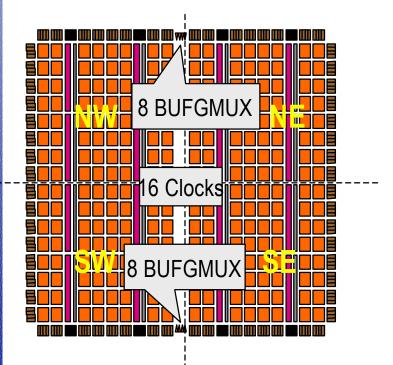
General FPGA-oriented Websites:

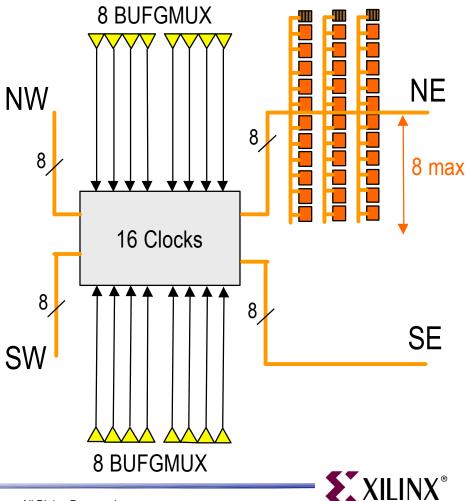
- -www.fpga-faq.com
- —www.optimagic.com


Newsgroup: comp.arch.fpga

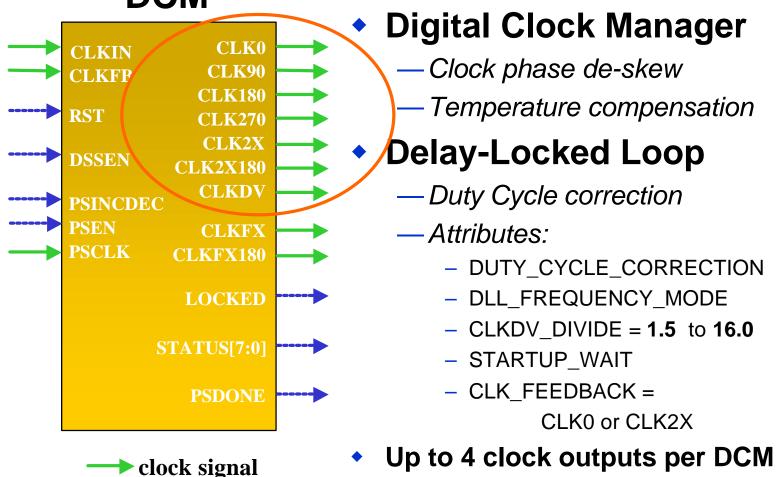
All datasheets: www.datasheetlocator.com

Search Engine (personal preference): www.google.com


Virtex-II Architecture

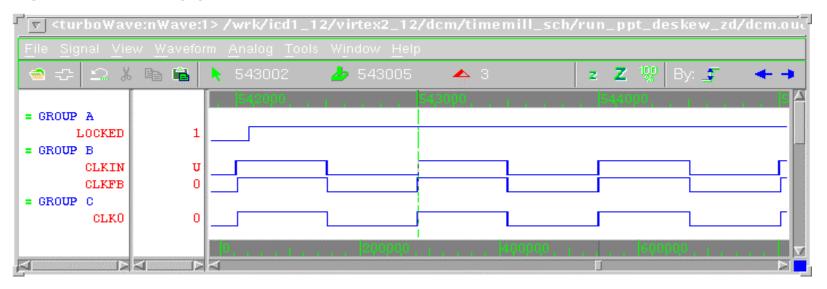


Enhanced Clock Distribution


- 16 Global Clock Multiplexers
 - Eight on the top
 - Eight on the bottom
 - Switch "glitch free" between two clock inputs
- Eight clocks selectable for each quadrant

