
Development System Reference Guide — October 1998 Printed in U.S.A.

Development
System
Reference
Guide

Introduction

NGDBuild

The User Constraints (UCF)
File

Using Timing Constraints

The Logical Design Rule
Check

MAP—The Technology
Mapper

LCA2NCD

The Physical Constraints
(PCF) File

DRC—Physical Design Rule
Check

PAR—Place and Route

PIN2UCF

TRACE

Development System Reference Guide

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, Dual
Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic
Cell, LogiCORE, LogicProfessor, MicroVia, Plus Logic, PLUSASM, Plustran, P+, PowerGuide, PowerMaze,
SelectI/O, Select-RAM, Select-RAM+, Smartguide, SmartSearch, Smartspec, Spartan, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep
Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS,
XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; Re. 34,363, Re. 34,444, and Re. 34,808. Other
U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein
are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct

R

Development System Reference Guide

any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not
assume any liability for the accuracy or correctness of any engineering or software support or assistance provided
to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1998 Xilinx, Inc. All Rights Reserved.

Development System Reference Guide

Development
System
Reference
Guide

BitGen

PROMGen

NGDAnno

NGD2EDIF

NGD2VER

NGD2VHDL

Xilinx Development System
Files

EDIF2NGD, XNF2NGD, and
NGDBuild

Development System Reference Guide—October 1998 i

Preface

About This Manual
The Development System Reference Guide contains information on the
software programs in the Xilinx Development System. Generally, the
chapters are organized in the following way.

• A brief summary of program functions

• A syntax statement

• A review of the input files used and the output files generated by
the program

• A listing of the commands, options, or parameters used by the
program

• Examples of how you can use the program

For an overview of the Xilinx Development System describing how
these programs are used in the design flow, see the Development
System User Guide.

You must consult The Programmable Logic Data Book for device-specific
information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging. The
Programmable Logic Data Book is available in hard copy and on the
Xilinx web site (http://www.xilinx.com). See http://
www.xilinx.com/partinfo/databook.htm for the current version of
this book.

For specific design issues or problems, use the Answers Search
function on the Web (http://www.xilinx.com/support/
searchtd.htm) to access the following.

Development System Reference Guide

ii Xilinx Development System

• Answers Database: current listing of solution records for the
Xilinx software tools

• Applications Notes: descriptions of device-specific design
techniques and approaches

• Data Sheets: pages from The Programmable Logic Data Book

• XCELL Journal: quarterly journals for Xilinx programmable logic
users

• Expert Journals: the latest news, design tips, and patch
information on the Xilinx design environment

If you cannot access the Web, you can install and access the Answers
book with the DynaText online browser in the same manner as the
Xilinx book collection. The Answers book includes information in the
Answers Database at the time of this release.

The Design Flow
The following figure shows the three parts of the Xilinx design flow:
design entry, design implementation, and design verification.

X2079

Design Entry Design

Verification

• Functional and Timing

 Simulation

• Static Timing Analysis

• In-Circuit Verification

• Schematic Entry
• Text-Based Entry

Back-Annotation

Design

Implementation

• Optimization • Mapping • Placement
• Routing • Bitstream Generation

XILINX DESIGN FLOW

Xilinx

FPGA

Functional Simulation

Development System Reference Guide iii

Design entry takes the design from concept to netlist. There are a
number of ways to enter a design, including schematics, Boolean or
state expressions, hardware description languages (HDLs) such as
Verilog and VHDL, EDIF or XNF netlists from earlier designs, and
cores. These entry methods require CAE tools to produce a design file
in EDIF or XNF netlist format.

Design implementation starts by converting the netlist to Native
Generic Database (NGD) format, and ultimately produces a
configuration bitstream for the target FPGA device. It includes
optimization and mapping, placement and routing, and bitstream
creation. Designs can be implemented automatically or by using a
combination of the automatic and manual Xilinx Development
System tools.

Design verification includes simulation, static–timing analysis, and
in–circuit verification. Simulation is performed using third–party
tools which are supported by Xilinx. The input for these tools
requires a tool–specific translation of an NGD file to a simulation
netlist. You can simulate an NGD file at any point in the design flow.
Static–timing analysis tools and in–circuit verification tools are part
of the Xilinx Development System. Consult the “Design
Implementation” chapter in the Development System User Guide for a
more detailed description.

Manual Contents
The Development System Reference Guide provides detailed information
about converting, implementing, and verifying designs in the Xilinx
environment. Check the program chapters for information on what
program works with each family of FPGA device. The following is a
brief overview of the contents and organization of the Development
System Reference Guide.

• Chapter 1, “Introduction,” —Describes some basics that are
common to the different Xilinx Development System modules.

• Chapter 2, “NGDBuild,”—NGDBuild performs all of the steps
necessary to read a netlist file in XNF or EDIF format and create
an NGD (Native Generic Database) file describing the logical
design reduced to Xilinx primitives.

Development System Reference Guide

iv Xilinx Development System

• Chapter 3, “The User Constraints (UCF) File,”—The UCF File is
an ASCII file in which you enter constraints affecting how the
logical design is implemented.

• Chapter 4, “Using Timing Constraints,”—This chapter describes
how you specify timing requirements for your design.

• Chapter 5, “The Logical Design Rule Check,”—The Logical DRC
(Design Rule Check), is a series of tests run to verify the logical
design described by the NGD (Native Generic Database) file.

• Chapter 6, “MAP—The Technology Mapper,”—MAP maps the
logic defined by an NGD file into FPGA elements such as CLBs,
IOBs, and TBUFs.

• Chapter 7, “LCA2NCD,”—LCA2NCD translates an LCA file
from an earlier Xilinx Development System release to an NCD
file.

• Chapter 8, “The Physical Constraints (PCF) File,”—The PCF file
is an ASCII file containing physical constraints created by the
MAP program and physical constraints you enter.

• Chapter 9, “DRC—Physical Design Rule Check,”—The physical
Design Rule Check (DRC) consists of a series of tests used to
discover physical errors in your design.

• Chapter 10, “PAR—Place and Route,”—PAR places and routes
FPGA designs.

• Chapter 11, “PIN2UCF,”—PIN2UCF generates pin locking
constraints in a UCF file by reading a a placed NCD file for
FPGAs or GYD file for CPLDs.

• Chapter 12, “TRACE,”—TRACE (Timing Reporter and Circuit
Evaluator) performs static timing analysis of the physical design
based on input timing constraints.

• Chapter 13, “BitGen,”—BitGen creates a configuration bitstream
for an FPGA design.

• Chapter 14, “PROMGen,” —PROMGen converts a configuration
bitstream (BIT) file into a file that can be downloaded to a PROM.
PROMGen also combines multiple BIT files for use in a daisy
chain of FPGA devices.

Development System Reference Guide v

• Chapter 15, “NGDAnno,”—NGDAnno annotates timing infor-
mation found in the physical NCD design file back to the logical
NGD file.

• Chapter 16, “NGD2EDIF,”—NGD2EDIF converts an NGD file to
an EDIF file for use in simulation.

• Chapter 17, “NGD2VER,”—NGD2VER converts an NGD file to a
Verilog HDL file for use in simulation.

• Chapter 18, “NGD2VHDL,”—NGD2VHDL converts an NGD file
to a VHDL file for use in simulation.

• Appendix A, “Xilinx Development System Files,”—This
appendix gives an alphabetic listing of the files used by the Xilinx
Development System.

• Appendix B, “EDIF2NGD, XNF2NGD, and NGDBuild,” —This
appendix describes the netlist readers (EDIF2NGD and
XNF2NGD) and how they interact with NGDBuild.

Development System Reference Guide

vi Xilinx Development System

Development System Reference Guide — October 1998 vii

Conventions

Typographical
This manual uses the following conventions. An example illustrates
each convention.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.

• Emphasis in text

Development System Reference Guide

viii Xilinx Development System

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

Square brackets also enclose footnotes in tables that are printed
out as hardcopy in DynaText.

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr = {on|off }

• A vertical bar “|” separates items in a list of choices.

lowpwr = {on|off }

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
Xilinx has created several conventions for use within the DynaText
online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

• There are several types of icons.

Conventions

Development System Reference Guide ix

Iconized figures are identified by the figure icon.

Iconized tables are identified by the table icon.

The Copyright icon displays in the upper left corner on the first
page of every Xilinx online document.

The DynaText footnote icon displays next to the footnoted text.

Double-click these icons to display figures, tables, copyright
information, or footnotes in a separate window.

• Inline figures display within the text of a document. You can
display these figures in a separate window by clicking the figure.

Development System Reference Guide

x Xilinx Development System

Development System Reference Guide—October 1998 xi

Contents

Preface
About This Manual .. i
The Design Flow ... ii
Manual Contents ... iii

Conventions
Typographical.. vii
Online Document .. viii

Chapter 1 Introduction

Invoking Xilinx Development System Programs 1-1
Command Line.. 1-2

Notes about Screen Messages.. 1-3
Part Numbers in Commands.. 1-4
–f Option .. 1-6

Reading NCD Files with NCDRead... 1-7
Terminology .. 1-9
Supported Platforms ... 1-12

Chapter 2 NGDBuild

NGDBuild .. 2-2
Converting a Netlist to an NGD File... 2-3

NGDBuild Syntax .. 2-3
NGDBuild Files.. 2-4

Input Files .. 2-4
Output Files.. 2-6
Intermediate Files .. 2-6

NGDBuild Options... 2-6
–a (Add PADs to Top-Level Port Signals)................................ 2-6
–dd (Destination Directory) .. 2-7

xii Xilinx Development System

Development System Reference Guide

–f (Execute Commands File) ... 2-7
–l (Libraries to Search)... 2-7
–nt (Netlist Translation Type)... 2-8
–p (Target Architecture) ... 2-8
–r (Ignore LOC Constraints)... 2-9
–sd (Search Specified Directory) ... 2-9
–u (Allow Unexpanded Blocks) .. 2-9
–uc (User Constraints File) .. 2-10
–ur (Read User Rules File) .. 2-10

Netlister Launcher ... 2-11
File Names and Locations... 2-11

Chapter 3 The User Constraints (UCF) File

Chapter 4 Using Timing Constraints

Timing Requirements and Xilinx Software 4-2
Entering Timing Specifications.. 4-2

Entering Timing Specifications in a Schematic 4-3
Entering Timing Specifications in a Constraints File................ 4-5

Specifying Groups... 4-6
Using Predefined Groups... 4-6
Creating User-Defined Groups Using TNMs............................ 4-8

Placing TNMs on Nets .. 4-12
Placing TNMs on Macro or Primitive Pins 4-12
Placing TNMs on Primitive Symbols................................... 4-13
Placing TNMs on Macro Symbols....................................... 4-14
Placing TNMs on Nets or Pins to Group Flip-Flops
and Latches .. 4-16

Creating User-Defined Groups Using TNM_NET 4-19
Creating New Groups from Existing Groups............................ 4-20
Combining Multiple Groups into One 4-22
Creating Groups by Exclusion ... 4-23
Defining Flip-Flop Subgroups by Clock Sense 4-24
Defining Latch Subgroups by Gate Sense............................... 4-25
Creating Groups by Pattern Matching...................................... 4-25

How to Use Wildcards to Specify Net Names..................... 4-25
Pattern Matching Syntax... 4-26
Additional Pattern Matching Details.................................... 4-27

Defining a Clock Period (PERIOD Constraint) 4-28
Simple Method ... 4-28
Preferred Method ... 4-29
Specifying Derived Clocks ... 4-31

Development System Reference Guide xiii

Contents

OFFSET Timing Specifications ... 4-32
Global OFFSET ... 4-33
Net-Specific OFFSET Constraints ... 4-35

Examples .. 4-35
Specific OFFSET Constraints with Timegroups 4-40

Group OFFSET.. 4-42
Ignoring Selected Paths (TIG)... 4-43
Basic FROM –TO Syntax.. 4-45
Specifying Timing Points... 4-46

Using TPSYNC to Define Synchronous Points........................ 4-47
Using TPTHRU to Define Through Points 4-49

Using TPTHRU or TPSYNC in a FROM–TO Constraint............... 4-50
Specifying Time Delay in TS Attributes... 4-51
Using the PRIORITY Keyword .. 4-54
Sample Schematic Using TIMESPEC/TIMEGRP Symbol 4-54
Prorating Constraints .. 4-56

VOLTAGE Constraint... 4-56
TEMPERATURE Constraint .. 4-56

Additional Timing Constraints ... 4-57
Controlling Net Skew (MAXSKEW).. 4-57
Controlling Net Delay (MAXDELAY) .. 4-58
Controlling Path Tracing .. 4-59
The DROP_SPEC Constraint .. 4-62

Constraints Priority.. 4-63
Syntax Summary... 4-64

TNM Attributes ... 4-64
TIMEGRP Attributes .. 4-65
TIMESPEC Attributes .. 4-67
Other Constraints... 4-70

Chapter 5 The Logical Design Rule Check

The Logical DRC... 5-1
The Logical DRC Tests ... 5-2

The Block Check.. 5-2
The Net Check ... 5-3
The Pad Check .. 5-3
The Clock Buffer Check ... 5-4
The Name Check ... 5-4
The Primitive Pin Check... 5-5

xiv Xilinx Development System

Development System Reference Guide

Chapter 6 MAP—The Technology Mapper

MAP .. 6-2
MAP Syntax .. 6-3
MAP Files.. 6-4

Input Files .. 6-4
Output Files.. 6-5

MAP Options ... 6-6
–b (Convert Clock Buffers—XC4000E/L and Spartan Only).... 6-7
–c (Pack CLBs) .. 6-7
–cm (Cover Mode) ... 6-8
–d (Use DI Pin—XC3000 Architectures Only) 6-9
–f (Execute Commands File) ... 6-9
–fp (Floorplanner) .. 6-9
–gf (Guide NCD File) ... 6-10
–gm (Guide Mode) ... 6-10
–ir (Do Not Use RLOCs to Generate RPMs) 6-10
–k (Map to 5-Input Functions) .. 6-11
–l (No logic replication) .. 6-11
–o (Output File Name) ... 6-12
–oe (Logic Optimization Effort) .. 6-13
–os (Logic Optimization Style) ... 6-13
–p (Xilinx Part Number).. 6-14
–pr (Pack Registers in I/O)... 6-15
–r (No Register Ordering) .. 6-15
–u (Do Not Remove Unused Logic) ... 6-16

The MAP Process ... 6-16
Register Ordering.. 6-18
Guided Mapping.. 6-20
Simulating Map Results .. 6-22
The MAP Report (MRP) File ... 6-24
Halting MAP .. 6-32

Chapter 7 LCA2NCD

LCA2NCD ... 7-1
LCA2NCD Syntax ... 7-2
LCA2NCD Files... 7-3

Input Files .. 7-3
Output Files.. 7-3

LCA2NCD Options .. 7-3
–p (Placement Only) .. 7-3
–f (Execute Commands File) ... 7-4

Development System Reference Guide xv

Contents

–w (Overwrite Existing File) ... 7-4
Translating Unnamed Components .. 7-4

Chapter 8 The Physical Constraints (PCF) File

The PCF File ... 8-1
Interaction Between Constraints ... 8-3

Chapter 9 DRC—Physical Design Rule Check

DRC .. 9-2
DRC Syntax .. 9-2
DRC Files.. 9-3

Input File .. 9-3
Output File ... 9-3

DRC Options ... 9-3
–e (Error Report).. 9-3
–o (Output file) ... 9-3
–s (Summary Report)... 9-3
–v (Verbose Report)... 9-3
–z (Report Incomplete Programming)...................................... 9-4

DRC Types.. 9-4
DRC Errors and Warnings .. 9-5

Chapter 10 PAR—Place and Route

PAR... 10-2
PAR and the Timing Analysis Software .. 10-3
PAR Syntax... 10-4
PAR Files .. 10-5

Input Files .. 10-5
Output Files.. 10-6

PAR Options ... 10-6
–c (Number of Cost-Based Router Cleanup Passes) 10-7
–d (Number of Delay-Based Router Cleanup Passes) 10-8
-dfs (Thorough timing analysis of paths).................................. 10-8
–e (Delay-based cleanup passes—Completely Routed Designs) 10-8
–f (Execute Commands File) ... 10-9
–gf (Guide NCD File) ... 10-9
–gm (Guide Mode) ... 10-9
–i (Number of Router Iterations) .. 10-9
-k (Re-Entrant Routing).. 10-10
-kpaths (Faster Analysis of Paths) ... 10-10
–l (Overall Effort Level) .. 10-12

xvi Xilinx Development System

Development System Reference Guide

–m (Multi-Tasking Mode) ... 10-12
–n (Number of Iterations) ... 10-12
–ol (Overall Effort Level) .. 10-13
–p (No placement) ... 10-13
–pl (Placer Effort Level) ... 10-14
–r (No Routing) .. 10-14
–rl (Router Effort Level).. 10-14
–s (Number of Results to Save)... 10-14
–t (Starting Placer Cost Table)... 10-15
–ub (Use Bonded I/Os) .. 10-15
–w (Overwrite Existing Files) ... 10-15
–x (Ignore Timing Constraints)... 10-16
Summary of PAR Options.. 10-16

PAR Operation .. 10-17
Placement .. 10-17
Routing... 10-18

Guided PAR .. 10-19
Output from PAR... 10-21

The Place and Route (PAR) Report File.................................. 10-24
The Delay (DLY) File ... 10-30
The PAD File.. 10-32

Scoring the Routed Design ... 10-37
Turns Engine (PAR Multi-Tasking Option) 10-38

Turns Engine Overview.. 10-38
Turns Engine Input Files .. 10-39
Turns Engine NCD Output File .. 10-40
Homogeneous and Heterogeneous Networks 10-40
Limitations.. 10-41
System Requirements.. 10-41
Turns Engine Environment Variables 10-42
Security .. 10-43
Starting the Turns Engine From the Command Line 10-44
Debugging.. 10-44
Screen Output.. 10-45

Command Line Examples ... 10-49
Halting PAR... 10-51

Chapter 11 PIN2UCF

PIN2UCF... 11-2
PIN2UCF Syntax... 11-4
PIN2UCF Files .. 11-4

Input Files .. 11-4

Development System Reference Guide xvii

Contents

Output Files.. 11-4
PIN2UCF Options ... 11-5

–o (Output File Name) ... 11-5
–r (Write to a Report File) .. 11-5

PIN2UCF Scenarios.. 11-6

Chapter 12 TRACE

TRACE.. 12-2
TRACE Syntax .. 12-2
TRACE Files ... 12-3

Input Files .. 12-3
Output Files.. 12-3

TRACE Options... 12-4
–a (Advanced Analysis) ... 12-4
-dfs (Thorough timing analysis of paths).................................. 12-4
–e (Generate an Error Report)... 12-5
–f (Execute Commands File) ... 12-5
-kpaths (Faster Analysis of Paths) ... 12-5
–o (Output File Name) ... 12-7
–s (Change Speed).. 12-7
–skew (Analyze Clock Skew for All Clocks)............................. 12-8
–u (Report Uncovered Paths) .. 12-8
–v (Generate a Verbose Report).. 12-9

Command Line Examples ... 12-9
TRACE Input Details ... 12-9
TRACE Output Details .. 12-10

Timing Verification with TRACE... 12-11
Net Delay Constraints... 12-11
Net Skew Constraints ... 12-11
Path Delay Constraints ... 12-11
Clock Skew and Setup Checking.. 12-12

Reporting with TRACE... 12-14
Summary Report.. 12-18
Error Report ... 12-21
Verbose Report.. 12-24

Halting TRACE.. 12-30

Chapter 13 BitGen

BitGen ... 13-1
BitGen Syntax ... 13-2
BitGen Files... 13-3

xviii Xilinx Development System

Development System Reference Guide

Input Files .. 13-3
Output Files.. 13-4

BitGen Options.. 13-5
–a (Tie All Interconnect)... 13-5
–b (Create Rawbits File) .. 13-5
–d (Do Not Run DRC) .. 13-5
–f (Execute Commands File) ... 13-6
–g (Set Configuration).. 13-6
–g (Set Configuration—XC3X00 Devices) 13-6
–g (Set Configuration—XC4000 and Spartan Devices)........... 13-9

Sub-Options for Startup Sequence (–g Option).................. 13-12
–g (Set Configuration—XC5200 Devices) 13-21
–g (Set Configuration—Virtex Devices) 13-28
–h or –help (Command Usage).. 13-36
–j (No BIT File)... 13-36
–l (Create a Logic Allocation File) .. 13-36
–m (Generate a Mask File) .. 13-37
–n (Save a Tied design)... 13-37
–t (Tie Unused Interconnect) ... 13-37
–u (Use Critical Nets Last) ... 13-39
–w (Overwrite Existing Output File) ... 13-39

Chapter 14 PROMGen

PROMGen... 14-1
PROMGen Syntax... 14-2
PROMGen Files .. 14-3

Input Files .. 14-3
Output Files.. 14-3
Bit Swapping in PROM Files.. 14-3

PROMGen Options ... 14-5
–b (Disable Bit Swapping—HEX Format Only)........................ 14-5
–d (Load Downward).. 14-5
 –f (Execute Commands File) .. 14-5
 –help (Command Help)... 14-5
 –n (Add BIT FIles)... 14-6
 –o (Output File Name) .. 14-6
 –p (PROM Format) ... 14-7
–r (Load PROM File).. 14-7
 –s (PROM Size) .. 14-7
 –u (Load Upward) ... 14-7
 –x (Specify Xilinx PROM).. 14-8
Examples ... 14-8

Development System Reference Guide xix

Contents

Chapter 15 NGDAnno

Back-Annotation.. 15-2
NGDAnno.. 15-3
NGDAnno Syntax.. 15-4
NGDAnno Files ... 15-5

Input Files .. 15-5
Output Files.. 15-5

NGDAnno Options .. 15-7
–f (Execute Commands File) ... 15-7
–o (Output File Name) ... 15-7
–p (PCF File).. 15-7
-s (Change Speed)... 15-8

Dedicated Global Signals in Back-Annotation Simulation............. 15-8
XC3000A/L and 3100A/L ... 15-8
XC4000E/L, XC4000EX/XL/XV/XLA, and Spartan 15-9
XC5200 .. 15-9
Virtex.. 15-9

Hierarchy Changes in Annotated Designs 15-10

Chapter 16 NGD2EDIF

NGD2EDIF .. 16-2
NGD2EDIF Syntax .. 16-3
NGD2EDIF Files ... 16-4

Input Files .. 16-4
Output Files.. 16-4

NGD2EDIF Options... 16-5
–a (Write All Properties)... 16-5
–b (Use Buffers to Model Delays) .. 16-5
–c (Reference Design Name as Specified—Mentor) 16-5
–f (Execute Commands File) ... 16-6
–i (Annotate Timing Properties to Instances)........................... 16-6
–l (Local Scope) ... 16-6
–n (Generate Flattened Netlist).. 16-6
–v (Vendor) .. 16-6
–vpt (Mentor Viewpoint) ... 16-7
–w (Overwrite Output).. 16-7

XMM (RAM Initialization) File.. 16-7
Generic File Format for XMM File.. 16-8

xx Xilinx Development System

Development System Reference Guide

Chapter 17 NGD2VER

NGD2VER... 17-2
NGD2VER Syntax... 17-3
NGD2VER Files .. 17-4

Input Files .. 17-4
Output Files.. 17-4

NGD2VER Options ... 17-5
-aka (Write Also-Known-As Names as Comments) 17-5
–cd (Include `celldefine\`endcelldefine in Verilog File)............. 17-5
–f (Execute Commands File) ... 17-5
–gp (Bring Out Global Reset Net as Port)................................ 17-6
-log (Specify the Log File) .. 17-6
–ne (Replace Invalid Characters with Underscore) 17-6
-op (Specify the Period for Oscillator) 17-7
–pf (Generate Pin File)... 17-7
-pms (Port Names Match Child Signal Names) 17-7
–r (Retain Hierarchy).. 17-7
-sdf_path (Full Path to SDF File) ... 17-8
-shm (Write $shm Statements in Test Fixture File).................. 17-8
–tf (Generate Test Fixture File).. 17-8
–ti (Top Instance Name) .. 17-8
–tm (Top Module Name) .. 17-8
–tp (Bring Out Global Tristate Net as Port) 17-9
–u (Use '_' as Path Delimiter) .. 17-9
–ul (Write ‘uselib Directive) .. 17-9
-verbose (Display Processing Messages in Verbose Mode) ... 17-9
–w (Overwrite Existing Files) ... 17-10

Setting Global Set/Reset (FPGAs).. 17-10
Defining GSR in a Test Fixture .. 17-12
Designs without a STARTUP Block ... 17-14

Example 1: XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL, and
Virtex RTL Functional Simulation (No STARTUP Block).... 17-14
Example 2: XC5200 RTL Functional Simulation (No STARTUP
Block).. 17-16
Example 3: XC3000A/L and XC3100A/L RTL and Post-synthesis
Functional Simulation (No STARTUP Block)...................... 17-18

Designs with a STARTUP block (XC4000E/L/EX/XL/XV/XLA, Spartan,
SpartanXL, Virtex, and XC5200 Devices Only) 17-19

Example 1a: XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL, and
Virtex RTL and Post-synthesis Simulation (With STARTUP) 17-20

Development System Reference Guide xxi

Contents

Example 1b: Post-NGDBuild Functional, Post-Map Timing, and
Post-Route Timing Simulation (With STARTUP)........... 17-21

Example 2a: XC5200: RTL or Post-synthesis
 Functional Simulation Designs with STARTUP Block 17-22
Example 2b: Post-NGDBuild Functional, Post-Map Timing,

and Post-Route Timing Simulation (With STARTUP Block) 17-23
Example 3: XC3000A/L and XC3100A/L designs............... 17-23

Setting Global Tristate (FPGAs).. 17-23
Specifying GTS .. 17-24
Designs without a STARTUP Block ... 17-25

XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL, Virtex, and
XC5200 RTL Functional Simulation (No STARTUP Block) 17-25

Designs with a STARTUP block (XC4000E/L/EX/XL/XV/XLA, Spartan,
SpartanXL, Virtex, and XC5200 Devices Only) 17-26

Example 1a: XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL,
Virtex, and XC5200: RTL or Post-Synthesis Functional Simulation
(With STARTUP, GTS Pin Connected) 17-26
Example 1b: Post-NGDBuild Simulation of GTS (With STARTUP,
GTS Pin connected) ... 17-27
Example 2a: XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL,
Virtex, and XC5200: Unified Library Simulation (With STARTUP,
GTS Pin not connected) ... 17-28
Example 2b: Post-NGDBuild Simulation of GTS (With STARTUP,
GTS Pin not connected) ... 17-28

Setting Global PRLD (CPLDs) .. 17-29
Oscillator Functions (OSC, OSC4, OSC5).................................... 17-29
NGD2VER Notes .. 17-29

Chapter 18 NGD2VHDL

NGD2VHDL... 18-2
NGD2VHDL Syntax... 18-3
NGD2VHDL Files .. 18-3

Input Files .. 18-3
Output Files.. 18-4

NGD2VHDL Options ... 18-4
–a (Architecture Only) .. 18-4
-aka (Write Also-Known-As Names as Comments) 18-5
–f (Execute Commands File) ... 18-5
–gp (Bring Out Global Reset Net as Port)................................ 18-5
-log (Specify the Log File) .. 18-5
-op (Specify the Period for Oscillator) 18-6
–pf (Generate Pin File)... 18-6

xxii Xilinx Development System

Development System Reference Guide

-pms (Port Names Match Child Signal Names) 18-6
–r (Retain Hierarchy).. 18-6
-rpw (Specify the Pulse Width for ROC) 18-6
–tb (Generate Testbench File) ... 18-7
-te (Top Entity Name)... 18-7
–ti (Top Instance Name) .. 18-7
–tp (Bring Out Global Tristate Net as Port) 18-7
-tpw (Specify the Pulse Width for TOC) 18-8
-verbose (Display Processing Messages in Verbose Mode) ... 18-8
–w (Overwrite Existing Files) ... 18-8

VHDL Global Set/Reset Emulation ... 18-8
VHDL Only STARTUP Block ... 18-9
VHDL Only STARTBUF Cell .. 18-9
VHDL Only STARTUP_VIRTEX Block and
STARTBUF_VIRTEX Cell .. 18-10
VHDL Only RESET-ON-CONFIGURATION (ROC) Cell 18-10
VHDL Only ROCBUF Cell.. 18-12
VHDL Only Tri-State-On-Configuration (TOC) Cell 18-12
VHDL Only TOCBUF ... 18-13
VHDL Only Oscillators ... 18-13

Oscillator VHDL Example ... 18-14
Oscillator Test Bench.. 18-16

Bus Order in VHDL Files... 18-18

Appendix A Xilinx Development System Files

Appendix B EDIF2NGD, XNF2NGD, and NGDBuild
EDIF2NGD.. B-1

EDIF2NGD Syntax... B-3
EDIF2NGD Files .. B-4

Input Files ... B-4
Output Files .. B-4

EDIF2NGD Options ... B-5
–a (Add PADs to Top-Level Port Signals) B-5
–f (Execute Commands File) .. B-5
–l (Libraries to Search) ... B-5
–p (Part Name) ... B-6
–r (Ignore LOC Properties) ... B-6

XNF2NGD... B-7
XNF2NGD Syntax.. B-9
XNF2NGD Files ... B-10

Input Files ... B-10

Development System Reference Guide xxiii

Contents

Output Files .. B-10
XNF2NGD Options .. B-10

–f (Execute Commands File) .. B-10
–l (Libraries to Search) ... B-11
–p (Part Name) ... B-11
–r (Ignore LOC Properties) ... B-12
–u (Top-Level XNF Netlist) ... B-12

NGDBuild .. B-12
Converting a Netlist to an NGD File... B-13
Bus Matching in Virtex ... B-15

Netlister Launcher ... B-16
Netlister Launcher Rules Files ... B-18
User Rules File .. B-18

User Rules and System Rules.. B-18
User Rules Format.. B-19
Value Types in Key Statements.. B-21

System Rules File .. B-22
Rules File Examples .. B-24

XNF_RULE System Rule.. B-25
User Rule Example 1.. B-25
User Rule Example 2.. B-26
User Rule Example 3.. B-26

File Names and Locations... B-27

xxiv Xilinx Development System

Development System Reference Guide

Development System Reference Guide—October 1998 1-1

Chapter 1

Introduction

This chapter describes some basics that are common to the different
Xilinx Development System modules. The chapter contains the
following sections.

• “Invoking Xilinx Development System Programs”

• “Command Line”

• “Reading NCD Files with NCDRead”

• “Terminology”

• “Supported Platforms”

Invoking Xilinx Development System Programs
You can start Xilinx Development System programs in the following
ways.

• Enter a command at the UNIX™ command line or on a DOS
command line in an MS-DOS™ Prompt window (Windows 95®)
or a Command Prompt window (Windows NT®).

• Invoke a command from one of the following Xilinx graphical
applications.

• Design Manager/Flow Engine

• Timing Analyzer

• EPIC® (Editor for Programmable ICs)

• Hardware Debugger

• PROM File Formatter

Note: The graphical applications are described in separate manuals.
This reference manual describes only the command line interface.

Development System Reference Guide

1-2 Xilinx Development System

Command Line
Command line options are entered on the command line in any order,
preceded by a hyphen (–), sometimes preceded by a + (plus sign), and
separated by spaces. Most command line options are case-sensitive.
When an option requires an additional parameter, that parameter
must be separated from the option letter by spaces or tabs (for
example, -l 5 is correct, -l5 is not).

Files are position-dependent. For example, par input.ncd
output.ncd freq.pcf is legal; par input.ncd freq.pcf
output.ncd is not. File extension use is case-sensitive. All file
extensions (for example, .ncd) must be in lower case for all command
line tools.

For options that can be specified multiple times, the option letter
must, in most cases, precede each parameter. For example, –l
xilinxun synopsys is not acceptable, while –l xilinxun -l
synopsys is allowed.

Options can appear anywhere on the command line. Arguments that
are bound to a particular option must appear after the option. For
example, –f command_file is legal; command_file –f is not.

When you enter the Xilinx Development System application name on
the command line with no arguments and the application requires
one or more arguments (PAR, for example), a message appears
consisting of the command line format string. The format string
contains the following symbols, along with literals.

Symbol Description

[] Encloses items that are optional.

{} Encloses items that may be repeated zero or more
times.

<> Encloses a variable name or number for which you
must substitute information.

, (comma) Indicates a range for an integer variable.

– (dash) Indicates the start of an option name.

+ Indicates the start of an option name.

: The bind operator. Binds a variable name to a range.

Introduction

Development System Reference Guide 1-3

When you enter the Xilinx Development System application name on
the command line followed by –help or –h , a message displays that
explains each of the options and arguments. For example, when you
type edif2ngd –h , the following message appears.

edif2ngd: version M1.5
Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.
Usage: edif2ngd [-a] [-r] {-l <library>} [-p <partname>] <edif_file>
[<ngo_file>]
 -a Add PAD’s to all top level port signals
 -r Remove LOC props from the design
 -l library Design is built from <library>
 -p partname Override/define part name in EDIF file
 <edif_file> EDIF 2 0 0 format file
 <ngo_file> Output ‘.ngo’ file. Default is <infile>.ngo.

To redirect this message to a file (to read later or to print out), enter
the following.

command_name –help >& filename

For Xilinx Development System applications that have architecture-
specific command lines, enter the application name plus –help (or –h)
plus the architecture to get the verbose message specific to that archi-
tecture. If you do not specify the architecture, a message similar to the
following appears.

Use ’<appname> -help <architecture>’ to get
detailed usage for a particular architecture.

Notes about Screen Messages
<infile[.ncd]> indicates that the .ncd extension is optional but that
the extension must be .ncd.

<infile<.xnf >> indicates that the .xnf extension is optional and is
appended only if there is no other extension in the file name.

| Logical OR to indicate a choice of one out of many
items. The OR operator may only separate logical
groups or literal keywords.

() Encloses a logical grouping for a choice between
subformats.

Symbol Description

Development System Reference Guide

1-4 Xilinx Development System

Part Numbers in Commands
The EDIF2NGD, XNF2NGD, NGDBuild and MAP commands have
options to specify the part into which your design will be
implemented. A complete Xilinx part number consists of these
elements.

• Architecture (for example, xc4000ex)

• Device (for example, xc4028ex)

• Package (for example, pq208)

• Speed (for example, -3)

The following table shows the various way to specify a part on the
command line.

Specification Examples

Architecture only 4000ex
x4000ex
xc4000ex

Device only 4028ex
x4028ex
xc4028ex

DevicePackage 4028exhq240
x4028exhq240
xc4028exhq240

Device–Package 4028ex-hq240
x4028ex-hq240
xc4028ex-hq240

DevicePackage–Speed 4028exhq240-3
x4028exhq240-3
xc4028exhq240-3

Device–Package–Speed 4028ex-hq240-3
x4028ex-hq240-3
xc4028ex-hq240-3

Device–Speed 4028ex-3
x4028ex-3
xc4028ex-3

Introduction

Development System Reference Guide 1-5

You can specify a part number at a number of points in the design
flow. A part number specified in a later step of the design flow
overrides a part number specified in an earlier step.

The following list below specifies the points in the design flow when
you can specify a part number. In the list, a specification at a higher-
numbered level overrides a specification at a lower-numbered level.
As an example, a part specified when you run MAP overrides a part
specified at any other step in the design flow.

1. There may be a part specified in the input netlist.

2. There may be a part specified in an NCF (Netlist Constraints
File).

3. You can specify a part with the –p option when you run a netlist
reader (EDIF2NGD or XNF2NGD).

4. You can specify a part in a UCF (User Constraints File).

5. You can specify a part with the –p option when you run
NGDBuild.

When you run NGDBuild, you must have already specified at
least a device architecture

6. You can specify a part with the –p option when you run MAP.

When you run MAP, an architecture, device, and package must be
specified, either on the MAP command line or earlier in the design
flow. MAP selects a default speed if none has been specified. You can
only run MAP for a part from the architecture you specified when
you ran NGDBuild.

Device–Speed–Package 4028ex-3-hq240
x4028ex-3-hq240
xc4028ex-3-hq240

Device–SpeedPackage 4028ex-3hq240
x4028ex-3hq240
xc4028ex-3hq240

Specification Examples

Development System Reference Guide

1-6 Xilinx Development System

–f Option
For any Xilinx Development System executable, you can store
arguments (that is, file names and command options) in a file and
then execute the arguments at any time by entering the –f option on
the UNIX or DOS command line followed by the name of the file
containing the arguments. This can be useful if you frequently
execute the same arguments each time you perform the command, or
if the command line becomes too long.

You can use the options file in the following two ways.

• To supply all the command arguments, as in this example.

par –f command_file

command_file is the name of the file containing the command-line
arguments.

• To insert certain command line arguments within the command
line, as in this example.

par –i 33 –f placeoptions –s 4 –f routeop-
tions design_i.ncd design_o.ncd

placeoptions is the name of a file containing placement
command arguments.

routeoptions is the name of a file containing routing
command arguments.

The space between the –f flag and the file name is required. The
following command line is legal.

epic -m –f epic.cmd

where epic.cmd is the name of a file containing EPIC command
arguments.

The command file is an ASCII file containing the command
arguments. Arguments are separated by a space and can be spread
across one or more lines within the file. You can put new lines or tabs
anywhere white space is allowed on the UNIX or DOS command line.
You can put all arguments on the same line, or one argument per line,
or a combination of these. There is no line length limitation within the
file. All carriage returns and other non-printable characters are
treated as space and ignored. Comments are designated by a #
(pound sign) and go to the end of the line.

Introduction

Development System Reference Guide 1-7

This is an example of a command file.

Sample Command File

#command line options for par for design mine.ncd

-a -n 10
-w
-l 5
-s 2 #will save the two best results
/home/users/jimbob/designs/xilinx/mine.ncd
#directory for output designs
/home/users/jimbob/designs/xilinx/output.dir
#use timing constraints file
/home/users/jimbob/designs/xilinx/mine.pcf

Reading NCD Files with NCDRead
An NCD (Circuit Description) file contains a physical description of
your design in terms of the components in the target architecture.
NCDRead enables you to quickly generate an ASCII (text) file based
on the data found in one or more NCD files.

To start NCDRead from the UNIX or DOS command line, type the
following.

ncdread [–o outfile_name] filename0.ncd {filename1.ncd ...}

Note: Standard output goes only to your screen if you do not use the
–o option to write the output to a file.

Following is an example of an output file from NCDRead. The
example gives information on three of the 335 components in the
design. An actual file includes information on all the components.

Loading design for application ncdread from file fpga1.ncd.
 "hdp6q160" is an NCD, version 2.27, device xc4006e, package pq160,
speed -4
Loading device for application ncdread from file '4006e.nph' in
environment
/xilinx/x1_5.15.
NC_DESIGN <hdp6q160> - version 2.27
 vendor = Xilinx, package = pq160, speed = -4
 335 comps
 NC_COMP:0 - <TIMOUT0> site = CLB_R4C1
 Config String: <CLKX:CLK ECX:#OFF CLKY:CLK DY:G XMUX:#OFF
 YMUX:#OFF G3MUX:#OFF G2MUX:COUT0 F4MUX:#OFF CARRY:INC XQMUX:QX

Development System Reference Guide

1-8 Xilinx Development System

 YQMUX:QY ECY:#OFF DX:F H1:#OFF DIN:#OFF SR:C3 EC:#OFF
 FCARRY:CARRY H:#OFF: H0:#OFF H2:#OFF RAMCLK:#OFF RAM:#OFF
 GCARRY:CARRY G:#LUT:G=G2@G4 F:#LUT:F=~(F1) CINMUX:1 SETX:SR
 SETY:SR SRX:RESET SRY:RESET>
 19 pins -
 pin 2 - C3: <$6N244>
 pin 5 - F1: <TIMOUT0>
 pin 12 - G4: <TIMOUT1>
 pin 13 - K: <$6N228>
 pin 14 - COUT: <$6I223/C2>
 pin 16 - XQ: <TIMOUT0>
 pin 18 - YQ: <TIMOUT1>
 NC_COMP:1 - <TIMOUT2> site = CLB_R3C1
 Config String: <CLKX:CLK ECX:#OFF CLKY:CLK DY:G XMUX:#OFF
 YMUX:#OFF G3MUX:#OFF G2MUX:COUT0 F4MUX:CIN CARRY:INC XQMUX:QX
 YQMUX:QY ECY:#OFF DX:F H1:#OFF DIN:#OFF SR:C3 EC:#OFF
 FCARRY:CARRY H:#OFF: H0:#OFF H2:#OFF RAMCLK:#OFF RAM:#OFF
 GCARRY:CARRY G:#LUT:G=G4@G2 F:#LUT:F=F1@F4 CINMUX:CIN SETX:SR
 SETY:SR SRX:RESET SRY:RESET>
 19 pins -
 pin 2 - C3: <$6N244>
 pin 4 - CIN: <$6I223/C2>
 pin 5 - F1: <TIMOUT2>
 pin 12 - G4: <TIMOUT3>
 pin 13 - K: <$6N228>
 pin 14 - COUT: <$6I223/C4>
 pin 16 - XQ: <TIMOUT2>
 pin 18 - YQ: <TIMOUT3>
 NC_COMP:2 - <TIMOUT4> site = CLB_R2C1
 Config String: <CLKX:CLK ECX:#OFF CLKY:CLK DY:G XMUX:#OFF
 YMUX:#OFF G3MUX:#OFF G2MUX:COUT0 F4MUX:CIN CARRY:INC XQMUX:QX
 YQMUX:QY ECY:#OFF DX:F H1:#OFF DIN:#OFF SR:C3 EC:#OFF
 FCARRY:CARRY H:#OFF: H0:#OFF H2:#OFF RAMCLK:#OFF RAM:#OFF
 GCARRY:CARRY G:#LUT:G=G4@G2 F:#LUT:F=F1@F4 CINMUX:CIN SETX:SR
 SETY:SR SRX:RESET SRY:RESET>
 19 pins -
 pin 2 - C3: <$6N244>
 pin 4 - CIN: <$6I223/C4>
 pin 5 - F1: <TIMOUT4>
 pin 12 - G4: <TIMOUT5>
 pin 13 - K: <$6N228>
 pin 14 - COUT: <$6I223/C6>
 pin 16 - XQ: <TIMOUT4>
 pin 18 - YQ: <TIMOUT5>

Introduction

Development System Reference Guide 1-9

Terminology
Commonly used terms in the Xilinx Development System are defined
in this section. Terms specific to certain Xilinx Development System
modules are described in the relevant chapters.

• A device is a particular FPGA. For example, a Xilinx XC4010E is a
device.

• A site is a programmable logic element (used or unused) located
within the device.

• A component is a logic configuration that will, at some point, go
into a physical site. Examples of components are CLBs, IOBs,
tristate buffers, pull-up resistors, and oscillators.

• A net (also called a signal) is a set of two or more component pins
to be electrically connected in the finished design. A net normally
consists of a driver pin and one or more load pins, but it may
have more than one driver pin in certain cases. A net does not
pass through a logic block, except in the case of route-throughs
(routes that pass through occupied or unoccupied logic sites).
The following figure shows two examples of nets. In the example,
Net 1 consists of a driver pin (A) and a single load pin (B). Net 2
consists of a driver pin (A) and multiple load pins (B, C, and D).
The net contains a route-through at component COMP_1.

Development System Reference Guide

1-10 Xilinx Development System

Figure 1-1 Net Example

• A path is an ordered set of elements identifying a logic flow
pathway through a circuit. A path can consist of a single net or a
grouping of related nets and components. You can have multiple
paths (consisting of nets and components) between the two pins.
When a component is selected as part of a path, both the input
pin to the component and the output pin are included in the path.