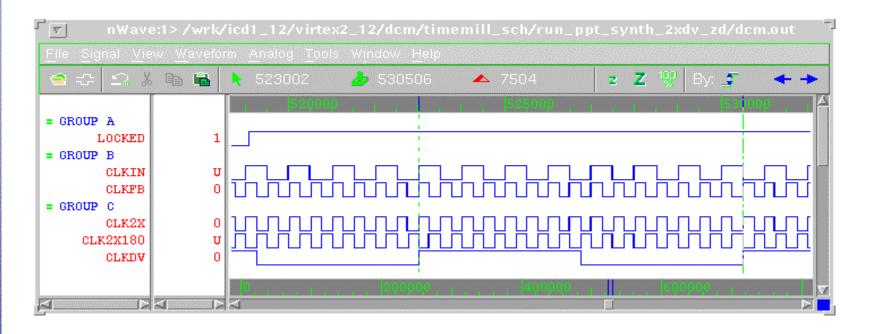
Unused branches are disabled (Power Saving)

Digital Clock Manager: DLL DCM



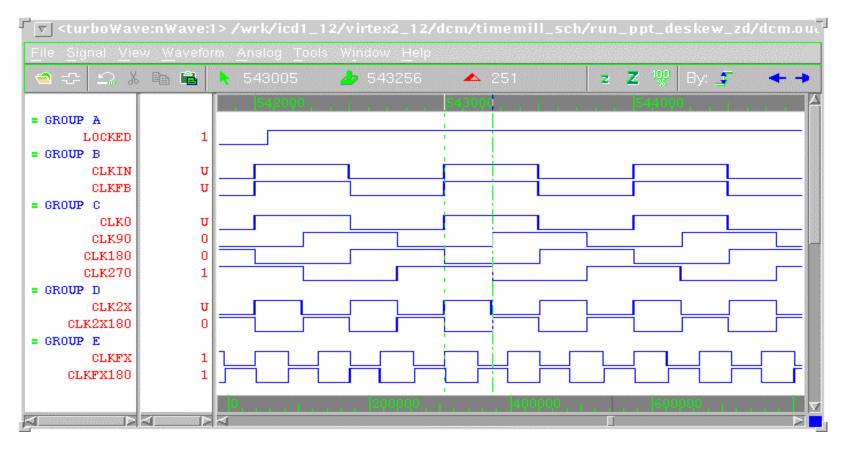
control signal

Clock De-skew


CLKIN = 100MHz

- Remove clock delay between input clock and flip-flop clock pins
- Create de-skewed board level clocks