X6975

A
B

B

C

D

Net 1

A

Net 2

COMP_1

Introduction

Development System Reference Guide 1-11

A path stops when it reaches the data input of a synchronous
element (flip-flop). A path usually starts at the output of a
synchronous element.

You can define paths with timing specifications (see the“Using
Timing Constraints” chapter). In the following figure, there are
three paths between Pin A and Pin B. One path travels from Pin
A through LB2 and through LB6 to Pin B, another travels from
Pin A through LB3 and through LB6 to Pin B, and another travels
from Pin A through LB4, LB5, and LB6 to Pin B.

Figure 1-2 Path Example

• A bus is a grouping of related nets. For example, you can create a
bus containing the nets DATA_00, DATA_01, DATA_02 and
DATA_03—nets that supply data to RAM.

X6976

A

X6976

B

LB1 LB2

LB3

LB4 LB5

LB6

Development System Reference Guide

1-12 Xilinx Development System

• A BEL is a Basic ELement. BELs are the building blocks that make
up a CLB or IOB—function generators, flip-flops, carry logic, and
RAMs.

• A physical macro is a logical function that is created from a set of
physical components for a specific device family. Physical macros
are stored in files with the .nmc extension. In addition to
components and nets, the file can also contain relative placement
and/or routing information. A macro can be unplaced, partially
placed, or fully placed, and it can also be unrouted, partially
routed, or fully routed. See the “Working with Physical Macros”
chapter of the EPIC Design Editor Reference/User Guide for
information about physical macros.

Supported Platforms
The applicable Release Document lists the platforms supported by the
Xilinx Development System and gives the requirements for each
platform.

Development System Reference Guide — October 1998 2-1

Chapter 2

NGDBuild

This program is compatible with the following families.

• XC3000A/L™

• XC3100A/L™

• XC4000E/L™

• XC4000EX/XL/XV/XLA™

• XC5200™

• Spartan™

• SpartanXL™

• Virtex™

• XC9500™

• XC9500XL™

This chapter describes the NGDBuild program. The chapter contains
the following.

• “NGDBuild”

• “NGDBuild Syntax”

• “NGDBuild Files”

• “NGDBuild Options”

• “Netlister Launcher”

• “File Names and Locations”

Development System Reference Guide

2-2 Xilinx Development System

NGDBuild
NGDBuild performs all the steps necessary to read a netlist file in
XNF or EDIF format and create an NGD file describing the logical
design (a logical design is in terms of logic elements such as AND
gates, OR gates, decoders, and RAMs). The NGD file resulting from
an NGDBuild run contains both a logical description of the design
reduced to Xilinx NGD (Native Generic Database) primitives and a
description in terms of the original hierarchy expressed in the input
netlist. The output NGD file can be mapped to the desired device
family.

The following figure is a simplified drawing of the design flow
through NGDBuild. NGDBuild invokes other programs and
generates intermediate (NGO) files that are not shown in the
drawing. For a complete description of how NGDBuild works, see
the “EDIF2NGD, XNF2NGD, and NGDBuild” appendix.

Figure 2-1 NGDBuild Design Flow

X7710

NMC

Physical Macros

Referenced in Netlist

NGDBuild
Netlister

Launcher

UCF

User Constraints File

XNF 6.1

Netlist

EDIF 2 0 0

Netlist

NGD

Generic Database

BLD

Build Report

NCF

Netlist Constraints File

NGDBuild

Development System Reference Guide 2-3

Converting a Netlist to an NGD File
NGDBuild performs the following steps to convert a netlist to an
NGD file (see the preceding figure).

Note: This procedure, the Netlister Launcher, and the netlist reader
programs are described in more detail in the “EDIF2NGD,
XNF2NGD, and NGDBuild” appendix.

1. Reads the source netlist.

NGDBuild invokes the Netlister Launcher which determines the
type of the input netlist and starts the appropriate netlist reader
program.

2. Reduces all components in the design to NGD primitives.

NGDBuild merges components that reference other files.
NGDBuild also finds the appropriate system library components,
physical macros (NMC files) and behavioral models.

3. Checks the design by running a Logical DRC (Design Rule
Check) on the converted design.

The Logical DRC is a series of tests on the logical design. It is
described in “The Logical Design Rule Check” chapter.

4. Writes an NGD file as output.

NGDBuild Syntax
The following command reads the design into the Xilinx
Development system and converts it to an NGD file.

ngdbuild [options] design_name [ngd_file[.ngd]]

Options can be any number of the NGDBuild options listed in the
“NGDBuild Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

Design_name is the top-level name of the design file you want to
convert.To ensure the design is processed correctly, specify a file
extension for the input file. Use one of the legal file extensions
specified in the “Input Files” section. Using an incorrect or
nonexistent file extension causes NGDBuild to fail without creating
an NGD file. If you use an incorrect file extension, NGDBuild may
issue an “unexpanded” error.

Development System Reference Guide

2-4 Xilinx Development System

Ngd_file[.ngd] is the output file in NGD format. The output file
name, its extension, and its location are determined as follows.

• If you do not specify an output file name, the output file has the
same name as the input file, with an .ngd extension.

• If you specify an output file name with no extension, NGDBuild
appends the .ngd extension to the file name.

• If you specify a file name with an extension other than .ngd, you
get an error message and NGDBuild does not run.

• If the output file already exists, it is overwritten with the new file.

NGDBuild Files
This section describes the NGDBuild input and output files.

Input Files
The input files to NGDBuild are the following.

• Design file—The input design can be an XNF or EDIF 2 0 0
netlist. If the input netlist is in another format that the Netlister
Launcher recognizes, the Netlister Launcher invokes the
program necessary to convert the netlist to EDIF or XNF format,
then invokes the appropriate netlist reader, EDIF2NGD or
XNF2NGD.

With the default Netlister Launcher options, NGDBuild recog-
nizes and processes files with the extensions shown in the
following table.

• UCF file—User Constraints File. This file is an ASCII file that you
create. The file contains timing and layout constraints that affect
how the logical design is implemented in the target device. The
constraints in the file are added to the information in the output
NGD file.

Netlist Type Recognized Extensions

EDIF .edn, .edf, .edif, .sedif

XNF .xnf, .xtf, .xff, .xg, .sxnf

PLD .pld

NGDBuild

Development System Reference Guide 2-5

By default, NGDBuild reads the constraints in the UCF file
automatically if the UCF file has the same base name as the input
design file and a .ucf extension. You can override the default
behavior and specify a different constraints file by entering a –uc
option to the NGDBuild command line.

• NCF file—Netlist Constraints File. Produced by a CAE vendor
toolset, this file contains constraints specified within the toolset.
The netlist reader invoked by NGDBuild reads the constraints in
this file if the NCF file has the same name as the input netlist file.
It adds the constraints to the intermediate NGO file and the
output NGD file.

Note: If the NGO file for a netlist file is up to date, NGDBuild looks
for an NCF file with the same base name as the netlist in the netlist
directory and compares the timestamp of the NCF file against that of
the NGO file. If the NCF file is newer, XNF2NGD or EDIF2NGD is
run again. However, if an NCF file existed on a previous run of
NGDBuild and the NCF file was deleted, NGDBuild does not detect
that XNF2NGD or EDIF2NGD must be run again. In this case, you
must use the nt -on option to force a rebuild.

• NGC file—Binary file containing the implementation of a module
in the design. If an NGC file exists for a module, NGDBuild reads
this file directly, without looking for a source EDIF or XNF netlist.
In HDL design flows, LogiBLOX creates an NGC file to define
each module.

• NMC files—Physical Macros. These binary files contain the
implementation of a physical macro instantiated in the design.
NGDBuild reads the NMC file to create a behavioral simulation
model for the macro.

• MEM files—LogiBLOX Memory Definition Files. These text files
define the contents of LogiBLOX memory modules. NGDBuild
reads MEM files in design flows where LogiBLOX does not create
NGC files directly. See the “Module Descriptions” chapter of the
LogiBLOX Reference/User Guide for details.

Unless a full path is provided to NGDBuild, it searches for netlist,
NGC, NMC, and MEM files in the following locations.

• The working directory from which NGDBuild was invoked

• The path specified for the top-level design netlist on the
NGDBuild command line

Development System Reference Guide

2-6 Xilinx Development System

• Any path specified with the -sd switch on the NGDBuild
command line

Output Files
Output from NGDBuild consists of the following files.

• NGD file—Binary file containing a logical description of the
design in terms of both its original components and hierarchy
and the NGD primitives to which the design reduces.

• BLD file—Build report file containing information about the
NGDBuild run. The BLD file has the same root name as the
output NGD file and a .bld extension. The file is written into the
same directory as the output NGD file.

Intermediate Files
NGO files—(Not shown in the “NGDBuild Design Flow” figure)
Binary files containing a logical description of the design in terms of
its original components and hierarchy. These files are created when
NGDBuild reads the input netlist. If these files already exist,
NGDBuild reads the existing files. If these files do not exist or are out
of date, NGDBuild creates them.

NGDBuild Options
This section describes NGDBuild command line options.

–a (Add PADs to Top-Level Port Signals)
If the top-level input netlist is in EDIF format, the –a option causes
NGDBuild to add a PAD symbol to every signal that is connected to a
port on the root-level cell. This option has no effect on lower-level
netlists or on a top-level XNF netlist.

Whether you need to use –a depends on the behavior of your third-
party EDIF writer. If your EDIF writer treats pads as instances (like
other library components), you should not use –a. But if your EDIF
writer treats pads as hierarchical ports, you should use –a to infer
actual pad symbols. If you do not use –a where necessary, logic may
be improperly removed during mapping.

NGDBuild

Development System Reference Guide 2-7

For EDIF files produced by Mentor Graphics and Cadence, the –a
option is set automatically; you do not have to enter –a explicitly for
these vendors.

Note: The NGDBuild –a option corresponds to the EDIF2NGD –a
option. If you run EDIF2NGD on the top-level EDIF netlist separately,
rather than allowing NGDBuild to run EDIF2NGD, you should use
the two –a options consistently.

–dd (Destination Directory)
–dd ngo_directory

The –dd option specifies the directory for intermediate files (design
NGO files and netlist files). If the –dd option is not specified, files are
placed in the current directory.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–l (Libraries to Search)
–l libname

The –l option indicates the list of libraries to search when
determining what library components were used to build the design.
This option is passed to the appropriate netlist reader. The
information allows NGDBuild to determine the source of the design’s
components so it can resolve the components to NGD primitives.

You can specify multiple libraries by entering multiple –l libname
entries on the NGDBuild command line.

The allowable entries for libname are the following.

xilinxun (Xilinx Unified library)

synopsys

Development System Reference Guide

2-8 Xilinx Development System

Note: You do not have to enter xilinxun with a –l option. The Xilinx
Development System tools automatically access these libraries. In
cases where NGDBuild automatically detects Synopsys designs (for
example, the netlist extension is .sxnf or .sedif), you do not have to
enter synopsys with a -l option.

–nt (Netlist Translation Type)
–nt {timestamp | on | off }

The –nt option determines how timestamps are treated by the
Netlister Launcher when it is invoked by NGDBuild. A timestamp is
information in a file that indicates the date and time the file was
created. The timestamp option (which is the default if no –nt option is
specified) has the Netlister Launcher perform the normal timestamp
check and update NGO files according to their timestamps. The on
option translates netlists regardless of timestamps (rebuilding all
NGO files), and the off option does not rebuild an existing NGO file,
regardless of its timestamp.

–p (Target Architecture)
–p part

The –p option specifies the part into which the design is
implemented.The –p option can specify an architecture only, a
complete part specification (device, package, and speed), or a partial
specification (for example, device and package only).

The syntax for the –p option is described in the “Part Numbers in
Commands” section of the “Introduction” chapter. Examples of part
entries are XC4000L, XC4003E-PC84 , and XC4028EX-HQ240-3 .

When you specify the part, the NGD file produced by NGDBuild is
optimized for mapping into that architecture.

You do not have to specify a –p option if your NGO file already
contains information about the desired vendor and family (for
example, if you placed a PART property in a schematic or a CONFIG
PART statement in a UCF file). However, you can override the
information in the NGO file with the –p option when you run
NGDBuild.

NGDBuild

Development System Reference Guide 2-9

–r (Ignore LOC Constraints)
The –r option eliminates all location constraints (LOC=) found in the
input netlist or UCF file. Use this option when you migrate to a
different device or architecture, because locations in one architecture
may not match locations in another.

Note: If you have run NGDBuild previously on your design and
NGO files are present, you must use the -nt on option the first time
you use -r. This forces a rebuild of the NGO files, allowing NGDBuild
to run EDIF2NGD or XNF2NGD to remove location constraints.

–sd (Search Specified Directory)
–sd search_path

The –sd option adds the specified search_path to the list of directories
to search when resolving file references (that is, files specified in the
schematic with a FILE=filename property) and when searching for
netlist, NGO, NGC, NMC, and MEM files. You do not have to specify
a search path for the top-level design netlist directory, because it is
automatically searched by NGDBuild.

The search_path must be separated from the –sd by spaces or tabs (for
example, –sd designs is correct, –sddesigns is not).

You can specify multiple –sd options on the command line. Each
must be preceded with –sd; you cannot combine multiple search_path
specifiers after one –sd. For example, the following syntax is not
acceptable.

–sd /home/macros/counter /home/designs/pal2

The following syntax is acceptable.

–sd /home/macros/counter –sd /home/designs/pal2

–u (Allow Unexpanded Blocks)
In the default behavior of NGDBuild (without –u option), NGDBuild
generates an error if a block in the design cannot be expanded to
NGD primitives. If this error occurs, an NGD file is not written.

If you enter the –u option, NGDBuild generates a warning instead of
an error if a block cannot be expanded, and writes an NGD file
containing the unexpanded block.

Development System Reference Guide

2-10 Xilinx Development System

You may want to run NGDBuild with the –u option to perform
preliminary mapping, placement and routing, timing analysis, or
simulation on the design even though the design is not complete. To
ensure the unexpanded blocks remains in the design when it is
mapped, run the MAP program with the –u (Do Not Remove Unused
Logic) option.

–uc (User Constraints File)
–uc ucf_file[.ucf]

The –uc option specifies a UCF (User Constraints File) for the
Netlister Launcher to read. The UCF file contains timing and layout
constraints that affect how the logical design is implemented in the
target device.

The user constraints file must have a .ucf extension. If you specify a
user constraints file without an extension, NGDBuild appends the
.ucf extension to the file name. If you specify a file name with an
extension other than .ucf, you get an error message and NGDBuild
does not run.

If you do not enter a –uc option and a UCF file exists with the same
base name as the input design file and a .ucf extension, NGDBuild
automatically reads the constraints in this UCF file.

The User Constraints File is described in “The User Constraints
(UCF) File” chapter.

–ur (Read User Rules File)
–ur rules_file[.urf]

The –ur option specifies a user rules file for the Netlister Launcher to
access. This file determines the acceptable netlist input files, the
netlist readers that read these files, and the default netlist reader
options.

The user rules file must have a .urf extension. If you specify a user
rules file with no extension, NGDBuild appends the .urf extension to
the file name. If you specify a file name with an extension other than
.urf, you get an error message and NGDBuild does not run.

The user rules file is described in the “User Rules File” section of the
“EDIF2NGD, XNF2NGD, and NGDBuild” appendix.

NGDBuild

Development System Reference Guide 2-11

Netlister Launcher
The Netlister Launcher, which is part of NGDBuild, performs any
netlist translations necessary to execute the NGDBuild command.
The Netlister Launcher is described in detail in the “Netlister
Launcher” section of the “EDIF2NGD, XNF2NGD, and NGDBuild”
appendix.

File Names and Locations
Following are some notes about file names and notations in
NGDBuild.

• An intermediate file has the same root name as the design that
produced it. An intermediate file is generated when more than
one netlist reader is needed to translate a netlist to a NGO file.

• Netlist root file names in the search path must be unique. For
example, if you have the design state.edn, you cannot have
another design named state.xnf in any of the directories specified
in the search path.

• NGDBuild and the Netlister Launcher support quoted file
names. Quoted file names may have special characters (for
example, a space) that are not normally allowed.

• If the output directory specified in the call to NGDBuild is not
writable, an error is displayed and NGDBuild fails.

Development System Reference Guide

2-12 Xilinx Development System

Development System Reference Guide—October 1998 3-1

Chapter 3

The User Constraints (UCF) File

The UCF file is an ASCII file specifying constraints on the logical design.
You create this file and enter your constraints in the file with a text editor.
These constraints affect how the logical design is implemented in the target
device. The file can also be used to override constraints specified during
design entry, earlier in the design flow.

There are several types of logical constraints in the UCF file.

• Placement

• Mapping

• Timing

• BitGen

These constraints and the syntax for entering them in the UCF are described
in the “Attributes, Constraints, and Carry Logic” chapter of theLibraries
Guide. A more detailed description of timing constraints can be found in the
“Using Timing Constraints” chapter of this manual.

The UCF file is an input to NGDBuild (see the “UCF File Flow” figure). The
constraints in the UCF file become part of the information in the NGD file
produced by NGDBuild. Some of these constraints are used when the design
is mapped by MAP and some of the constraints are written into the PCF
(Physical Constraints File) produced by MAP. The constraints in the PCF
file are used by the each of the physical design tools (for example, PAR and
the timing analysis tools), which are run after your design is mapped.

Development System reference Guide

3-2 Xilinx Development System

Figure 3-1 UCF File Flow

X7423

NGDBuild

NGD

Generic Database

(Containing Constraints)

UCF

User Constraints FileDesign Netlist

Development System Reference Guide—October 1998 4-1

Chapter 4

Using Timing Constraints

The timing constraints described in this chapter are compatible with
the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XLA/XV

• XC5200

• Virtex

• Spartan

• SpartanXL

This chapter describes how you specify timing constraints, and
contains the following sections.

• “Timing Requirements and Xilinx Software”

• “Entering Timing Specifications”

• “Specifying Groups”

• “Defining a Clock Period (PERIOD Constraint)”

• “OFFSET Timing Specifications”

• “Ignoring Selected Paths (TIG)”

• “Basic FROM –TO Syntax”

• “Specifying Timing Points”

• “Using TPTHRU or TPSYNC in a FROM–TO Constraint”

• “Specifying Time Delay in TS Attributes”

Development System Reference Guide

4-2 Xilinx Development System

• “Using the PRIORITY Keyword”

• “Sample Schematic Using TIMESPEC/TIMEGRP Symbol”

• “Prorating Constraints”

• “Additional Timing Constraints”

• “Constraints Priority”

• “Syntax Summary”

Timing Requirements and Xilinx Software
Xilinx software enables you to specify precise timing requirements
for your Xilinx FPGA designs. You can specify the timing
requirements for any nets or paths in your design. One way of
specifying path requirements is to first identify a set of paths by
identifying a group of start and end points. The start and end points
can be flip-flops, I/O pads, latches, or RAMs. You can then control
the worst-case timing on the set of paths by specifying a single delay
requirement for all paths in the set.

The primary method of specifying timing requirements is by entering
them on the schematic. However, you can also specify timing
requirements in constraints files (UCF and PCF). For detailed
information about the constraints you can use with your schematic-
entry software, refer to the “Attributes, Constraints, and Carry Logic”
chapter of the Libraries Guide.

Once you define timing specifications and then map the design, PAR
places and routes your design based on these requirements.

To analyze the results of your timing specifications, use TRACE
(Timing Report and Circuit Evaluator). Refer to the “TRACE” chapter
for more information.

Entering Timing Specifications
This section describes the basic methods for entering timing
specifications in a schematic or User Constraints File (UCF).

The following notes apply to Mentor Graphics users.

• The term attribute in this chapter is equivalent to property as used
in the Mentor Graphics environment.

Using Timing Constraints

Development System Reference Guide 4-3

• The Mentor netlist writer (ENWRITE) converts all property
names to lowercase letters, and the Xilinx netlist reader
EDIF2NGD then converts the property names to uppercase
letters. Because property names are processed in this way, you
must enter variable text in certain constraints in upper case
letters only. This requirement is discussed in the following
sections.

• “Entering Timing Specifications in a Schematic”

• “Creating New Groups from Existing Groups”

Entering Timing Specifications in a Schematic
The TIMESPEC schematic primitive, as illustrated in the “TIMESPEC
Primitive” figure, serves as a placeholder for timing specifications,
which are called TS attribute definitions. Every TS attribute must be
defined in a TIMESPEC primitive, and only TIMESPEC primitives
can carry TS attribute definitions. Every TS attribute begins with the
letters ‘‘TS” and ends with a unique identifier that can consist of
letters, numbers, or the underscore character (_).

TS attribute definitions can be any length, but only 30 characters are
displayed in the TIMESPEC window. Each TIMESPEC primitive can
hold up to eight TS attributes. If you want to include more than eight
TS attributes, you can use multiple TIMESPEC primitives in your
schematic.

Figure 4-1 TIMESPEC Primitive

How you add a TIMESPEC primitive to your schematic depends on
your specific schematic-entry software. Refer to the appropriate
Xilinx Interface User Guide for step-by-step instructions.

X7430

TIMESPEC
TS01=FROM:FFS:TO:PADS:25

Development System Reference Guide

4-4 Xilinx Development System

A TS attribute defines the allowable delay for paths in your design.
The basic syntax for a TS attribute is as follows.

TSidentifier=FROMsource_group TO dest_group delay

TSidentifier is a unique name for the TS attribute, source_group and
dest_group are groups of start points and end points, and delay defines
the maximum delay for the paths between the start points and end
points. The delay parameter defines the maximum delay for the
attribute. Nanoseconds are the default units for specifying delay time
in TS attributes. You can also specify delay using other units, such as
picoseconds or megahertz.

Note: Keywords, such as FROM, TO, and TS appear in the
documentation in upper case; however, you can enter them in the
TIMESPEC primitive in either upper or lower case. The characters in
the keywords must be all upper case or all lower case. Examples of
acceptable keywords are: FROM, TO, from, to. Examples of
unacceptable keywords are: From, To, fRoM, tO.