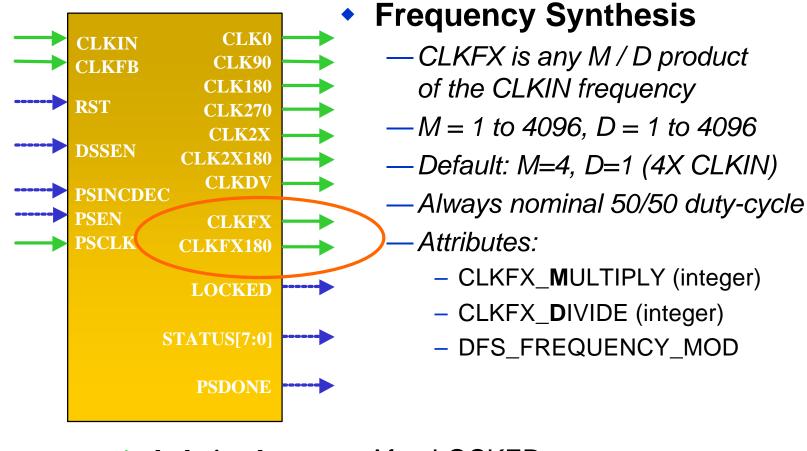
Basic Frequency Synthesis


CLKIN = 100MHz

CLK2X = 200MHz

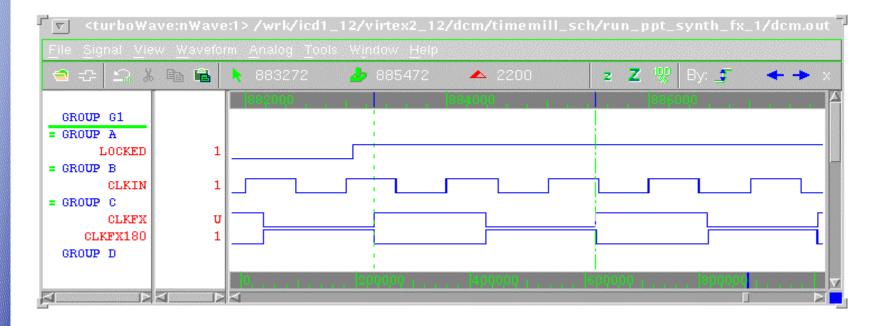
CLKDV = 13.3MHz (D=7.5)

Coarse Phase Shifting

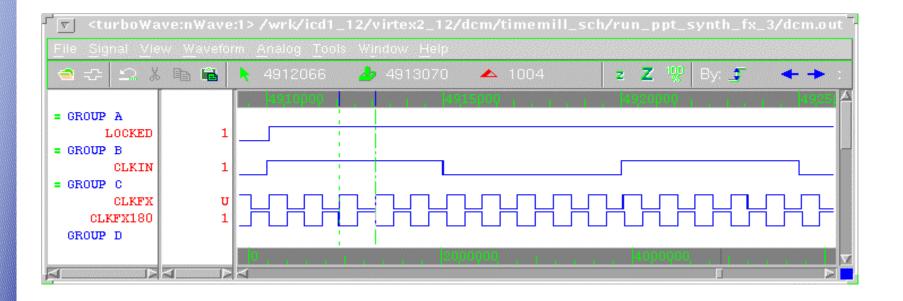


Coarse phase shifting = 0, 90, 180, 270 degrees

CLK0 = 100MHz, CLK2x = 200MHz, CLKFX = 300MHz

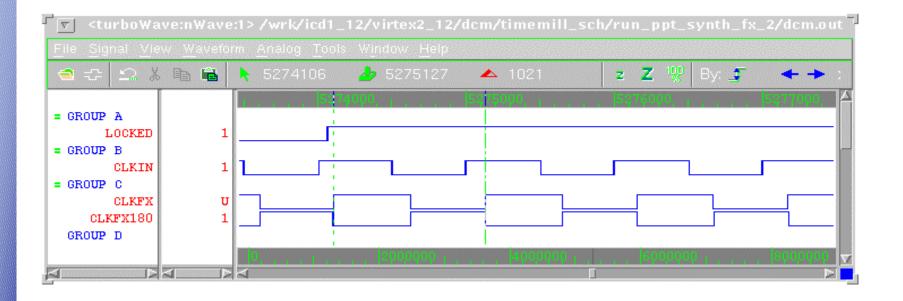


 After LOCKED: $Freq_{CLKEX} = (M/D) \times Freq_{CLKEN}$



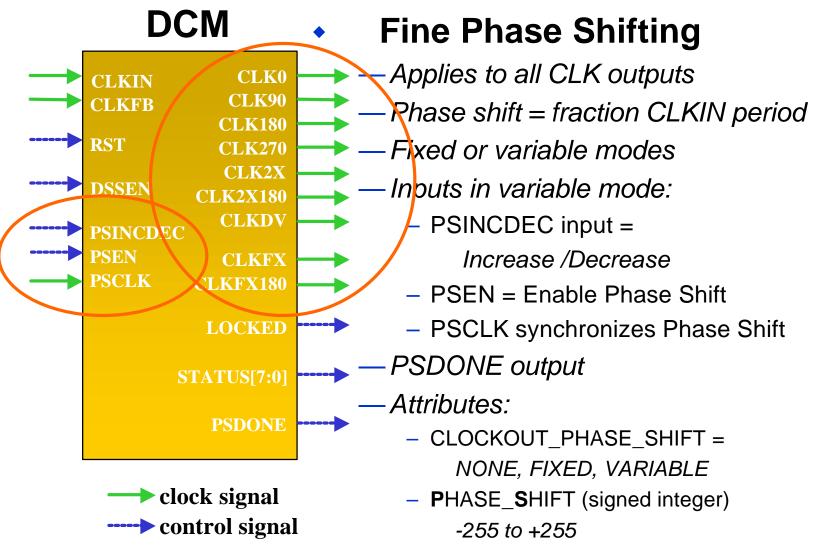
CLKIN = 100MHz

CLKFX = 45.45MHz (M/D = 5/11)