Note: The Mentor netlist writer (ENWRITE) converts all property
names to lower case letters, and the Xilinx netlist reader EDIF2NGD
then converts the property names to upper case letters. To ensure
references from one constraint to another are processed correctly, a
TSidentifier name should contain only upper case letters on a Mentor
Schematic (TSMAIN, for example, but not TSmain or TSMain). Also,
if a TSidentifier name is referenced in a property value, it must be
entered in upper case letters. For example, the TSID1 in the second
constraint below must be entered in upper case letters to match the
TSID1 name in the first constraint.

TSID1 = FROM gr1 TO gr2 50;
TSMAIN = FROM here TO there TSID1 /2;

The basic TS attribute is described in detail in the “Basic FROM –TO
Syntax” section. More detailed forms of the attribute are also
described in that section.

Note: A colon may be used as a separator instead of a space in all
timing specifications.

Using Timing Constraints

Development System Reference Guide 4-5

Entering Timing Specifications in a Constraints File
You can enter timing specifications as constraints in a UCF file. When
you then run NGDBuild on your design, your timing specifications
are added to the design database as part of the NGD file.

The basic syntax for a timing specification entered in a constraints file
is the TS attribute syntax described in the “Basic FROM –TO Syntax”
section.

Although not required, Xilinx recommends that NET and INST
names be enclosed in double quotes to avoid errors. Additionally,
inverted signal names that contain a tilde, for example, ~OUTSIG1,
must always be enclosed in double quotes. Other special characters
that must be enclosed in quotes are the asterisk (*) and question mark
(?).

You can use the wildcard character (*) to traverse the hierarchy of a
directory within a UCF or NCF file. Consider the following directory
hierarchy.

With the example hierarchy, the following specifications illustrate the
scope of the wildcard.

INST * => <everything>
INST /* => <everything>
INST /*/ => <$A1,$B1,$C1>
INST $A1/* => <$A21,$A22,$A3,$A4>
INST $A1/*/ => <$A21,$A22>
INST $A1/*/* => <$A3,$A4>
INST $A1/*/*/ => <$A3>
INST $A1/*/*/* => <$A4>
INST $A1/*/*/*/ => <$A4>
INST /*/*22/ => <$A22,$B22,$C22>

$A21 $A22

$A3

$A4

$A1

$B21 $B22

$B3

$B1

$C21 $C22

$C3

$C1

X8571

Development System Reference Guide

4-6 Xilinx Development System

INST /*/*22 =>
<$A22,$A3,$A4,$B22,$B3,$C22,$C3>
INST /*/*22/* => <$A3,$A4,$B3,$C22,$C3>

Specifying Groups
 In a TS attribute, you specify the set of paths to be analyzed by
grouping start and end points in one of the following ways.

• Refer to a predefined group by specifying one of the
corresponding keywords — FFS, PADS, LATCHES, or RAMS.

• Create your own groups within a predefined group by tagging
symbols with TNM (pronounced tee-name) attributes.

• Create groups that are combinations of existing groups using
TIMEGRP symbols.

• Create groups by pattern matching on net names.

The following sections discuss each method in detail.

Using Predefined Groups
You can refer to a group of flip-flops, input latches, pads, or RAMs by
using the corresponding keywords.

From-To statements enable you to define timing specifications for
paths between predefined groups. The following examples are TS
attributes that reside in the TIMESPEC primitive or are entered in the
UCF. This method enables you to easily define default timing
specifications for the design, as illustrated by the following examples.

Keyword Description

FFS CLB or IOB flip-flops only; not flip-flops built from
function generators (Shift Register LUTs in Virtex
also)

LATCHES CLB or IOB latches only; not latches built from func-
tion generators

PADS Input/Output pads

RAMS For architectures with RAMS (LUT RAMS and Block
RAMS for Virtex)

Using Timing Constraints

Development System Reference Guide 4-7

Schematic syntax in TIMESPEC primitive

TS01=FROM FFS TO FFS 30
TS02=FROM LATCHES TO LATCHES 25
TS03=FROM PADS TO RAMS 70
TS04=FROM FFS TO PADS 55

UCF syntax

TIMESPEC TS01=FROM FFS TO FFS 30;
TIMESPEC TS02=FROM LATCHES TO LATCHES 25;
TIMESPEC TS03=FROM PADS TO RAMS 70;
TIMESPEC TS04=FROM FFS TO PADS 55;

A predefined group can also carry a name qualifier; the qualifier can
appear any place where the predefined group is used. This name
qualifier restricts the number of elements being referred to. The
syntax used is as follows.

predefined group (name_qualifier [name_qualifier])

name_qualifier is the full hierarchical name of the net that is sourced by
the primitive being identified.

The name qualifier can include wildcard characters (*) to indicate any
number of characters (or ? to indicate a single character) which allows
the specification of more than one net or allows you to shorten the
full hierarchical name to something that is easier to type.

As an example, specifying the group FFS(MACRO_A/Q?) selects
only the flip-flops driving the Q0, Q1, Q2 and Q3 nets in the
following macro.

Development System Reference Guide

4-8 Xilinx Development System

Figure 4-2 Using Qualifiers with Predefined Groups

To create more specific groups see the following section.

Creating User-Defined Groups Using TNMs
A TNM (timing name) is an attribute that can be used to identify the
elements that make up a group which can then be used in a timing
specification. A TNM is a property that you place directly on your
schematic to tag a specific net, element pin, primitive or macro.
All symbols tagged with the TNM identifier are considered a group.
Place TNM attributes directly on your schematic or in a UCF file
using the following syntax.

X7431

Q3

MACRO_A

D

CE

CLR

Vcc Vcc

Q

D

CE

CLR

Q

D

CE

CLR

Q

D

CE

CLR

Q D

CE

CLR

Q

D

CE

CLR

Q

D

CE

CLR

Q

D

CE

CLR

Q

Q1

Q0

Q2

R3

R1

R0

R2

OUT3

OUT1

OUT0

OUT2

Using Timing Constraints

Development System Reference Guide 4-9

Schematic syntax

TNM=identifier

UCF syntax

{NET | INST | PIN } object_name TNM=identifier;

identifier is a value that consists of any combination of letters,
numbers, or underscores. Keep the TNM short for convenience and
clarity.

Do not use the reserved words FFS, LATCHES, PADS, RAMS,
RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT, as identifiers.
The constraints in the table below are also reserved words and should
not be used as identifiers.

Reserved Words (Constraints)

ADD FAST NODELAY

ALU FBKINV OPT

ASSIGN FILE OSC

BEL F_SET RES

BLKNM HBLKNM RLOC

CAP HU_SET RLOC_ORIGIN

CLKDV_DIVIDE H_SET RLOC_RANGE

CLBNM INIT SCHNM

CMOS INIT OX SLOW

CYMODE INTERNAL STARTUP_WAIT

DECODE IOB SYSTEM

DEF IOSTANDARD TNM

DIVIDE1_BY LIBVER TRIM

DIVIDE2_BY LOC TS

DOUBLE LOWPWR TTL

DRIVE MAP TYPE

DUTY_CYCLE_
CORRECTION

MEDFAST USE_RLOC

EQN MEDSLOW U_SET

FAST MINIM

Development System Reference Guide

4-10 Xilinx Development System

Note: If you want to use a keyword as an identifier, you can enclose
the keyword in quotation marks. In the TNM statement TNM=RAMS
”CMOS”, CMOS is treated as an identifier instead of a keyword.

You can specify as many groups of end points as are necessary to
describe the performance requirements of your design. However, to
simplify the specification process and reduce the place and route
time, use as few groups as possible.

A predefined group can be used in a TNM specification, using the
following syntax on a schematic or UCF file.

Schematic syntax

TNM=predefined_group identifier

UCF syntax

{NET | INST | PIN } object_name TNM=predefined_group identifier;

The object_name is the net, pin, or instance name.

The predefined_group is one of the groups (for example, FFS or RAMS)
defined in the “Using Predefined Groups” section and identifier is a
value that consists of any combination of letters, numbers, or under-
scores. Paths defined by the TNM are traced forward if placed on a
net or pin, through any number of gates or buffers, until they reach a
member of the predefined_group. That element is added to the speci-
fied TNM group. TNM does not trace through the element to the next
element; forward tracing stops at the element. This mechanism is
called forward tracing. If TNM is placed on an instance, paths are
traced “downward” through a hierarchy instead of forward along a
net.

Note: If a TNM is placed on an input pad net, the constraint only
applies to the input pad. In that case, refer to the “Creating User-
Defined Groups Using TNM_NET” section.

The specification shown below, when attached to a net, would create
a group called FIFO_CORE consisting of all of the RAM primitives
traced forward on the net. The specification shows the schematic and
UCF syntax.

Schematic syntax

TNM=RAMS FIFO_CORE

Using Timing Constraints

Development System Reference Guide 4-11

UCF syntax

NET net_name TNM=RAMS FIFO_CORE;

The following figure illustrates the preceding TNM identifier. The
two RAMs traced forward from the net are included in the group.
The flip flop is not.

Figure 4-3 TNM Placed on a Net

A defined net in a TNM statement can have a name qualifier (for
example, TMM=FFS (FRED*) GRP_A), as described in the “Creating
Groups by Pattern Matching” section.

You can use several methods for tagging groups of end points:
placing identifiers on nets, macro or primitive pins, primitives, or
macro symbols. Which method you choose depends on how the path
end points are related in your design. For each of these elements, you
can use the predefined group syntax described earlier in this section.

D Q

D O
WE
A0
A1
A2
A3
A4

D O
WE
A0
A1
A2
A3
A4

CLOCK

D3

D2

D1

TNM=RAMS:FIFO_CORE

Q3

X8526

Development System Reference Guide

4-12 Xilinx Development System

The following subsections discuss the different methods of placing
TNMs in your design. The same TNM attribute can be used as many
ways and as many times as necessary to get the TNM applied to all of
the elements in the desired group.

You can place TNM attributes in either of two places: in the schematic
as discussed in this section or in a constraints file (UCF or NCF).

The syntax for specifying TNMs in a UCF or NCF constraints file is
described in the “Attributes, Constraints, and Carry Logic” chapter of
the Libraries Guide.

Placing TNMs on Nets

The TNM attribute can be placed on any net in the design. The
attribute indicates that the TNM value should be attached to all valid
elements fed by all paths that fan forward from the tagged net.
Forward tracing stops at any flip-flop, latch, RAM or pad. See the
“TNM Placed on a Net” figure. TNMs do not propagate across IBUFs
if they are attached to the input pad net. Also refer to the “Creating
User-Defined Groups Using TNM_NET” section.

Placing TNMs on Macro or Primitive Pins

The TNM attribute can be placed on any macro or component pin in
the design if the design entry package allows placement of attributes
on macro or primitive pins. The attribute indicates that the TNM
value should be attached to all valid elements fed by all paths that fan
forward from the tagged pin. Forward tracing stops at any flip-flop,
latch, RAM or pad. The following illustration shows the valid
elements for a TNM attached to the schematic a macro pin.

Using Timing Constraints

Development System Reference Guide 4-13

Figure 4-4 TNM Placed on a Macro Pin

The syntax for the UCF file would be

PIN pin_name TNM=FFS FLOPS;

Placing TNMs on Primitive Symbols

You can group individual logic primitives explicitly by flagging each
symbol, as illustrated by the following figure.

EN
D Q

EN

D Q
I

O

DI DO

ADDRS
WE

DI DO

ADDRS
WE

D

X8528

TNM=FFS:FLOPS

MEM

WE
A0
A1
A2
A3

O

FLOPS

DI DO

FLOPS

Development System Reference Guide

4-14 Xilinx Development System

Figure 4-5 TNM on Primitive Symbols

In the figure, the flip-flops tagged with the TNM form a group called
“‘FLOPS.” The untagged flip-flop on the right side of the drawing is
not part of the group.

Place only one TNM on each symbol, driver pin, or macro driver pin.

Schematic syntax

TNM=FLOPS

UCF syntax

INST symbol_name TNM=FLOPS;

Placing TNMs on Macro Symbols

A macro is an element that performs some general purpose higher
level function. It typically has a lower level design that consists of
primitives, other macros, or both, connected together to implement
the higher level function. An example of a macro function is a 16-bit
counter.

D

TNM=FLOPS

TNM=FLOPS

Q

D Q

D Q

LOGIC

LOGIC

X8532

CLK

Using Timing Constraints

Development System Reference Guide 4-15

A TNM attribute attached to a macro indicates that all elements
inside the macro (at all levels of hierarchy below the tagged macro)
are part of the named group.

When a macro contains more than one symbol type and you want to
group only a single type, use the TNM identifier in conjunction with
one of the predefined groups: FFS, RAMS, PADS, or LATCHES as
indicated by the following syntax examples.

Schematic syntax

TNM=FFS identifier
TNM=RAMS identifier
TNM=LATCHES identifier
TNM=PADS identifier

UCF syntax

INST macro_name TNM=FFS identifier;
INST macro_name TNM=RAMS identifier;
INST macro_name TNM=LATCHES identifier;
INST macro_name TNM=PADS identifier;

If multiple symbols of the same type are contained in the same
hierarchical block, you can simply flag that hierarchical symbol, as
illustrated by the following figure. In the figure, all flip-flops
included in the macro are tagged with the TNM ‘‘FLOPS”. By tagging
the macro symbol, you do not have to tag each underlying symbol
individually.

Development System Reference Guide

4-16 Xilinx Development System

Figure 4-6 TNM on Macro Symbol

Placing TNMs on Nets or Pins to Group Flip-Flops
and Latches

You can easily group flip-flops, latches, or both by flagging a common
input net, typically either a clock net or an enable net. If you attach a
TNM to a net or driver pin, that TNM applies to all flip-flops and
input latches that are reached through the net or pin. That is, that
path is traced forward, through any number of gates or buffers, until
it reaches a flip-flop or input latch. That element is added to the
specified TNM group.

The following figure illustrates the use of a TNM on a net that traces
forward to create a group of flip-flops.

EN
D Q

EN

D Q
I

O

DI DO

ADDRS

TNM=FFS:FLOPS

WE

DI DO

ADDRS
WE

Q5

Q4

Q3

Q2

Q1

Q0
EN

POS

PH0

PH1

PH2

PH3

NEG

X4678

Using Timing Constraints

Development System Reference Guide 4-17

In the figure, the attribute TNM=FLOPS traces forward to the first
two flip-flops, which form a group called FLOPS. The bottom flip-
flop is not part of the group FLOPS

Figure 4-7 TNM on Net Used to Group Flip-Flops

The following figure illustrates placing a TNM on a clock net, which
traces forward to all three flip-flops and forms the group Q_FLOPS.

AND

FD Q

O

Pxx

X8553

FD Q

FD Q

Pxx

Pxx O

O

O

D1 D

C

D

C

D

C

IBUF
TNM=FLOPS

IBUF

GCLK

O

O

O CLK

XNOR

INV

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

D3

D2

Pxx

Pxx

Pxx

Development System Reference Guide

4-18 Xilinx Development System

Figure 4-8 TNM on Clock Pin Used to Group Flip-Flops

The TNM parameter on nets or pins is allowed to have a qualifier.

For example, on schematics

TNM=FFS data

TNM=RAMS fifo

TNM=LATCHES capture

In UCF files

{NET | PIN } net_or_pin_name TNM=FFS data;

{NET | PIN } net_or_pin_name TNM=RAMS fifo;

{NET | PIN } net_or_pin_name TNM=LATCHES capture;

A qualified TNM is traced forward until it reaches the first storage
element (flip-flop, latch, or RAM). If that type of storage element
matches the qualifier, the storage element is given that TNM value.
Whether or not there is a match, the TNM is not traced through that
storage element.

D Q

Q1

D Q

CLOCK

TNM=Q_FLOPS

D Q
D1

D3

D2 Q2

Q3

X8531

Using Timing Constraints

Development System Reference Guide 4-19

TNM parameters on nets or pins are never traced through a storage
element (flip-flop, latch or RAM). In previous XACTstep® software
releases, they were traced through some pins on input latches and
RAMs. If you rely on this behavior, move the TNM parameter so that
it reaches the target flip-flop directly or place a TNM parameter on
the target flip-flop symbol.

Creating User-Defined Groups Using TNM_NET
A TNM_NET (timing name for nets) is an attribute that can be used
to identify the elements that make up a group which can then be used
in a timing specification. Essentially TNM_NET is equivalent to TNM
on a net except for pad nets.

A TNM_NET is a property that you normally use in conjunction with
an HDL design to tag a specific net. All nets tagged with the
TNM_NET identifier are considered a group. The UCF syntax is as
follows.

NET net_name TNM_NET=identifier;

identifier is a value that consists of any combination of letters,
numbers, or underscores. Keep the TNM_NET short for convenience
and clarity. The basic syntax rules for TNM_NET and TNM are iden-
tical. Refer to the “Creating User-Defined Groups Using TNMs”
section for details.

The TNM_NET attribute can be used to define certain types of nets
that cannot be adequately described by the TNM constraint. This
attribute is specifically targeted for use in HDL designs.

For example, consider the following design.

C
INTCLK

BUFG
PADCLK

FFA

C

FFB

X8347

IPAD

Development System Reference Guide

4-20 Xilinx Development System

In the preceding design, a TNM associated with the PAD symbol only
includes the PAD symbol as a member in a timing analysis group. For
example, the following UCF file entry creates a time group that
includes the IPAD symbol only.

NET PADCLK TNM=PADS(*) PADGRP; (UCF file example)

However, using TNM to define a time group for the net PADCLK
creates an empty time group.

NET PADCLK TNM=FFS(*) FFGRP; (UCF file example)

All properties that apply to a pad are transferred from the net to the
PAD symbol. Since the TNM is transferred from the net to the PAD
symbol, the qualifier, “FFS(*)” does not match the PAD symbol.

To overcome this obstacle for schematic designs using TNM, you can
create a time group for the INTCLK net.

NET INTCLK TNM=FFS(*) FFGRP; (UCF file example)

However, for HDL designs, the only meaningful net names are the
ones connected directly to pads. Then, use TNM_NET to create the
FFGRP time group.

NET PADCLK TNM_NET=FFS(*) FFGRP; (UCF file example)

NGDBuild does not transfer a TNM_NET attribute from a net to a
PAD as it does with TNM.

TNM_NET can be used in NCF or UCF files as a property attached to
an object in an input netlist (EDIF or XNF). TNM_NET is not
supported in PCF files.

TMN_NET can only be used with nets. If TNM_NET is used with any
other object such as a pin or symbol, a warning is generated and the
TNM_NET definition is ignored.

Creating New Groups from Existing Groups
In addition to naming groups using the TNM identifier, you can also
define groups in terms of other groups. You can create a group that is
a combination of existing groups by defining a TIMEGRP attribute as
follows.

Schematic syntax in TIMEGRP primitive

newgroup=existing_grp1 existing_grp2 [existing_grp3 . . .]

Using Timing Constraints

Development System Reference Guide 4-21

UCF syntax

TIMEGRP newgroup=existing_grp1 existing_grp2 [existing_grp3 . . .];

newgroup is a newly created group that consists of existing groups
created via TNMs, predefined groups, or other TIMEGRP attributes.

The Mentor netlist writer (ENWRITE™) converts all property names
to lower case letters, and the Xilinx netlist reader EDIF2NGD then
converts the property names to upper case letters. To ensure refer-
ences from one constraint to another are processed correctly,

• Group names should contain only upper case letters on a Mentor
Schematic (MY_FLOPS, for example, but not my_flops or
My_flops).

• If a group name appears in a property value, it must also be
expressed in upper case letters. For example, the GROUP3 in the
first constraint below must be entered in upper case letters to
match the GROUP3 in the second constraint.

Schematic syntax in TIMEGRP primitive

GROUP1 = gr2 GROUP3
GROUP3 = FFS except grp5

UCF syntax

TIMEGRP GROUP1 = gr2 GROUP3;
TIMEGRP GROUP3 = FFS except grp5;

TIMEGRP attributes reside in the TIMEGRP primitive, as illustrated
in the figure below. Once you create a TIMEGRP attribute definition
within a TIMEGRP primitive, you can use it in the TIMESPEC
primitive. Each TIMEGRP primitive can hold up to eight group
definitions. Since your design might include more than eight
TIMEGRP attributes, you can use multiple TIMEGRP primitives.

Development System Reference Guide

4-22 Xilinx Development System

Figure 4-9 TIMEGRP Primitive

You can place TIMEGRP attributes in either of two places: in the
TIMEGRP primitive on the schematic as discussed in this section or
in a constraints file (UCF or NCF). The syntax for specifying
TIMEGRPs in a UCF or NCF constraints file is described in the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide.

You can use TIMEGRP attributes to create groups using the following
methods.

• Combining multiple groups into one

• Creating groups by exclusion

• Defining flip-flop subgroups by clock sense

The following subsections discuss each method in detail.

Combining Multiple Groups into One
You can define a group by combining other groups. The following
syntax example illustrates the simple combining of two groups.

Schematic syntax in TIMEGRP primitive

big_group=small_group medium_group

UCF syntax

TIMEGRP big_group=small_group medium_group ;

In this syntax example, small_group and medium_group are existing
groups defined using a TNM or TIMEGRP attribute. Within the
TIMEGRP primitive, TIMEGRP attributes can be listed in any order;

X4330

TIMEGRP
some_ffs=flips:flops

Using Timing Constraints

Development System Reference Guide 4-23

that is, you can create a TIMEGRP attribute that references another
TIMEGRP attribute that appears after the initial definition.

Warning: A circular definition, as shown below, causes an error
when you run your design through NGDBuild.

Schematic syntax in TIMEGRP primitive

many_ffs=ffs1 ffs2
ffs1=many_ffs ffs3

UCF syntax

TIMEGRP many_ffs=ffs1 ffs2;
TIMEGRP ffs1=many_ffs ffs3;

Creating Groups by Exclusion
You can define a group that includes all elements of one group except
the elements that belong to another group, as illustrated by the
following syntax examples.

Schematic syntax in TIMEGRP primitive

group1=group2 EXCEPT group3

UCF syntax

TIMEGRP group1=group2 EXCEPT group3;

• group1 represents the group being defined. It contains all of the
elements in group2 except those that are also in group3.

• group2 and group3 can be a valid TNM, predefined group, or
TIMEGRP attribute.

As illustrated by the following example, you can specify multiple
groups to include or exclude when creating the new group.

Schematic syntax in TIMEGRP primitive

group1=group2 group3:EXCEPT group4 group5

UCF syntax

TIMEGRP group1=group2 group3:EXCEPT group4 group5;

Development System Reference Guide

4-24 Xilinx Development System

The example defines a group1 that includes the members of group2
and group3, except for those members that are part of group4 or
group5. All of the groups before the keyword EXCEPT are included,
and all of the groups after the keyword are excluded.

Certain reserved words cannot be used as group names. These
reserved words are described in the “Creating User-Defined Groups
Using TNMs” section.

Defining Flip-Flop Subgroups by Clock Sense
You can create subgroups using the keywords RISING and FALLING
to group flip-flops triggered by rising and falling edges.

Schematic syntax in TIMEGRP primitive

group1=RISING ffs
group2=RISING ffs_group
group3=FALLING ffs
group4=FALLING ffs_group

UCF syntax

TIMEGRP group1=RISING ffs;
TIMEGRP group2=RISING ffs_group;
TIMEGRP group3=FALLING ffs;
TIMEGRP group4=FALLING ffs_group;

group1 to group4 are new groups being defined. The ffs_group must be
a group that includes only flip-flops.

Note: Keywords, such as EXCEPT, RISING, and FALLING, appear in
the documentation in upper case; however, you can enter them in the
TIMEGRP primitive in either lower or upper case. You cannot enter
them in a combination of lower and upper case.

The following example defines a group of flip-flops that switch on the
falling edge of the clock.

Schematic syntax in TIMEGRP primitive

falling_ffs=FALLING ffs

UCF syntax

TIMEGRP falling_ffs=FALLING ffs;

Using Timing Constraints

Development System Reference Guide 4-25

Defining Latch Subgroups by Gate Sense
Groups of type LATCHES (no matter how these groups are defined)
can be easily separated into transparent high and transparent low
subgroups. The TRANSHI and TRANSLO keywords are provided for
this purpose, and are used in TIMEGRP statements like the RISING
and FALLING keywords for flip-flop groups. For example

Schematic syntax in TIMEGRP primitive

lowgroup=TRANSLO latchgroup
highgroup=TRANSHI latchgroup

UCF syntax

TIMEGRP lowgroup=TRANSLO latchgroup;
TIMEGRP highgroup=TRANSHI latchgroup;

Creating Groups by Pattern Matching
When creating groups, you can use wildcard characters to define
groups of symbols whose associated net names match a specific
pattern.

How to Use Wildcards to Specify Net Names

The wildcard characters, * and ?, enable you to select a group of
symbols whose output net names match a specific string or pattern.
The asterisk (*) represents any string of zero or more characters. The
question mark (?) indicates a single character.

For example, DATA* indicates any net name that begins with
“DATA,” such as DATA, DATA1, DATA22, DATABASE, and so on.
The string NUMBER? specifies any net names that begin with
‘‘NUMBER” and end with one single character, for example,
NUMBER1, NUMBERS but not NUMBER or NUMBER12.

You can also specify more than one wildcard character. For example,
*AT? specifies any net names that begin with any series of characters
followed by ‘‘AT” and end with any one character such as BAT1,
CAT2, and THAT5. If you specify *AT??, you would match BAT11,
CAT26, and THAT50.

Development System Reference Guide

4-26 Xilinx Development System

Pattern Matching Syntax

The syntax for creating a group using pattern matching is shown
below.

Schematic syntax in TIMEGRP primitive

group=predefined_group(pattern)

UCF syntax

TIMEGRP group=predefined_group(pattern) ;

predefined_group can only be one of the following predefined groups—
FFS, LATCHES, PADS, or RAMS. The pattern is any string of
characters used in conjunction with one or more wildcard characters.

Warning: When specifying a net name, you must use its full hierar-
chical path name so PAR can find the net in the flattened design.

For flip-flops, input latches, and RAMs, specify the output net name.
For pads, specify the external net name.

The following example illustrates creating a group that includes the
flip-flops that source nets whose names begin with $1I3/FRED.

Schematic syntax in TIMEGRP primitive

group1=ffs($1I3/FRED*)

UCF syntax

TIMEGRP group1=ffs($1I3/FRED*);

The following example illustrates a group that excludes certain flip-
flops whose output net names match the specified pattern.

Schematic syntax in TIMEGRP primitive

this_group=ffs EXCEPT ffs(a*)

UCF syntax

TIMEGRP this_group=ffs EXCEPT ffs(a*);

In this example, this_group includes all flip-flops except those
whose output net names begin with the letter “a.”

The following defines a group named “some_latches”.

Schematic syntax in TIMEGRP primitive

some_latches=latches($1I3/xyz*)

Using Timing Constraints

Development System Reference Guide 4-27

UCF syntax

TIMEGRP some_latches=latches($113/xyz*);

The group some_latches contains all input latches whose output
net names start with “$1I3/xyz.”

Additional Pattern Matching Details

In addition to using pattern matching when you create timing
groups, you can specify a predefined group qualified by a pattern any
place you specify a predefined group. The syntax below illustrates
how pattern matching can be used within a timing specification.

Schematic syntax in TIMESPEC primitive

TSidentifier=FROMpredefined_group(pattern) TO predefined_group
(pattern) delay

UCF syntax

TIMESPEC TSidentifier=FROMpredefined_group(pattern) TO
predefined_group (pattern) delay;

Instead of specifying just one pattern, you can also specify a list of
patterns separated by a colon (:) as illustrated below.

Schematic syntax in TIMEGRP primitive

some_ffs=ffs(a*:b?:c*d)

UCF syntax

TIMEGRP some_ffs=ffs(a*:b?:c*d);

The group some_ffs contains flip-flops whose output net names

• Start with the letter “a”

or

• Contain two characters; the first character is “b”

or

• Start with “c” and end with “d”

Development System Reference Guide

4-28 Xilinx Development System

Defining a Clock Period (PERIOD Constraint)
A clock period specification checks timing clocked by the net (all
paths that terminate at a register clocked by the specified net).

The period specification is attached to the clock net. The definition of
a clock period is unlike a FROM-TO style specification because the
timing analysis tools automatically take into account any inversions
of the clock net at register clock pins.

A PERIOD constraint on the clock net in the following figure would
generate a check for delays on all paths that terminate at a pin that
has a setup or hold timing constraint relative to the clock net. This
could include the data paths D1 to CLB1.D, CLB1.Q to CLB2.D, as
well as the path EN to CLB2.EC (if the reset/enable were synchro-
nous with respect to the clock).

Figure 4-10 Paths for PERIOD Constraint

Simple Method
A simple method of defining a clock period is to attach the following
attribute directly to a net in the path that drives the register clock
pins.

Schematic syntax

PERIOD = period { HIGH | LOW } [high_or_low_time]

Interconnect

and Logic

Interconnect

and Logic

D

CLB1

R
Q D

CLB2

EC

Q

D0

D1

OUT0

OUT1

CLK

EN

X8533

PERIOD=100:HIGH:50

Using Timing Constraints

Development System Reference Guide 4-29

UCF syntax

[period_item] PERIOD = period { HIGH | LOW }
[high_or_low_time];

period_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS (PCF only)

period is the required clock period. The default units are nanoseconds,
but the timing number can be followed by ps, ns, us, or ms. Units
may be entered with or without a leading space, and are case-
insensitive. The HIGH|LOW keyword indicates whether the first pulse
in the period is high or low, and the optional high_or_low_time is the
duty cycle of the first pulse. If an actual time is specified, it must be
less than the period. If no high or low time is specified the default
duty cycle is 50%. The default units for high_or_low_time is ns, but the
number can be followed by % or by ps, ns, us or ms if you want to
specify an actual time measurement.

The PERIOD constraint is forward traced in exactly the same way a
TNM would be and attaches itself to all of the flip-flops that the
forward tracing reaches. If a more complex form of tracing behavior
is required (for example, where gated clocks are used in the design),
you must place the PERIOD on a particular net or use the preferred
method described next.

Preferred Method
The preferred method for defining a clock period allows more
complex derivative relationships to be defined as well as a simple
clock period. The following attribute is attached to a TIMESPEC
symbol in conjunction with a TNM attribute attached to the relevant
clock net.

Schematic syntax in a TIMSPEC symbol

TSidentifier=PERIOD TNM_reference period {HIGH | LOW}
[high_or_low_time]

Development System Reference Guide

4-30 Xilinx Development System

UCF syntax

TIMESPEC TSidentifier=PERIOD TNM_reference period {HIGH |
LOW} [high_or_low_time];

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net (or
a net in the clock path) using a TNM attribute.

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

The variable name period is the required clock period. The default
units for period are nanoseconds, but the number can be followed by
ps, ns, us, or ms. Units may be entered with or without a leading
space, and are case-insensitive. The HIGH|LOW keyword indicates
whether the first pulse in the period is high or low, and the optional
high_or_low_time is the polarity of the first pulse. If an actual time is
specified, it must be less than the period. If no high or low time is
specified the default duty cycle is 50%. The default units for
high_or_low_time is ns, but the number can be followed by % or by ps,
ns, us, or ms if you want to specify an actual time measurement.

Example

Clock net sys_clk has the attribute tnm=master_clk attached to it
and the following attribute is attached to a TIMESPEC primitive.

Schematic syntax in a TIMESPEC symbol

TS_master=PERIOD master_clk 50 HIGH 30

UCF syntax

TIMESPEC TS_master=PERIOD master_clk 50 HIGH 30 ;

This period constraint applies to the net master_clk, and defines a
clock period of 50 nanoseconds, with an initial 30 nanosecond high
time.

Using Timing Constraints

Development System Reference Guide 4-31

Specifying Derived Clocks
The preferred method of defining a clock period uses an identifier,
allowing another clock period specification to reference it. To define
the relationship in the case of a derived clock, use the following
syntax.

Schematic syntax in a TIMSPEC symbol

TSidentifier=PERIOD TNM_reference another_PERIOD_identifier
[{/ |* }number] [{HIGH|LOW} high_or_low_time]

UCF syntax

TIMESPEC TSidentifier=PERIOD TNM_reference
another_PERIOD_identifier
[{/ |* }number] [{HIGH|LOW} high_or_low_time];

• identifier is a reference identifier that has a unique name.

• TNM_reference is the identifier name that is attached to a clock net
or a net in the clock path using a TNM attribute.

• another_PERIOD_identifier is the name of the identifier used on
another period specification.

• number is a floating point number.

• The HIGH|LOW keyword indicates whether the first pulse in the
period is high or low, and the optional high_or_low_time is the
polarity of the first pulse. If an actual time is specified it must be
less than the period. If no high or low time is specified, the
default duty cycle is 50%. The default units for high_or_low_time
is ns, but the number can be followed by % or by ps, ns, us, or ms
if you want to specify an actual time measurement.

Example

 A clock net has the attribute tnm=slave_clk attached to it and the
following attribute is attached to a TIMESPEC primitive.

Schematic syntax in a TIMESPEC symbol

ts_slave1=PERIOD slave_clk TS_master *4

UCF syntax

TIMESPEC ts_slave1=PERIOD slave_clk TS_master
*4;

Development System Reference Guide

4-32 Xilinx Development System

OFFSET Timing Specifications
Offsets are used to define the timing relationship between an external
clock and its associated data-in or data-out pin. Using this option
allows you to do the following.

• Calculate whether a setup time is being violated at a flip-flop
whose data and clock inputs are derived from external nets.

• Specify the delay of an external output net derived from the Q
output of an internal flip-flop being clocked from an external
device pin.

Following are some of the advantages of using the OFFSET
constraint.

• Includes the clock path delay for each individual synchronous
elements

• Subtracts the clock path delay from the data path delay for inputs
and adds the clock path delay to the data path delay for outputs

• Includes paths for all synchronous element types (FFS, RAMS,
and LATCHES)

• Utilizes a global syntax that allows all inputs or outputs to be
constrained by a clock

• Allows specifying IO constraints either directly as the setup and
clock-to-out required by a device (IN BEFORE and OUT AFTER)
or indirectly as the time used by the path external to the device
(IN AFTER and OUT BEFORE)

There are basically three types of offset specifications.

• Global

• Net-specific

• Group

Since the global and group OFFSET constraints are not associated
with a single data net or component, these two types can also be
entered on a TIMESPEC symbol in the design netlist with Tsid.

Using Timing Constraints

Development System Reference Guide 4-33

Schematic syntax in a TIMESPEC symbol

TSid=[TIMEGRP name] OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name]

UCF syntax

[TIMEGRP name] OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name];

Note: In the UCF file, you cannot specify the TSid format.

See the next section and the “Group OFFSET” section for syntax
details. As with the PERIOD and MAXDELAY timing specifications,
if the same TSid is defined in the design netlist (or NCF) and the UCF
file, the UCF file takes precedence.

The following subsections describe the use of each type of OFFSET in
PCF and UCF files and explain the scope of each specification.

Global OFFSET
Release 1.5 supports the use of the global OFFSET constraint. Release
1.5 also supports the use of time groups within global OFFSET
constraints. On a schematic, enter the global OFFSET in the
TIMESPEC symbol.

UCF syntax

OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRPgroup_name];

PCF syntax

OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER} COMP
clk_iob_name [TIMEGRPgroup_name];

offset_time is the external offset and units is an optional field that
indicates the units for the offset time. The default units are
nanoseconds, but the timing number can be followed by ps, ns, us,
ms, GHz, MHz, or KHz to show the intended units.

The UCF syntax variable clk_name is the fully hierarchical net name of
the clock net between its pad and its input buffer.

The clk_iob_name is the block name of the clock IOB.

Development System Reference Guide

4-34 Xilinx Development System

The optional TIMEGRP group_name defines a group of registers that
will be analyzed. By default, all registers clocked by clk_name will be
analyzed.

IN | OUT specifies that the offset is computed with respect to an input
IOB or an output IOB. For a bidirectional IOB, the IN | OUT syntax
lets you specify the flow of data (input or output) on the IOB.

BEFORE | AFTER indicates whether data is to arrive (input) or leave
(output) the device before or after the clock input.

All inputs/outputs are offset relative to clk_name or iob_name. For
example, OFFSET IN 20 ns BEFORE clk1 dictates that all inputs
will have data present at the pad at least 20 ns before the triggering
edge of clk1 arrives at the pad.

Using Timing Constraints

Development System Reference Guide 4-35

Net-Specific OFFSET Constraints
The OFFSET constraint can also be used to specify a constraint for a
specific data net in a UCF file or schematic or a specific input or
output component in a PCF file.

Schematic syntax when attached to a net

OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRPgroup_name]

UCF syntax

NET name OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name];

PCF syntax

COMP “iob_name” OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} COMP “clk_iob_name” [TIMEGRP
“group_name”];

The PCF file uses blocks (comps) instead of nets.

If COMP “iob_name“ is omitted in the PCF or NET “name” is omitted
in the UCF, the specification is assumed to be global.

offset_time is the external offset.

units is an optional field that indicates the units for offset time. The
default units are in nanoseconds, but the timing number can be
followed by ps, ns, us, GHz, MHz, or KHz to indicate the intended
units.

clk_iob_name is the block name of the clock IOB.

It is possible for one offset constraint to generate multiple data and
clock paths (for example, when both data and clock inputs have more
than a single sequential element in common).

Examples

The offset constraint examples in this section apply to the following
figures.

Development System Reference Guide

4-36 Xilinx Development System

Figure 4-11 OFFSET Example Schematic

Figure 4-12 OFFSET IN Timing Diagram

Figure 4-13 OFFSET OUT Timing Diagram

Example 1— OFFSET IN BEFORE

OFFSET IN BEFORE defines the available time for data to propagate
from the pad and setup at the synchronous element (COMP). The
time can be thought of as the time differential of data arriving at the
edge of the device before the next clock edge arrives at the device. See
the “OFFSET Example Schematic” figure and the “OFFSET IN Timing
Diagram” figure. The equation that defines this relationship is as
follows.

CLK

DATA
TSUDATA_IN

CLK_SYS

TCLK

TDATA TQ

TCO

Q_OUTQ

COMP

FPGA Boundary

X8737

DATA_IN

CLK_SYS

TIN_AFTER TIN_BEFORE

TP

X8735

Q_OUT

CLK_SYS

TOUT_AFTER

TP

TOUT_BEFORE

X8736

Using Timing Constraints

Development System Reference Guide 4-37

 TDATA + TSU - TCLK < TIN_BEFORE

For example, if TIN_BEFORE equals 20 ns, the following syntax applies.

Schematic syntax attached to DATA_IN

OFFSET=IN 20.0 BEFORE CLK_SYS

UCF syntax

NET DATA_IN OFFSET=IN 20.0 BEFORE CLK_SYS;

PCF syntax

COMP DATA_IN OFFSET=IN 20.0 ns BEFORE COMP
CLK_SYS;

This constraint indicates that the data will be present on the
DATA_IN pad at least 20 ns before the triggering edge of the clock net
arrives at the clock pad.

To ensure that the timing requirements are met, the timing analysis
software verifies that the maximum delay along the path DATAIN to
COMP (minus the 20.0 ns offset) would be less than or equal to the
minimum delay along the reference path CLOCK to COMP.

Example 2 — OFFSET IN AFTER

This constraint describes the time used by the data external to the
FPGA. OFFSET subtracts this time from the PERIOD declared for the
clock to determine the available time for the data to propagate from
the pad and setup at the synchronous element. The time can be
thought of as the differential of data arriving at the edge of the device
after the current clock edge arrives at the edge of the device. See the
“OFFSET Example Schematic” figure and the “OFFSET OUT Timing
Diagram” figure. The equation that defines this relationship is as
follows.

 TDATA + TSU - TCLK < TP - TIN_AFTER

TP is the clock period.

For example, if TIN_AFTER equals 30 ns, the following syntax applies.

Schematic syntax attached to DATA_IN

OFFSET=IN 30.0 AFTER CLK_SYS;

Development System Reference Guide

4-38 Xilinx Development System

UCF syntax

NET DATA_IN OFFSET=IN 30.0 AFTER CLK_SYS;

PCF syntax

COMP DATA_IN OFFSET=IN 30.0 ns AFTER COMP
CLK_SYS;

This constraint indicates that the data will arrive at the pad of the
device (COMP) no more than 30 ns after the triggering edge of the
clock arrives at the clock pad. The path DATA_IN to COMP would
contain the setup time for the COMP data input relative to the
CLK_SYS input.

Verification is almost identical to Example 1, except that the offset
margin (30.0 ns) is added to the data path delay. This is caused by the
data arriving after the reference input. The timing analysis software
verifies that the data can be clocked in prior to the next triggering
edge of the clock.

A PERIOD or FREQUENCY is required only for offset OUT
constraints with the BEFORE keyword or offset IN with the AFTER
keyword.

Example 3 — OFFSET OUT AFTER

This constraint defines the time available for the data to propagate
from the synchronous element to the pad. This time can also be
considered as the differential of data leaving the edge of the device
after the current clock edge arrives at the edge of the device. See the
“OFFSET Example Schematic” figure and the “OFFSET OUT Timing
Diagram” figure.

The equation that defines this relationship is as follows.

 TQ + TCO - TCLK < TOUT_AFTER

For example, if TOUT_AFTER equals 35 ns, the following syntax
applies.

Schematic syntax attached to Q_OUT

OFFSET=OUT 35.0 AFTER CLK_SYS

Using Timing Constraints

Development System Reference Guide 4-39

UCF syntax

NET Q_OUT OFFSET=OUT 35.0 AFTER CLOCK;

PCF syntax

COMP Q_OUT OFFSET=OUT 35.0 ns AFTER COMP
CLK_SYS;

This constraint calls for the data to leave the FPGA 35 ns after the
present clock input arrives at the clock pad. The path COMP to
Q_OUT would include the CLOCK-to-Q delay (component delay).

Verification involves ensuring that the maximum delay along the
reference path (CLK_SYS to COMP) and the maximum delay along
the data path (COMP to Q_OUT) does not exceed the specified offset.

Example 4 — OFFSET OUT BEFORE

This constraint defines the time used by the data external to the
FPGA. OFFSET subtracts this time from the clock PERIOD to
determine the available time for the data to propagate from the
synchronous element to the pad. The time can also be considered as
the differential of data leaving the edge of the device before the next
clock edge arrives at the edge of the device See the “OFFSET Example
Schematic” figure and the “OFFSET OUT Timing Diagram” figure.
The equation that defines this relationship is as follows.

 TQ + TCO + TCLK < TP - TOUT_BEFORE

For example, if TOUT_BEFORE equals 15 ns, the following syntax
applies.

Schematic syntax attached to Q_OUT

OFFSET=OUT 15.0 BEFORE CLK_SYS

UCF syntax

NET Q_OUT OFFSET=OUT 15.0 BEFORE CLK_SYS;

PCF syntax

COMP Q_OUT OFFSET=OUT 15.0 ns BEFORE COMP
CLK_SYS;

Development System Reference Guide

4-40 Xilinx Development System

This constraint states that the data clocked to Q_OUT must leave the
FPGA 15 ns before the next triggering edge of the clock arrives at the
clock pad. The path COMP to Q_OUT includes the CLK_SYS-to-Q
delay (component delay). The data clocked to Q_OUT will leave the
FPGA 15.0 ns before the next clock input.

Verification involves ensuring that the maximum delay along the
reference path (CLK_SYS to COMP) and the maximum delay along
the data path (COMP to Q_OUT) do not exceed the clock period
minus the specified offset.

As in Example 2, a PERIOD or FREQUENCY constraint is required
only for offset OUT constraints with the BEFORE keyword or offset IN
with the AFTER keyword.

Specific OFFSET Constraints with Timegroups

A clock register time group allows you to define a specific set of regis-
ters to which an OFFSET constraint applies based on a clock edge.
Consider the following example.