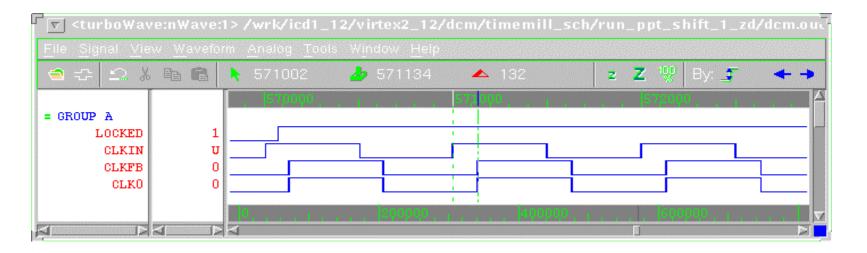
CLKIN = 10MHz

CLKFX = 100MHz (M/D = 10/1)



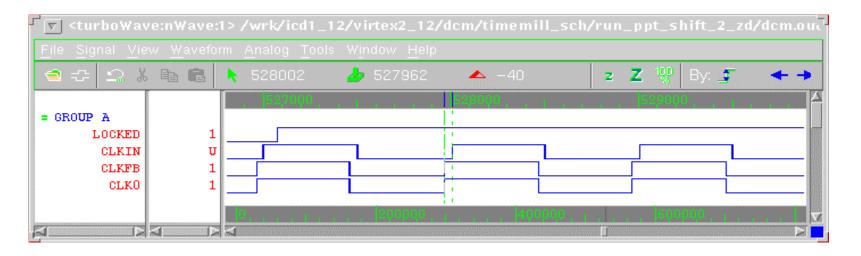
CLKIN = 100MHz

CLKFX = 98.1MHz (M/D = 101/103)



High Resolution Phase Shifting

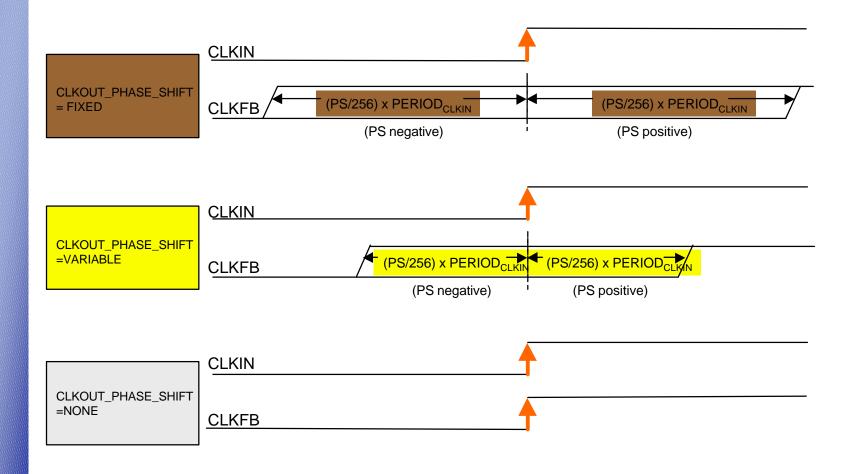
High-Resolution Phase Shifting


Desired phase shift = +1.3ns

CLKIN = 100MHz (10ns)