Figure 4-14 Using Timegroups with Registers

You can define time groups for the registers A, B and C, even though
these registers have the same data and clock source. The syntax is as
follows.

X8458

CBA

DATA

CLOCK

Using Timing Constraints

Development System Reference Guide 4-41

Schematic syntax in TIMEGRP primitive

AB=RISING FFS
C =FALLING FFS;

UCF /PCF syntax

TIMEGRP AB=RISING FFS;
TIMEGRP C =FALLING FFS;

Schematic syntax attached to DATA

OFFSET=IN 10 BEFORE CLOCK TIMEGRP AB

OFFSET=IN 20 BEFORE CLOCK TIMEGRP C

UCF syntax

NET DATA OFFSET=IN 10 BEFORE CLOCK TIMEGRP AB;

NET DATA OFFSET=IN 20 BEFORE CLOCK TIMEGRP C;

PCF syntax

COMP DATA OFFSET=IN 10 BEFORE COMP CLOCK TIMEGRP
AB;

COMP DATA OFFSET=IN 20 BEFORE COMP CLOCK TIMEGRP
C;

Even though the registers A, B and C have a common data and clock
source, timing analysis applies two different offsets (10 ns and 20 ns).
Registers A and B belong to the offset with 10 ns and Register C
belongs to the offset with 20 ns.

However, you must use some caution when using timegroups with
registers. Consider the following diagram.

Development System Reference Guide

4-42 Xilinx Development System

Figure 4-15 Problematic Timegroup Definition

This circuit is identical to the “Using Timegroups with Registers”
figure except that an inverter has been inserted in the path to Register
B. In this instance, even though this register is a member of the time
group whose offset triggers on the rising edge, the addition of the
inverter classifies register B as triggering on the falling edge like
Register C.

Normally, the tools will move an inverter to the register, in which
case, B would be a part of the timegroup “Falling”. However if the
clock is gated with logic that inverts, then the inverter will not
become part of the register. In that case, one way to solve this
problem is to create a timegroup with an exception for Register B. See
the “Creating Groups by Exclusion” section for details.

Group OFFSET
You can also define OFFSET constraints within the TIMESPEC
primitive with a leading TIMEGRP reference.

Schematic syntax in TIMESPEC primitive

TSidentifier=TIMEGRP name OFFSET= {IN |OUT} offset_time
[units] {BEFORE|AFTER} clk_name [TIMEGRPgroup_name]

The UCF and PCF syntax do not require the TSidentifier.

X8459

CBA

DATA

CLOCK

Using Timing Constraints

Development System Reference Guide 4-43

UCF syntax

[TIMEGRP name] OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name];

PCF syntax

[TIMEGRP name] OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} COMP clk_iob_name [TIMEGRPgroup_name];

The timing group specified at the beginning has a different purpose
than the timegroup specified at the end. The first time group is a list
of data pads that the OFFSET applies to, while the last time group
(register time group) is a list of synchronous elements that specifies
which register elements clocked by clk_name or clk_iob_name should
be analyzed.

Note: If the first group has FFs or the second group has PADS,
NGDBuild generates an error.

offset_time is the external offset.

units is an optional field that indicates the units for offset time. The
default units are in nanoseconds, but the timing number can be
followed by ps, ns, us, GHz, MHz, or KHz to indicate the intended
units.

clk_iob_name is the block name of the clock IOB.

Ignoring Selected Paths (TIG)
In a design, some paths do not require timing analysis. These are
paths that exist in the design, but are never used during time-critical
operations. If you indicate a timing requirement on these paths, more
important paths might be slower, which can result in failure to meet
the timing requirements.

The value of TIG may be any of the following.

• Empty (global TIG that blocks all paths)

• A single TSid to block

• A comma separated list of TSids to block, for example

NET $1I567/$Sig_5 TIG=TS_fast, TS_even_faster;

Development System Reference Guide

4-44 Xilinx Development System

To indicate that all timing specifications through a net, primitive pin
or macro pin are to be ignored, attach the following attribute to the
desired element.

Schematic syntax

TIG

UCF syntax

{NET | PIN | INSTANCE} name TIG ;

If this attribute is attached to a net, primitive pin, or macro pin, all
paths that fan forward from the point of application of the attribute
are treated as if they don’t exist for the purposes of timing analysis
during implementation. In the following figure, NET C is ignored.
However, note that the lower path of NET B that runs through the
two OR gates would not be ignored.

Figure 4-16 TIG Example

The following attribute would be attached to a net to inform the
timing analysis tools that it should ignore paths through the net for
specification TS43:

Schematic syntax

TIG = TS43

UCF syntax

NETnet_name TIG = TS43;

D Q

D Q

D Q

D Q

TIG

Ignored Paths

NET C

NET B

NET A

X8529

Using Timing Constraints

Development System Reference Guide 4-45

You cannot perform path analysis in the presence of combinatorial
loops. Therefore, the timing tools ignore certain connections to break
combinatorial loops. You can use the TIG constraint to direct the
timing tools to ignore specified nets or load pins, consequently
controlling how loops are broken.

Basic FROM –TO Syntax
Within the TIMESPEC primitive, you use the following syntax to
specify timing requirements between specific end points.

TSidentifier=FROMsource_group TO dest_group delay

TSidentifier=FROMsource_group delay

TSidentifier=TO dest_group delay

Unspecified FROM or TO, as in the second and third syntax state-
ments, implies all points.

The From-To statements are TS attributes that reside in the
TIMESPEC primitive. The parameters source_group and dest_group must
be one of the following.

• Predefined groups

• Previously created TNM identifiers

• Groups defined in TIMEGRP symbols

• TPSYNC groups

Predefined groups consist of FFS, LATCHES, RAMS, or PADS and are
discussed in the “Using Predefined Groups” section. TNMs are intro-
duced in the “Creating User-Defined Groups Using TNMs” section.
TIMEGRP symbols are introduced in the “Creating New Groups
from Existing Groups” section.

Note: Keywords, such as FROM, TO, and TS appear in the
documentation in upper case; however, you can enter them in the
TIMESPEC primitive in either upper or lower case. You cannot enter
them in a combination of lower and upper case.

The delay parameter defines the maximum delay for the attribute.
Nanoseconds are the default units for specifying delay time in TS
attributes. You can also specify delay using other units, such as
picoseconds or megahertz.

Development System Reference Guide

4-46 Xilinx Development System

Refer to the “Specifying Time Delay in TS Attributes” section later in
this chapter for more information on time delay. The delay can be a
function of another TIMESPEC (TS01*2).

The following examples illustrate the use of From-To TS attributes.

Schematic syntax in TIMESPEC primitive

TS01=FROM FFS TO FFS 30
TS_OTHER=FROM PADS TO FFS 25
TS_THIS=FROM FFS TO RAMS 35
TS_THAT=FROM PADS TO LATCHES 35

UCF syntax

TIMESPEC TS01=FROM FFS TO FFS 30;
TIMESPEC TS_OTHER=FROM PADS TO FFS 25;
TIMESPEC TS_THIS=FROM FFS TO RAMS 35;
TIMESPEC TS_THAT=FROM PADS TO LATCHES 35;

You can place TS attributes containing From-To statements in either
of two places: in the TIMESPEC primitive on the schematic as
discussed in this chapter or in a constraints (UCF) file. See the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide for more information about specifying timing requirements in a
constraints file.

Specifying Timing Points
There are situations where a particular point or set of points in your
design needs to be flagged for reference in subsequent timing
specifications. Timing points are used for these specifications.

There are two types of timing points.

• A TPSYNC timing point is used to allow a point to be used as the
start or the end of timing path, even though the point may not
apply to a flip-flop, latch, RAM or I/O pad.

• A TPTHRU timing point identifies an intermediate point on a
path.

The following sections describe how these timing points are specified
in a schematic. The syntax for specifying TPSYNC and TPTHRU
constraints in a UCF or NCF constraints file is described in the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide.

Using Timing Constraints

Development System Reference Guide 4-47

Using TPSYNC to Define Synchronous Points
There are cases where the timing of a design must be defined from or
to a point in the design that is not a flip-flop, latch, RAM or I/O pad.
For example, you might want to specify a point at the output of a
latch defined using a function generator instead of a latch symbol.
The TPSYNC timing point identifies one or a group of these points.

 A TPSYNC attribute has the following syntax.

Schematic syntax

TPSYNC = identifier

UCF syntax

{NET | PIN | INST } TPSYNC= identifier;

identifier is a name that is used in timing specifications in the same
way that groups are used. The same identifier can be used on several
points which are then treated as a group from the point of view of
timing analysis. The identifier must be different from any identifier
used for a TNM attribute.

The way a TPSYNC timing point is used depends on the object to
which it is attached.

• Attached to a net, TPSYNC identifies the source of the net as a
potential source or destination for timing specifications.

• Attached to an output macro pin, TPSYNC identifies all of the
sources inside the macro that drive the pin to which the attribute
is attached as potential sources or destinations for timing
specifications. In the following diagram. POINTY applies to the
inverter.

TPSYNC=POINTX

X8524

Development System Reference Guide

4-48 Xilinx Development System

Figure 4-17 TPSYNCs Attached to Macro Pins

If the macro pin is an input pin (that is, there are no sources for
the pin in the macro), then all of the load pins in the macro are
flagged as synchronous points. In the preceding figure POINTX
applies to the input AND gate.

• Attached to a primitive pin, TPSYNC flags the primitive’s pin as
a potential source or destination for timing specifications;
TPSYNC applies to the pin it is attached to.

• Attached to a primitive symbol, TPSYNC identifies the output(s)
of that element as a potential source or destination for timing
specifications. See the following figure.

D Q

Q1

D Q

CLOCK

D Q
D1

D3

D2 Q2

Q3

X8551

TPSYNC=POINTX

TPSYNC=POINTY

TPSYNC=POINTX

X8552

Using Timing Constraints

Development System Reference Guide 4-49

The use of a TPSYNC timing point to define a synchronous point in a
design implies that the flagged point cannot be merged into a
function generator. For example, consider the following diagram.

In this example, because of the TPSYNC definition, the two gates
cannot be merged into a single function generator.

Using TPTHRU to Define Through Points
The TPTHRU attribute defines an intermediate point in a path. A
point or group defined with TPTHRU attributes is used in detailed
timing specifications.

 A TPTHRU attribute has the following syntax.

TPTHRU = identifier

identifier is a name that is used in timing specifications in the same
way that groups are used. The same identifier can be used on several
points which are then treated as a group from the point of view of
timing analysis.

The identifier must be different from any identifier used for a TNM
attribute or TPSYNC.

Timing specifications using TPTHRU groups are described in the
“Specifying Time Delay in TS Attributes” section.

TPSYNC=FOO

Function

Generator

Function

Generator

X8758

Development System Reference Guide

4-50 Xilinx Development System

Using TPTHRU or TPSYNC in a FROM–TO
Constraint

It is sometimes convenient to define intermediate points on a path to
which a specification applies. This defines the maximum allowable
delay and has the following syntax.

Schematic syntax in TIMESPEC primitive

TSidentifier=FROMsource_group THRU thru_point [THRU
thru_point] TO dest_group allowable_delay [units]

TSidentifier=FROMsource_group THRU thru_point [THRU
thru_point] allowable_delay [units]

TSidentifier=THRU thru_point [THRU thru_point] TO dest_group
allowable_delay [units]

UCF syntax

TIMESPEC TSidentifier=FROMsource_group THRU thru_point
[THRU thru_point] TO dest_group allowable_delay [units];

TIMESPEC TSidentifier=FROMsource_group THRU thru_point
[THRU thru_point] allowable_delay [units];

TIMESPEC TSidentifier=THRU thru_point [THRU thru_point]
allowable_delay [units];

Unspecified FROM or TO, as in the second and third syntax state-
ments, implies all points.

• identifier is an ASCII string made up of the characters A..Z, a..z,
0..9, underbar (_), and forward slash (/).

• source_group and dest_group are user-defined, predefined groups
or TPSYNCs.

• thru_point is an intermediate point used to qualify the path,
defined using a TPTHRU attribute.

• allowable_delay is the timing requirement.

• units is an optional field to indicate the units for the allowable
delay. Default units are nanoseconds, but the timing number can
be followed by ps, ns, us, ms, GHz, MHz, or KHz to indicate the
intended units.

Using Timing Constraints

Development System Reference Guide 4-51

The example shows how to use the TPTHRU attribute with the
THRU attribute on a schematic. The UCF syntax is as follows.

INST FLOPA TNM=A;
INST FLOPB TNM=B;
NET MYNET TPTHRU=ABC
TIMESPEC TSpath1=FROM A THRU ABC TO B 30;

The following schematic shows the placement of the TPTHRU
attribute and the resultant path that is defined.

Figure 4-18 TPTHRU Example

Specifying Time Delay in TS Attributes
Nanoseconds are the default units for specifying delay times in TS
attributes. However, after specifying the maximum delay or
minimum frequency numerically, you can enter the unit of measure
by specifying the following.

• PS for picoseconds, NS for nanoseconds, US for microseconds, or
MS for milliseconds

• MHZ for megahertz, KHZ for kilohertz, or GHz for gigahertz

D Q

D Q

D Q

D Q

X8525

TNM=A

FLOPA
FLOPB

TNM=B

TPTHRU=ABC

MYNET

TIMESPEC

TSpath1=FROM:A:THRU:ABC:TO:B:30

Development System Reference Guide

4-52 Xilinx Development System

As an alternate way of specifying time delay, you can specify one
time delay in terms of another. Instead of specifying a time or
frequency in a TS attribute definition, you can specify a multiple or
division of another TS attribute. This is useful in a system where all
clocks are derived from a master clock; in this situation, changing the
timing specification for the master clock changes the specification for
all clocks in the system.

Use the syntax below to specify a TS attribute delay in terms of
another.

Schematic syntax attached to TIMESPEC primitive

TSidentifier=specification reference_TS_attribute[{* |/ }number]

UCF syntax

TIMESPEC TSidentifier=specification: reference_TS_attribute[{* |/
}number];

number can be either a whole number or a decimal. The specification
can be any From-To statement as illustrated by the following
examples.

FROM PADS TO PADS
FROM group1 TO group2
FROM tnm_identifier TO FFS
FROM LATCHES TO group1

Use “*” to represent multiplication and “/” to represent division. The
specification type of the reference TS attribute does not need to be the
same as the TS attribute being defined; however, it must not be
specified in terms of TIG.

Examples

Examples of specifying a TS attribute in terms of another are as
follows. In these cases, assume that the reference attributes were
specified as delays (not frequencies).

In the example below, the paths between flip-flops and pads are
placed and routed so that their delay is at most 10 times the delay
specified in the TS05 attribute.

Using Timing Constraints

Development System Reference Guide 4-53

Schematic syntax in TIMESPEC primitive

TS08=FROM FFS TO PADS TS05*10

UCF syntax

TIMESPEC TS08=FROM FFS TO PADS TS05*10;

In the example below, the paths between input and output pads are
placed and routed so that their delay is at most one-eighth the delay
specified in the TS07 attribute.

Schematic syntax in TIMESPEC primitive

TS1=FROM PADS TO PADS TS07/8

UCF syntax

TIMESPEC TS1=FROM PADS TO PADS TS07/8;

Note: When a reference attribute is specified as a frequency, a
multiple represents a faster specification; a division represents a
slower specification.

You can also specify a TS attribute in terms of a TS attribute that is
already a specification of another. The following example provides an
illustration.

Schematic syntax in TIMESPEC primitive

TS09=FROM FFS TO FFS 50
TS10=FROM FFS TO PADS TS09*2
TS11=FROM PADS TO PADS TS10*4

UCF syntax

TIMESPEC TS09=FROM FFS TO FFS 50;
TIMESPEC TS10=FROM FFS TO PADS TS09*2;
TIMESPEC TS11=FROM PADS TO PADS TS10*4;

Development System Reference Guide

4-54 Xilinx Development System

Using the PRIORITY Keyword
There may be situations where there is a conflict between two
TIMESPECs that cover the same path. In these cases you can define
the priority of a TIMESPEC using the following syntax.

normal_timespec_syntax PRIORITY integer

normal_timespec_syntax is a legal TIMESPEC and integer represents
the priority (the smaller the number, the higher the priority). The
number can be positive, negative, or zero, and the value only has
meaning when compared with other PRIORITY values.

Sample Schematic Using TIMESPEC/TIMEGRP
Symbol

TNM identifiers define symbols or groups of symbols that are used in
timing specifications. They can also define other groups. The
following figure shows an example of a TNM attribute attached to an
individual symbol. In this circuit, the flip-flop D_FF has the attribute
TNM=D_FF attached to it.

Using Timing Constraints

Development System Reference Guide 4-55

Figure 4-19 Example of Using TNMs and TIMEGRPs in Your
Schematic

The TIMEGRP symbol contains an attribute that defines a group of
flip-flops called Q_FFS, which includes all flip-flops in the schematic
except the one labeled D_FF. You can then use the group Q_FFS to
create timing specifications in the TIMESPEC primitive. The flip-flop
D_FF has its clock enable driven at 1/2 of the clock frequency;
therefore, its flip-flop to pad and pad to flip-flop timing specifications
are longer than the flip-flop to pad specifications in the Q_FFS group.

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

Q3

Q2

Q1

Q0

Q0

Q1

Q2

Q3D3

D2

D1

D0

+5
VCC

FDCE

FDCE

FDCE

FDCE

FDCE

D_FF

TNM=D_FF AND4

D_EN

RDATA RD_OUT

Q3_OUT

Q2_OUT

Q1_OUT

Q0_OUT

OPAD

OPAD

OPAD

OPAD

OPAD

OBUF

OBUF

OBUF

OBUF

OBUF

GND

INV

XOR2

XOR2

XOR2

DATA

CLK

IPAD

IPAD

D_IN

K_IN

IBUF

BUFG

C3

C2

AND2

AND3

X6170

Q_FFS=FFS:EXCEPT:D_FF TS_CLK_CYCLE=FROM:FFS:TO:FFS:50

TS_CTR=FROM:Q_FFS:TO:PADS=25

TS_D_O=FROM:D_FF:TO:PADS=50

TS_D_I=FROM:PADS:TO:D_FF=50

TIMEGRP TIMESPEC

Development System Reference Guide

4-56 Xilinx Development System

Prorating Constraints
The prorating constraints, VOLTAGE and TEMPERATURE, provide a
method for determining timing delay characteristics based on known
environmental parameters. On a schematic, you can enter these
constraints in any empty space. For Release 1.5 these two constraints
are supported only for the XC4000XL. New speed file releases for
existing architectures will support these two constraints.

VOLTAGE Constraint
This constraint allows the specification of the operating voltage. This
provides a means of prorating delay characteristics based on the
specified voltage.

Note: Each architecture has its own specific range of supported
voltages. If the entered voltage does not fall within the supported
range, the constraint is ignored and an architecture-specific default
value is used instead. The UCF syntax is as follows.

VOLTAGE=value[units]

value is an integer or real number specifying the voltage and units is
an optional parameter specifying the unit of measure. V specifies
volts, the default voltage unit.

TEMPERATURE Constraint
This constraint allows the specification of the operating temperature
which provides a means of prorating device delay characteristics
based on the specified junction temperature. Prorating is a linear
scaling operation on existing speed file delays and is applied globally
to all delays.

Note: Each architecture has its own specific range of valid operating
temperatures. If the entered temperature does not fall within the
supported range, the constraint is ignored and an architecture-
specific default value is used instead. The UCF syntax is as follows.

TEMPERATURE=value[C |F| K]

value is an integer or a real number specifying the temperature. C, K,
and F are the temperature units: F is degrees Fahrenheit, K is degrees
Kelvin, and C is degrees Celsius, the default.

Using Timing Constraints

Development System Reference Guide 4-57

Additional Timing Constraints
There are additional properties and constraints you can specify for
the timing analysis tools. They are the following.

• Net skew control (MAXSKEW)

• Net delay control

• Path tracing control

• The DROP_SPEC constraint

Controlling Net Skew (MAXSKEW)
Skew is the difference between the minimum and maximum of the
maximum load delays on a net. You can control the maximum
allowable skew on a net by attaching the MAXSKEW attribute
directly to the net. Syntax is as follows.

skew_item MAXSKEW=allowable_skew [units];

allowable_skew is the timing requirement.

The default units for allowable_skew are nanoseconds, but the timing
number can be followed by ps, ns, us, ms, GHz, MHz, or KHz to
indicate the intended units.

skew_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name” (PCF only)

• ALLCLOCKNETS (PCF only)

Note: TIMEGRP and ALLCLOCKNETS are supported in PCF files
only.

It is important to understand exactly what MAXSKEW defines.
Consider the following example.

Development System Reference Guide

4-58 Xilinx Development System

Figure 4-20 MAXSKEW

In the preceding diagram, for ta(1,2), 1 ns is the minimum delay and 2
ns is the maximum delay for the Register A clock. For tb(2,4), 2 ns is
the minimum delay and 4 ns is the maximum delay for the Register B
clock. MAXSKEW defines the maximum of tb minus the maximum of
ta, that is, 4-2=2. Since the data delay is greater than MAXSKEW (DD
is 2.5 while MAXSKEW is 2), no race condition occurs. However,
MAXSKEW does not account for the circumstance where one of the
registers is operating at minimum delay (for example, ta=1) while a
second register is operating at maximum delay (for example, tb=4).
Under those conditions, the skew is 3 ns (tb - ta= 3). Since the data
delay (DD = 2.5) is less than the skew, a race condition exists.

Controlling Net Delay (MAXDELAY)
You can control the maximum allowable delay on a net by attaching
the MAXDELAY attribute directly to the net. The UCF syntax is as
follows.

NETnet_name MAXDELAY=path_value [PRIORITY integer] ;

TSidentifier=MAXDELAY=path path_value [PRIORITY integer] ;

path MAXDELAY=path_value [PRIORITY integer] ;

net_delay_item MAXDELAY=delay_time [units] [PRIORITY
integer] ;

path is one of the following,

• PATH “path_name”

• ALLPATHS

• FROM group_item THRU group_item1... group_itemn

BA

t (1,2)a t (2,4)
b

Data Delay (DD) = 2.5

X8474

Using Timing Constraints

Development System Reference Guide 4-59

• FROM group_item THRU group_item1... group_itemn TO
group_item

• THRU group_item1... group_itemn TO group_item

path_value is one of the following,

• delay_time [units]

units defaults to nanoseconds, but the delay time number can be
followed by ps, ns, us, or ms (picoseconds, nanoseconds, micro-
seconds, or milliseconds) to specify the units

• frequency units

units can be specified as GHz, MHz, or KHz (gigahertz, mega-
hertz, or kilohertz)

• TSidentifier [{/ |*} real_number]

net_delay_item is one of the following.

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

Controlling Path Tracing
Path tracing controls allows you to enable or disable specific paths
within device components (for example, CLBs and IOBs) for timing
analysis. These constraints can only be entered in a PCF file; they cannot
be applied during design entry or in a UCF or NCF file.

This constraint can be applied at a global or group scope. The path
tracing syntax is as follows.

[TIMEGRPpredefined_group] {ENABLE | DISABLE} = symbol;

symbol is a component delay symbol, and predefined_group (which is
optional) represents the name of a previously-defined time group. If
there is no TIMEGRP predefined_group qualifier, the path tracing
control applies to all logic cells in the design.

The symbol, which is case-insensitive, can be either of the following.

• A standard component delay symbol name (for example,
reg_sr_q or tbuf_i_o, as described in the following table).

Development System Reference Guide

4-60 Xilinx Development System

There is a one-to-many correspondence between these symbol
names and data book symbol names, and the data book symbols
to which each standard block delay signal applies varies from
one device family to another.

• A component delay specified in the Xilinx Programmable Logic
Data Book (for example, TILO (entered as TILO) or TCCK (entered
as TCCK)).

The following table describes the standard block delay symbols.

The IOB configuration for Virtex is somewhat different than the IOB
configuration for other architectures. See the following figure.

Table 4-1 Standard Block Delay Symbols for Path Tracing

Symbol Path Type Default

reg_sr_q Set/Reset to output propagation
delay

Disabled

lat_d_q Data to output transparent latch
delay

Disabled

ram_d_o RAM data to output propagation
delay

Disabled

ram_we_o RAM write enable to output propa-
gation delay

Enabled

tbuf_t_o TBUF tristate to output propagation
delay

Enabled

tbuf_i_o TBUF input to output propagation
delay

Enabled

io_pad_i IO pad to input propagation delay Enabled

io_t_pad IO tristate to pad propagation delay Enabled

io_o_i IO output to input propagation
delay. Disabled for tristated IOBs.

Enabled

io_o_pad IO output to pad propagation delay Enabled

Using Timing Constraints

Development System Reference Guide 4-61

Figure 4-21 Simplified IOB Configurations and io_t_pad

For the Virtex IOB, there is no default path. If a latch is used (latch
mode), then io_t_pad controls the D to Q path through the latch. By
default D to Q is enabled which is different than other internal
latches. The clock to Q of the latch is not disabled by io_t_pad.

If a register is used instead of a latch, the clock to Q of the register is
not disabled by io_t_pad.

Path Tracing Examples

The PCF file constraint below prevents timing analysis on any path
that includes the I to O delay on a TBUF component. The constraint
applies to all TBUF components in the design.

DISABLE = "tbuf_i_o";

The PCF file constraint below disables the I to O delay on the TBUF
components in the group mygroup, if applicable.

TIMEGRP "mygroup" DISABLE = "tbuf_i_o";

Simplified IOB for standard architectures

Simplified IOB for Virtex

CLK

QDT

T
Path for io_t_pad

Pad

Pad

Latched Path

for Tristate control

X8678

Latch

or

FF

Development System Reference Guide

4-62 Xilinx Development System

The PCF file constraint below disables the TILO databook component
delay in the group mygroup, if applicable.

TIMEGRP "mygroup" DISABLE = "TILO";

The delay symbol names in the Xilinx Programmable Logic Data Book
do not always agree with the delay names reported in TRACE (the
Xilinx timing analyzer). To ensure your path tracing constraints are
processed correctly and to allow your constraints to be portable from
one device to another, use the delay names reported by TRACE
instead of the databook names.

You can control path tracing for a single instance by creating a group
containing only the instance, then specifying this group in a path
tracing constraint.

The DROP_SPEC Constraint
A constraint specified in a UCF constraints file takes precedence over
one with the same name in the input design. This allows you to
redefine or modify constraints without having to edit the input
design. The DROP_SPEC constraint allows you to specify that a
timing constraint defined in the input design should be dropped
from the analysis. The UCF syntax is as follows.

TS identifier = DROP_SPEC

identifier is the identifier name used with another timing specification.
This constraint can be used when new specifications defined in a
constraints file do not directly override all specifications defined in
the input design, and some of these input design specifications need
to be dropped.

While this timing command is not expected to be used much in an
input netlist (or NCF file), it is not illegal. If defined in an input
design this attribute must be attached to a TIMESPEC primitive.

Using Timing Constraints

Development System Reference Guide 4-63

Constraints Priority
In some cases, two timing specifications cover the same path. For
cases where the two timing specifications on the path are mutually
exclusive, the following constraint rules apply.

• Priority depends on the file in which the constraint appears. A
constraint in a file accessed later in the design flow replaces a
constraint in a file accessed earlier in the design flow. Priority is
as follows (first listed is the highest priority, last listed is the
lowest).

• Constraints in a Physical Constraints File (PCF)

• Constraints in a User Constraints File (UCF)

• Constraints in a Netlist Constraints File (NCF)

• Attributes in a schematic

• If two timing specifications cover the same path, the priority is as
follows (first listed is the highest priority, last listed is the lowest).

• Timing Ignore (TIG)

• FROM:THRU:TO specifications

• FROM:TO specifications

• PERIOD specifications

• ALLPATHS type specifications (in PCF file only).

• FROM:THRU:TO or FROM:TO statements have a priority order
that depends on the type of source and destination groups
included in a statement. The priority is as follows (first listed is
the highest priority, last listed is the lowest).

• Both the source group and the destination group are user-
defined groups

• Either the source group or the destination group is a
predefined group

• Both the source group and the destination group are
predefined groups

Net delay and Net skew specifications are analyzed independently of
path delay analysis and do not interfere with one another.

Development System Reference Guide

4-64 Xilinx Development System

If two constraints are in the same category, the user-defined priority
described in the“Using the PRIORITY Keyword” section is used to
determine which constraint takes precedence.

Syntax Summary
The following sections summarize the syntax for timing constraints.

TNM Attributes
The following table lists the syntax used when creating TNMs, which
you enter directly on the primitive symbol, macro symbol, net, or
driver pin.

TNM Attribute Syntax Where Applied

Schematic syntax:
TNM=identifier
TNM=predefined_group identifier

UCF syntax:

{NET | PIN | INSTANCE} name TNM=identifier
{NET | PIN | INSTANCE} name TNM=predefined_group: identifier;

Net, Symbol, Pin,
Macro

Using Timing Constraints

Development System Reference Guide 4-65

TIMEGRP Attributes
The following table lists the syntax used with the TIMEGRP
primitive.

Group Type TIMEGRP Attribute Syntax

Combine Schematic syntax in TIMEGRP primitive:
new_group=group1 group2 [group3 . . .]

UCF syntax:
TIMEGRP new_group=group1: group2 [group3 . . .];

Exclude Schematic syntax in TIMEGRP primitive:
new_group=group1[:group2 . . .] EXCEPT group3[group4 ...]

UCF syntax:
TIMEGRP new_group=group1[:group2 . . .] EXCEPT group3[group4 ...];

Clock Edge
(flip-flops)

Schematic syntax in TIMEGRP primitive:
new_group=RISING group1
new_group=FALLING group1

UCF syntax:
TIMEGRP new_group=RISING group1;
TIMEGRP new_group=FALLING group1;

Gate Edge
(latches)

Schematic syntax in TIMEGRP primitive:
new_group=TRANSHI group1
new_group=TRANSLOgroup1

UCF syntax:
TIMEGRP new_group=TRANSHI group1;
TIMEGRP new_group=TRANSLOgroup1;

Development System Reference Guide

4-66 Xilinx Development System

Pattern
Matching

Schematic syntax in TIMEGRP primitive:
new_group=predefined_group (name_qualifier1[name_qualifier2 . . .])

UCF syntax:
TIMEGRP new_group=predefined_group (name_qualifier1[name_qualifier2 .
. .]);

Net-specific
OFFSETs

Schematic syntax when attached to a net:
OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER} clk_name
[TIMEGRPgroup_name]

UCF syntax:
NET name OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRPgroup_name];

PCF syntax:
COMP “iob_name” OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} COMP “clk_iob_name” [TIMEGRP “group_name”];

Group Type TIMEGRP Attribute Syntax

Using Timing Constraints

Development System Reference Guide 4-67

TIMESPEC Attributes
The following table lists the syntax used for parameters that define
TS attributes, which reside in the TIMESPEC primitive or appear in
UCF or NCF files.

Spec Type TS Attribute Syntax

Basic
From-To

Schematic syntax in TIMESPEC primitive:
TSid=FROMsource_group TO dest_group delay
TSid=FROMsource_group delay
TSid=TO dest_group delay

UCF syntax:
TIMESPEC TSid=FROM:source_group TO dest_group delay;
TIMESPEC TSid=FROMsource_group delay;
TIMESPEC TSid=TO dest_group delay;

Ignore Schematic syntax in TIMESPEC primitive:
TSid=IGNORE

UCF syntax:
TIMESPEC TSid=IGNORE;

Through
point

Schematic syntax in TIMESPEC primitive:
TSid=FROMsource_group THRU thru_point[THRU
thru_point] TO dest_group delay
TSid=FROMsource_group THRU thru_point[THRU
thru_point] delay
TSid=THRU thru_point[THRU thru_point] TO dest_group delay

UCF syntax:
TIMESPEC TSid=FROMsource_group:THRU thru_point[THRU
thru_point] TO dest_group delay;
TIMESPEC TSid=FROMsource_group THRU thru_point[THRU
thru_point] delay;
TIMESPEC TSid=THRU thru_point[THRU thru_point] TO dest_group
delay;

Development System Reference Guide

4-68 Xilinx Development System

Linked
specification

Schematic syntax in TIMESPEC primitive:
TSid=FROMsource_group TO dest_group another_TSid
[* |/]number
TSid=FROMsource_group another_TSid
[* |/]number
TSid=TO dest_group another_TSid[* |/]number

UCF syntax:
TIMESPEC TSid=FROMsource_group TO dest_group another_TSid
[* |/]number;
TIMESPEC TSid=FROMsource_group another_TSid
[* |/]number;
TIMESPEC TSid=TO dest_group another_TSid[* |/]number;

Clock period Schematic syntax in TIMESPEC primitive:
TSid=PERIOD TNM_reference period {HIGH|LOW} [high_or_low_time]

UCF syntax:
TIMESPEC TSid=PERIOD TNM_reference period: {HIGH|LOW}
[high_or_low_time];

Derived
clocks

Schematic syntax in TIMESPEC primitive:
TSid=PERIOD TNM_reference another_PERIOD_identifier
[/ |*]number{HIGH|LOW} [high_or_low_time]

UCF syntax:
TIMESPEC TSid=PERIOD:TNM_reference another_PERIOD_identifier
[/ |*]number{HIGH|LOW} [high_or_low_time];

Spec Type TS Attribute Syntax

Using Timing Constraints

Development System Reference Guide 4-69

The following table lists additional attributes or constraints that are
used in or affect TS attributes.

TS attribute
priority

normal_timespec_syntax PRIORITY integer

Group
OFFSETs

Schematic syntax in TIMESPEC primitive:
TSidentifier=TIMEGRP name OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name]

The UCF and PCF syntax do not require the TSidentifier.

UCF syntax:
[TIMEGRP name] OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name];

PCF syntax:
[TIMEGRP name] OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} COMP clk_iob_name [TIMEGRPgroup_name];

Attribute Syntax
Where

Applied
How Used

Schematic syntax on net, pin, symbol, or macro:
TPTHRU=identifier

UCF syntax:
{NET | PIN | INSTANCE} name TPTHRU=identifier;

Net,
symbol,
pin,
macro

In through point TS
attribute

Schematic syntax on net, pin, symbol, or macro:
TPSYNC=identifier

UCF syntax:
{NET | PIN | INSTANCE} name TPSYNC=identifier;

Net,
symbol,
pin,
macro

As group in TS attribute

Spec Type TS Attribute Syntax

Development System Reference Guide

4-70 Xilinx Development System

Other Constraints
The following table lists additional timing constraints.

Schematic syntax on net or pin:
TIG
TIG= identifier

UCF syntax:
{NET | PIN } name TIG;
{NET | PIN } name TIG= identifier;

Net, pin Prevents timing analysis

TSidentifier=DROP_SPEC;(Constraints file only) N/A Prevents timing analysis
for TSidentifier

Attribute Syntax Where Applied How Used

Schematic syntax on net or pin:
PERIOD period {HIGH|LOW}
[high_or_low_time]

UCF syntax:
{NET | PIN } name PERIOD period
{HIGH|LOW} [high_or_low_time];

Nets, pins Specifies register
clock period

Attribute Syntax
Where

Applied
How Used

Using Timing Constraints

Development System Reference Guide 4-71

Schematic syntax:
MAXSKEW=allowable_skew

UCF syntax:
NETname MAXSKEW=allowable_skew;

PCF Syntax:
{NET | TIMEGRP | ALLCLOCKNETS} name
MAXSKEW=allowable_skew;

Nets, timegroups,
ALLCLOCKNETS

Specifies skew

Attribute Syntax Where Applied How Used

Development System Reference Guide

4-72 Xilinx Development System

Schematic syntax:
MAXDELAY= path_value [PRIORITY integer]

UCF syntax:
NETnet_name MAXDELAY= path_value
[PRIORITY integer];

PCF syntax:
TSidentifier=MAXDELAYpath path_value
[PRIORITY integer];

{NET | TIMEGRP | ALLCLOCKNETS} name
MAXDELAY= path_value [PRIORITY integer];

PATH path_name MAXDELAY= path_value
[PRIORITY integer];

ALLPATHS MAXDELAY= path_value
[PRIORITY integer];

FROMgroup_item THRUgroup_item1...
group_itemn MAXDELAY= path_value
[PRIORITY integer];

FROMgroup_item THRUgroup_item1...
group_itemn TOgroup_item MAXDELAY=
path_value [PRIORITY integer];

THRUgroup_item1... group_itemn TO
group_item MAXDELAY= path_value
[PRIORITY integer];

Nets, Paths,
FROM:THRU,
FROM:THRU:TO,
THRU:TO

Specifies delay

Attribute Syntax Where Applied How Used

Development System Reference Guide—October 1998 5-1

Chapter 5

The Logical Design Rule Check

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

• XC9500

• XC9500XL

This chapter describes the Logical Design Rule Check (DRC). The
chapter contains the following sections.

• “The Logical DRC”

• “The Logical DRC Tests”

The Logical DRC
The Logical DRC (Design Rule Check), is a series of tests run to verify
the logical design in the NGD (Generic Database) file. The Logical
DRC (also called the NGD DRC) performs device-independent
checks; they do not depend on the FPGA to which you will
eventually map the design.

Development System Reference Guide

5-2 Xilinx Development System

The Logical DRC generates messages to show the status of the tests
performed. Messages can be error messages (for conditions where the
logic will not operate correctly) or warnings (for conditions where the
logic is incomplete).

The Logical DRC runs automatically at these times.

• At the end of NGDBuild, before NGDBuild writes out the NGD
file. NGDBuild writes out the NGD file if DRC warnings are
discovered, but does not write out an NGD file if DRC errors are
discovered.

• At the end of each netlist writer (NGD2EDIF, NGD2VER, or
NGD2VHDL), before writing out the netlist file. The netlist
writers do not perform the entire DRC; they only perform a
subset of the DRC tests. A netlist writer writes out a netlist file
even if DRC warnings or errors are discovered.

The Logical DRC Tests
The Logical DRC performs six types of checks.

• Block check

• Net check

• Pad check

• Clock buffer check

• Name check

• Primitive pin check

The following sections describe these tests.

The Block Check
The block check verifies that each terminal symbol in the NGD
hierarchy (that is, each symbol that is not resolved to any lower-level
components) is an NGD primitive. A block check failure is treated as
an error. As part of the block check, the DRC also checks user-defined
properties on symbols and the values on the properties to make sure
they are legal.

The Logical Design Rule Check

Development System Reference Guide 5-3

The Net Check
The net check determines the number of NGD primitive output pins
(drivers), tristate pins (drivers) and input pins (loads) on each signal
in the design. If a signal does not have at least one driver (or one
tristate driver) and at least one load, a warning is generated. An error
is generated if a signal has multiple non-tristate drivers or any
combination of tristate and non-tristate drivers. As part of the net
check, the DRC also checks user-defined properties on signals and
the values on the properties to make sure they are legal.

The Pad Check
The pad check verifies that each signal connected to pad primitives
obeys the following rules.

• If the PAD is an input pad, the signal to which it is connected can
only be connected to these types of primitives.

• A BUF primitive

• A CKBUF primitive

• A PULLUP primitive

• A PULLDOWN primitive

• BSCAN primitive

The input signal can be attached to multiple primitives, but only
one of each of the above types. For example, the signal can be
connected to a BUF primitive, a CKBUF primitive, and a
PULLUP primitive, but it cannot be connected to a BUF primitive
and two CKBUF primitives. Also, the signal cannot be connected
to both a PULLUP primitive and a PULLDOWN primitive. Any
violation of the rules above results in an error, with the exception
of signals attached to multiple pullups or pulldowns, which
produces a warning. A signal which is not attached to any of the
above types of primitives also produces a warning.

• If the PAD is an output pad, the signal it is attached to can only be
connected to these primitive outputs.

• A single BUF primitive output, or

• A single TRI primitive output, or

• A single BSCAN primitive

Development System Reference Guide

5-4 Xilinx Development System

In addition to

• A single PULLUP primitive, or

• A single PULLDOWN primitive

Any other primitive output connections on the signal results in
an error.

If the condition above is met, the output PAD signal may also be
connected to one CKBUF primitive input, one BUF primitive
input, or both.

• If the PAD is a bidirectional or unbonded pad, the signal it is
attached to must obey the rules stated above for input and output
pads. Any other primitive connections on the signal results in an
error. The signal connected to the pad must be configured as both
an input and an output signal; if it is not, you receive a warning.

• If the signal attached to the pad has a connection to a top-level
symbol of the design, that top-level symbol pin must have the
same type as the pad pin, except that output pads can be associ-
ated with tristate top-level pins. A violation of this rule is a
warning.

• No signal can be connected to multiple pads (an error) or to
multiple top-level pins (a warning).

The Clock Buffer Check
The clock buffer configuration check verifies that the output of each
clock buffer primitive is connected to only inverter, flip-flop or latch
primitive clock inputs, or other clock buffer inputs. Violations are
treated as warnings.

The Name Check
The name check verifies the uniqueness of names on NGD objects as
defined below. The tests, and the messages reported by a violation of
the tests, are

• Pin names must be unique within a symbol. A violation is an
error.

• Instance names must be unique within the instance’s position in
the hierarchy (that is, a symbol cannot have two symbols with the
same name under it). A violation is a warning.

The Logical Design Rule Check

Development System Reference Guide 5-5

• Signal names must be unique within the signal’s hierarchical
level (that is, if you push down into a symbol, you cannot have
two signals with the same name). A violation is a warning.

• Global signal names must be unique within the design. A
violation is a warning.

The Primitive Pin Check
The primitive pin check verifies that certain pins on certain
primitives are connected to signals in the design. The check tests
these pins on these NGD primitive types.

If one of these pins is not connected to a signal, you receive a
warning.

NGD Primitive Pins Checked

X_TRI IN, OUT, and CTL

X_FF IN, OUT, and CLK

X_LATCH IN, OUT, and CLK

X_IPAD PAD

X_OPAD PAD

X_BPAD PAD

Development System Reference Guide

5-6 Xilinx Development System

Development System Reference Guide—October 1998 6-1

Chapter 6

MAP—The Technology Mapper

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

This chapter describes MAP. The chapter contains the following
sections.

• “MAP”

• “MAP Syntax”

• “MAP Files”

• “MAP Options”

• “The MAP Process”

• “Register Ordering”

• “Guided Mapping”

• “Simulating Map Results”

• “The MAP Report (MRP) File”

• “Halting MAP”

Development System Reference Guide

6-2 Xilinx Development System

MAP
MAP maps a logical design to a Xilinx FPGA. The input to mapping
is an NGD file, which contains a logical description of the design in
terms of both the hierarchical components used to develop the design
and the lower level Xilinx primitives, and any number of NMC
(macro library) files, each of which contains the definition of a
physical macro. MAP first performs a logical DRC (Design Rule
Check) on the design in the NGD file. MAP then maps the logic to the
components (logic cells, I/O cells, and other components) in the
target Xilinx FPGA. The output design is an NCD (Native Circuit
Description) file – a physical representation of the design mapped to
the components in the Xilinx FPGA. The NCD file can then be placed
and routed.

The flow through MAP is shown in the following figure. MAP can be
invoked from the Design Manager/Flow Engine graphical interface
or from the UNIX or DOS command line. The Design Manager/Flow
Engine is described in the Design Manager/Flow Engine Reference/User
Guide. This chapter describes running MAP from the UNIX or DOS
command line.

Figure 6-1 MAP

X7204

NGMMAP

NGD

Generic Database

NMC

Macro Definition

PCF

Physical Constraints

MRP

MAP Report

Guide File

NCD

Circuit Description -

Mapped to Desired Device

MAP

Floorplanner File

MAP—The Technology Mapper

Development System Reference Guide 6-3

Note: For Virtex, MAP does not support guide files.