 $PS = (1.3ns/10ns) \times 256 = 33$

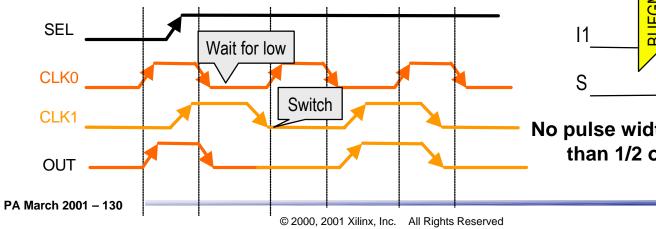
High-Resolution Phase Shifting

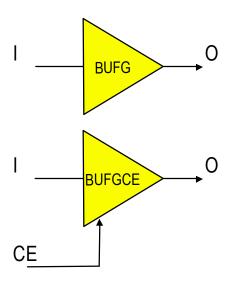


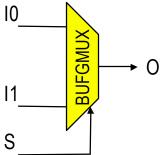
Desired phase shift = -15 degrees

$$PS = (-15^{\circ}/360^{\circ}) \times 256 = -11$$

Phase Shift Effects

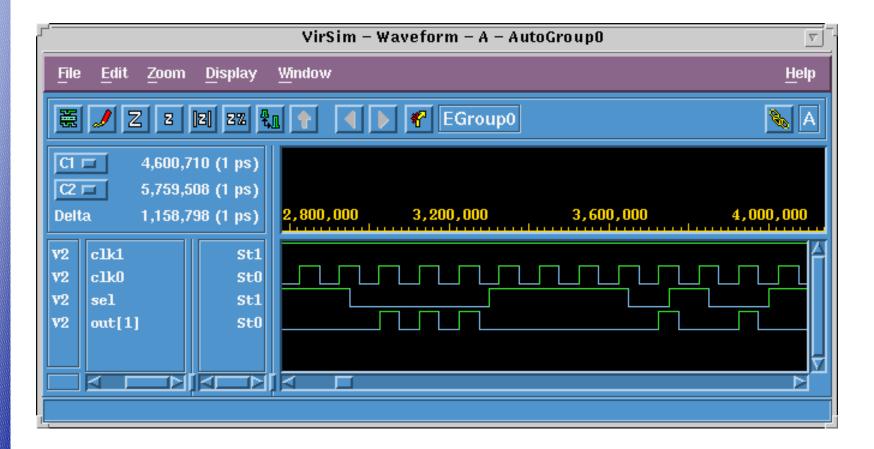




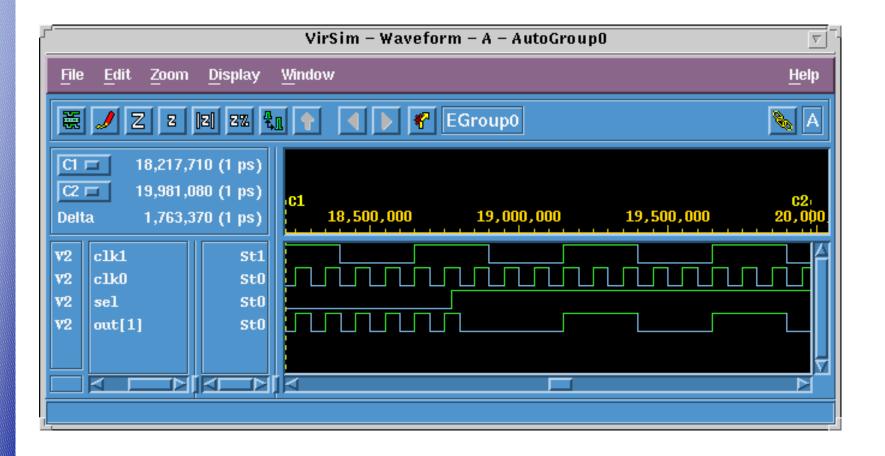

Global Clocks: BUFGMUX

Three Modes:

- Clock Buffer
 - Low skew clock distribution
 - BUFG primitive
- Clock Enable
 - Stop the clock High or Low
 - BUFGCE (stop Low)
- Clock Multiplexer "Glitch-free"
 - Switch between unrelated clocks
 - BUFGMUX



No pulse width is ever shorter than 1/2 of the period



Clock enable case sel = ce_b

Switching from clk0 to clk1