MAP Syntax
The following syntax maps your design.

map [options] infile[.ngd] [pcf_file[.pcf]]

Options can be any number of the MAP options listed in the “MAP
Options” section. They do not need to be listed in any particular
order. Separate multiple options with spaces.

Infile[.ngd] is the input NGD file. You do not have to enter the .ngd
extension.

Pcf_file[.pcf] is the Physical Constraints File in PCF format. A
constraints file name is optional on the command line, but if one is
entered it must be entered after the input file name. You do not have
to enter the .pcf extension. The constraints file name and its location
are determined in this way.

• If you do not specify a physical constraints file name on the
command line, the physical constraints file has the same name as
the output file, with a .pcf extension. The file is placed in the
output file’s directory.

• If you specify a physical constraints file with no path specifier
(for example, cpu_1.pcf instead of /home/designs/
cpu_1.pcf), the .pcf file is placed in the current working
directory.

• If you specify a physical constraints file name with a full path
specifier (for example, /home/designs/cpu_1.pcf), the
physical constraints file is placed in the specified directory.

• If the physical constraints file already exists, MAP reads the file,
checks it for syntax errors, and overwrites the
schematic-generated section of the file. MAP also checks the
user-generated section for errors and corrects errors by
commenting out physical constraints in the file or by halting the
operation. If no errors are found in the user-generated section,
the section remains the same.

For a discussion of the output file name and its location, see the “–o
(Output File Name)” section.

Development System Reference Guide

6-4 Xilinx Development System

MAP Files
This section describes the MAP input and output files.

Input Files
MAP uses the following files as inputs.

• NGD file—Native Generic Database file. This file contains a
logical description of the design expressed both in terms of the
hierarchy used when the design was first created and in terms of
lower-level Xilinx primitives to which the hierarchy resolves. The
file also contains all of the constraints applied to the design
during design entry or entered in a UCF (User Constraints File).
The NGD file is created by NGDBuild.

• NMC files—Macro library files. An NMC file contains the
definition of a physical macro. When there are macro instances in
the NGD design file, NMC files are used to define the macro
instances. There is one NMC file for each type of macro in the
design file.

• Guide NCD file—An optional input file generated from a
previous MAP run. An NCD file contains a physical description
of the design in terms of the components in the target Xilinx
device. A guide NCD file is an output NCD file from a previous
MAP run that is used as an input to guide a later MAP run.

Note: Virtex does not support guide files.

• MFP—Map Floorplanner File, which is generated by the
Floorplanner, specified as an input file with the -fp option. The
MFP file is essentially used as a guide file for mapping. To create
a Map Floorplanner File, you must first have generated an NGD
file and a mapped NCD file. When you have run MAP to
generate an NCD file, you can open the mapped NCD file in the
Floorplanner, modify the placement of components, and then
generate an MFP file. You can then use the MFP file as an input
file with the -fp map option. The MFP file is only created for the
XC4000 and Spartan architectures.

• MDF file—MAP Directive File. The MDF is an optional input file
used for guided mapping. The MDF file describes how logic was
decomposed when the guide design was mapped.

MAP—The Technology Mapper

Development System Reference Guide 6-5

MAP uses the hints in the MDF as a guide for logic
decomposition in the guided mapping run.

Output Files
Output from MAP consists of the following files.

• NCD file—Native Circuit Description. A physical description of
the design in terms of the components in the target Xilinx device.
For a discussion of the output NCD file name and its location, see
the “–o (Output File Name)” section.

• PCF (Physical Constraints) file—an ASCII text file containing the
constraints specified during design entry expressed in terms of
physical elements. The physical constraints in the PCF file are
expressed in Xilinx’s constraint language. This file is described in
“The Physical Constraints (PCF) File” chapter.

MAP either creates a PCF file if none exists or rewrites an existing
file by overwriting the schematic-generated section of the file
(between the statements SCHEMATIC START and SCHEMATIC
END). For an existing physical constraints file, MAP also checks
the user-generated section for syntax errors, and signals errors by
halting the operation. If no errors are found in the user-generated
section, the section is unchanged.

• NGM file—a binary design file containing all of the data in the
input NGD file as well as information on the physical design
produced by the mapping. The NGM file is used to correlate the
back-annotated design netlist to the structure and naming of the
source design.

• MRP (MAP report) file—a file containing information about the
MAP command run. The MRP file lists any errors and warnings
found in the design, lists design attributes specified, details on
how the design was mapped (for example, the logic that was
removed or added and how signals and symbols in the logical
design were mapped into signals and components in the physical
design). The file also supplies statistics about component usage
in the mapped design. See “The MAP Report (MRP) File” section
for more details.

Development System Reference Guide

6-6 Xilinx Development System

• MDF (MAP Directive File)—a file describing how logic was
decomposed when the design was mapped. In guided mapping,
MAP uses the hints in the MDF as a guide for logic decomposi-
tion.

The MRP, MDF and NGM files produced by a MAP run all have the
same name as the output file, with the appropriate extension. If the
MRP, MDF or NGM files already exist, they are overwritten by the
new files.

MAP Options
The following table illustrates which architectures can be used with
each option.

Table 6-1 Map Options and Architectures

Options Architectures

-b Spartan, xc4000e/l

-c Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/ex/l/
xl/xla/xv, xc5200

-cm Spartan, SpartanXL, virtex, xc3000a/l, xc3100/a/l,
xc4000e/ex/l/xl/xla/xv, xc5200

-d xc3000a/l, xc3100a/l

-f Spartan, SpartanXL, virtex, xc3000a/l, xc3100/a/l,
xc4000e/ex/l/xl/xla/xv, xc5200

-fp Spartan, SpartanXL, xc4000e/ex/l/xl/xla/xv, xc5200

-gf Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/ex/l/
xl/xla/xv, xc5200

-gm Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/ex/l/
xl/xla/xv, xc5200

-ir Spartan, SpartanXL, virtex, xc4000e/ex/l/xl/xla/xv,
xc5200

-k Spartan, SpartanXL, xc4000e/ex/l/xl/xla/xv, xc5200

-l Spartan, SpartanXL, virtex, xc4000e/ex/l/xl/xla/xv,
xc5200

-o All architectures

MAP—The Technology Mapper

Development System Reference Guide 6-7

The following subsections describe each command line option and its
effect on the behavior of MAP.

–b (Convert Clock Buffers—XC4000E/L and Spartan
Only)

The –b option replaces GCLKs and ACLKs (primary and secondary
clocks) with a generic clock buffer (CKBUF) prior to mapping. This
option is useful when you are mapping an XNF netlist created in the
Synopsys environment where all clocks are mapped to BUFGP
(primary clock buffers) and secondary clocks are not used. The –b
option gives MAP the greatest amount of latitude in choosing the
clock assignments.

Note: MAP does not override the LOC= constraint.

–c (Pack CLBs)
–c [packfactor]

The –c option determines the degree to which CLBs are packed when
the design is mapped. The valid range of values for the packfactor is 0–
100.

-oe Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/ex/l/
xl/xla/xv, xc5200

-os Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/ex/l/
xl/xla/xv, xc5200

-p Spartan, SpartanXL, virtex, xc3000a/l, xc3100/a/l,
xc4000e/ex/l/xl/xla/xv, xc5200

-pr Spartan, SpartanXL, virtex, xc3000a/l, xc3100/a/l,
xc4000e/ex/l/xl/xla/xv

-r Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/ex/l/
xl/xla/xv

-u Spartan, SpartanXL, virtex, xc3000a/l, xc3100/a/l,
xc4000e/ex/l/xl/xla/xv, xc5200

Table 6-1 Map Options and Architectures

Options Architectures

Development System Reference Guide

6-8 Xilinx Development System

The packfactor values ranging from 1 to 100 roughly specify the
percentage of CLBs available in a target device for packing your
design's logic.

A packfactor of 100 means that all CLBs in a target part are available
for design logic. A packfactor of 100 results in minimum packing
density, while a packfactor of 1 represents maximum packing density.
Specifying a lower packfactor results in a denser design, but the design
may then be more difficult to place and route.

The –c 0 option specifies that only *related* logic (that is, logic
having signals in common) should be packed into a single CLB.
Specifying –c 0 yields the least densely packed design.

For values of –c from 1 to 100, MAP merges unrelated logic into the
same CLB only if the design requires more resources than are
available in the target device (an "overmapped" design). If there are
more resources available in the target device than are needed by your
design, the number of CLBs utilized when –c 100 is specified may
equal the number required when –c 0 is specified.

Note: The –c 1 setting should only used to determine the maximum
density (minimum area) to which a design can be packed; it should
almost never be used in the actual implementation of a design.
Designs packed to this maximum density generally have longer run
times, severe routing congestion problems in PAR, and poor design
performance.

The default packfactor (the value if you do not specify a –c option, or
enter a –c option without a packfactor) is 97% for the XC4000E
architecture and 100% for all other XC4000 architectures.

Processing a design with the –c 0 option is a good way to get a first
estimate of the number of CLBs required by your design.

This option does not apply to Virtex.

–cm (Cover Mode)
–cm {area | speed | balanced }

The –cm option specifies the criteria used during the “cover” phase of
MAP. In the “cover” phase, MAP assigns the logic to CLB function
generators (LUTs).

MAP—The Technology Mapper

Development System Reference Guide 6-9

• The area setting makes reducing the number of LUTs (and
therefore the number of CLBs) the highest priority.

• The speed setting makes reducing the number of levels of LUTS
(the number of LUTs a path passes through) the highest priority.
This setting makes it easiest to achieve your timing constraints
after the design is placed and routed. For most designs there is a
small increase in the number of LUTs (compared to the area
setting), but in some cases the increase may be large.

• The balanced setting balances the two priorities—reducing the
number of LUTs and reducing the number of levels of LUTs. It
produces results similar to the speed setting but avoids the
possibility of a large increase in the number of LUTs.

The default setting for the –cm option is area (cover for minimum
number of LUTs).

–d (Use DI Pin—XC3000 Architectures Only)
If you specify this option, MAP can use the DI (Direct Input) pin of
each CLB in the device for the XC3000A, XC3000L, XC3100A and
XC3100L architectures. If you use this pin, the setup time
requirement for each CLB flip-flop is reduced, but the DI pin has a
hold time requirement (which none of the other CLB logic input pins
has). Using the DI pin results in a denser design, but the design may
then be more difficult to place and route. Even if you specify the –d
option, MAP tries to minimize the use of the DI pin.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–fp (Floorplanner)
–fp filename.mfp

The –fp option requires the specification of an existing MFP file
created by the Floorplanner. The MFP file is essentially used as a
guide file for mapping.

Development System Reference Guide

6-10 Xilinx Development System

The MFP file is created in the Floorplanner from a previously
mapped NCD file. If you use the -fp option, you cannot use the guide
file option (-gf).

The -fp option can be used with the XC4000/E/L, XC4000EX/XL/
XLA/XV, Spartan, and SpartanXL architectures.

For more information about the Floorplanner, see the Floorplanner
Reference/User Guide.

–gf (Guide NCD File)
–gf guidefile

The –gf option specifies the name of an existing NCD file (from a
previous MAP run) to be used as a guide for the current MAP run.
For a description of guided mapping, see the “Guided Mapping”
section.

This option does not apply to Virtex.

–gm (Guide Mode)
–gm {exact | leverage }

The –gm option specifies the form of guided mapping to be used.

In the EXACT mode the mapping in the guide file is followed exactly.
In the LEVERAGE mode, the guide design is used as a starting point
for mapping but, in cases where the guided design tools cannot find
matches between net and block names in the input and guide
designs, or your constraints rule out any matches, the logic is not
guided.

For a description of guided mapping, see the “Guided Mapping”
section.

This option does not apply to Virtex.

–ir (Do Not Use RLOCs to Generate RPMs)
If you enter the –ir option, MAP uses RLOC constraints to group
logic within CLBs, but does not use the constraints to generate RPMs
(Relationally Placed Macros) controlling the relative placement of
CLBs. Stated another way, the RLOCs are not used to control the
relative placement of the CLBs with respect to each other.

MAP—The Technology Mapper

Development System Reference Guide 6-11

For the XC4000 and Spartan architectures, the -ir option has an
additional behavior; the RLOC constraint that cannot be met is
ignored and the mapper will continue processing the design. A
warning is generated for each RLOC that is ignored. The resulting
mapped design is a valid design.

This option does not apply to the XC3000 architecture.

–k (Map to 5-Input Functions)
If the –k option is specified, logic functions of five inputs are mapped
into a single CLB (if possible). To perform this mapping, all three of
the function generators in the CLB may be used.

By mapping 5-input functions into single CLBs, the –k option may
produce a mapping with fewer levels of logic, thus eliminating a
number of CLB-to-CLB delays. On the other hand, using the –k
option may prevent logic from being packed into CLBs in a way that
minimizes CLB utilization.

This option does not apply to Virtex or the XC3000 architecture.

–l (No logic replication)
If you do not specify the –l option, MAP can perform logic
replication, a logic optimization in which the program takes a single
driver driving multiple loads and maps it as multiple components,
each driving a single load (see the following figure). Logic replication
results in a mapping that often makes it easier to meet your timing
requirements, since some delays can be eliminated on critical nets.

This option does not apply to the XC3000 and XC5200 architectures.

Development System Reference Guide

6-12 Xilinx Development System

Figure 6-2 Logic Replication (–l Option)

–o (Output File Name)
–o outfile[.ncd]

Specifies the name of the output NCD file for the design. The .ncd
extension is optional. The output file name and its location are
determined in this way.

• If you do not specify an output file name with the –o option, the
output file has the same name as the input file, with an .ncd
extension. The file is placed in the input file’s directory.

• If you specify an output file name with no path specifier (for
example, cpu_dec.ncd instead of /home/designs/
cpu_dec.ncd), the NCD file is placed in the current working
directory.

• If you specify an output file name with a full path specifier (for
example, /home/designs/cpu_dec.ncd), the output file is
placed in the specified directory.

If the output file already exists, it is overwritten with the new NCD
file. You do not receive a warning when the file is overwritten.

Without Logic Replication With Logic Replication

X6973

Function

Generator

Function

Generator

Function

Generator

Function

Generator

Function

Generator

A
B

C
D

E
F

E
F

C
D

A
B

Replicated

MAP—The Technology Mapper

Development System Reference Guide 6-13

–oe (Logic Optimization Effort)
–oe {normal | high }

The –oe option specifies the effort MAP uses when performing logic
optimization. In the high setting, MAP exerts a greater effort to
optimize combinatorial logic, but the mapping takes longer to
complete. The high setting must be used if the input to the MAP is
not optimized, for example, a design created in XABEL.

For the –oe option to apply, the –os (logic optimization style) option
must be enabled; that is, –os must have a setting other than none .

If logic optimization is specified by the –os option, the default setting
for the –oe option is normal .

See the following “–os (Logic Optimization Style)” section for
guidelines on when to use logic optimization.

This option does not apply to Virtex.

–os (Logic Optimization Style)
–os {area | speed | balanced }

Logic optimization in the context of MAP refers to FPGA-specific 4-
input lookup optimization by the OPTIX optimizer.

The –os option specifies what type of logic optimization MAP
performs.

• The area setting optimizes combinatorial logic in a way that
uses the minimum number of logic cell function generators
(LUTs). This setting minimizes the amount of device area taken
up when the design is placed and routed.

• The speed setting optimizes in a way that makes it easiest to
achieve your timing constraints after the design is placed and
routed, even if more function generators must be used.

• The balanced setting gives you the optimum combination of
area and speed.

The default setting for the –os option disables logic optimization—no
optimization is performed. You may want to avoid performing logic
optimization in the following cases.

Development System Reference Guide

6-14 Xilinx Development System

• Your design has already been optimized (for example, a
design created in the Synopsys toolset). If the input to MAP
has already been optimized (including FPGA-specific 4-input
LUT optimization), the MAP results with the –os option
enabled may be worse than without the option.

• Your design has been entered as a schematic using Xilinx
Unified Library components. In this case, the MAP results
with the –os option enabled may be worse than without the
option.

• You want to make sure you can perform back-annotation on
any of the logic in your original design. Optimization may
make some of the logic unavailable for back-annotation.

Note: After combinatorial logic optimization has been performed,
you lose the correlation between signal names in the NCD file and
signal names in the original design. User signal names are not
preserved within optimized combinatorial networks. This affects
back-annotation and also results in a reduction in the amount of
guided mapping and guided placement and routing that can be
performed. However, signals connected to pads or to the outputs of
tbufs, flip-flops, latches, and RAMS are preserved for back-
annotation.

This option does not apply to Virtex.

–p (Xilinx Part Number)
–p part

Specifies the Xilinx part number for the device. The syntax for the –p
option is described in the “Part Numbers in Commands” section of
the “Introduction” chapter. Examples of part entries are XC4003E-
PC84, and XC4028EX-HQ240-3 .

If you do not specify a part number using the –p option, MAP selects
the part specified in the input NGD file. If the information in the
input NGD file does not specify a complete device and package, you
must enter a device and package specification using the –p option.
MAP supplies a default speed value, if necessary.

Note: The architecture you specify with the –p option must match the
architecture specified within the input NGD file.

MAP—The Technology Mapper

Development System Reference Guide 6-15

You may have chosen this architecture when you ran NGDBuild or
during an earlier step in the design entry process (for example, you
may have specified the architecture as an attribute within a sche-
matic, or specified it as an option to a netlist reader). If the architec-
ture does not match, you have to run NGDBuild again and specify
the desired architecture.

Note: You can only enter a part number or device name from a device
library you have installed on your system. For example, if you have
not installed the 4006E device library, you cannot create a design
using the 4006E–PC84 part.

–pr (Pack Registers in I/O)
–pr {i | o | b }

When MAP runs without the –pr option, MAP can only place flip-
flops or latches within an I/O cell if your design entry method
specifies that these components are to be placed within I/O cells. For
example, if you create a schematic using IFDX (Input D Flip-Flop) or
OFDX (Output D Flip-Flop) design elements, the physical
components corresponding to these design elements must be placed
in I/O cells. The –pr option specifies that flip-flops or latches may be
packed into input registers (i selection), output registers (o
selection), or both (b selection) even if the components have not been
specified in this way. This option does not apply to the XC5000
architecture.

–r (No Register Ordering)
The –r option disables register ordering. If you specify this option,
register bit names are ignored when registers are mapped, and the
bits are not mapped in any special order. If you do not specify this
option, MAP looks at the register bit names for similarities and tries
to map register bits in an ordered manner (called “register ordering”).
For a description of register ordering, see the “Register Ordering”
section.

This option does not apply to Virtex or the XC5200 architecture.

Development System Reference Guide

6-16 Xilinx Development System

–u (Do Not Remove Unused Logic)
If –u is specified, MAP maps unused components and nets in the
input design and includes them as part of the output design. If –u is
not specified, MAP eliminates unused components and nets from the
design before mapping.

The –u option is helpful if you want to run a preliminary mapping on
an unfinished design, possibly to see how many components the
mapped design uses. By specifying –u, you are assured that all of the
design’s logic (even logic that is part of incomplete nets) is mapped.

The MAP Process
To map a design, MAP performs these steps.

1. Choose the target Xilinx device, package, and speed. MAP selects
a part in this way.

• If a part is specified on the MAP command line, this is the
part used.

• If the command line does not specify a part, MAP selects the
part specified in the input NGD file. If the information in the
input NGD file does not specify a complete architecture,
device, and package, you receive an error message and MAP
does not continue. MAP supplies a default speed if necessary.

2. Read the information in the input design file.

3. Perform a Logical DRC (Design Rule Check) on the input design.
If any DRC errors are detected, the MAP run is aborted. If any
DRC warnings are detected, the warnings are reported, but the
MAP run continues. The Logical DRC (also called the NGD DRC)
is described in “The Logical Design Rule Check” chapter.

Note: Step 3 is skipped if the NGDBuild DRC was successful.

4. Assign the device global clock buffers (if possible).

5. Remove unused logic. All unused components and nets are
removed, unless these conditions exist.

• A Xilinx S (Save) constraint has been placed on a net during
design entry. If an unused net has an S constraint, the net and
all used logic connected to the net (as drivers or loads) is
retained. All unused logic connected to the net is deleted.

MAP—The Technology Mapper

Development System Reference Guide 6-17

For a more complete description of the S constraint, see the
“Attributes, Constraints, and Carry Logic” chapter of the
Libraries Guide.

• The –u option was specified on the MAP command line. If
this option is specified, all unused logic is kept in the design.

6. Map pads and their associated logic into IOBs.

7. Map the logic into Xilinx components (IOBs, CLBs, etc.). If any
Xilinx mapping control symbols appear in the design hierarchy
of the input file (for example, FMAP or HMAP symbols targeted
to an XC4000EX device), MAP uses the existing mapping of these
components in preference to remapping them. The mapping is
influenced by various constraints; these constraints are described
in the “Attributes, Constraints, and Carry Logic” chapter of the
Libraries Guide.

8. Update the information received from the input NGD file and
write this updated information into an NGM file. This NGM file
contains both logical information about the design and physical
information about how the design was mapped. The NGM file is
used only for back-annotation.

9. Create a physical constraints (PCF) file. This is a text file
containing any constraints specified during design entry. If no
constraints were specified during design entry, an empty file is
created so that you can enter constraints directly into the file
using a text editor or indirectly through the EPIC graphical
editor.

MAP either creates a PCF file if none exists or rewrites an existing
file by overwriting the schematic-generated section of the file
(between the statements SCHEMATIC START and SCHEMATIC
END). For an existing constraints file, MAP also checks the
user-generated section and may either comment out constraints
with errors or halt the program. If no errors are found in the user-
generated section, the section remains the same.

10. Create an MDF file, which describes how logic was decomposed
when the design was mapped. The MDF file is used for guided
mapping.

This step does not apply to Virtex.

Development System Reference Guide

6-18 Xilinx Development System

11. Run a physical Design Rule Check (DRC) on the mapped design.
If DRC errors are found, MAP does not write an NCD file.

12. Create an NCD file, which represents the physical design. The
NCD file describes the design in terms of Xilinx components—
CLBs, IOBs, etc.

13. Write a MAP report (MRP) file, which lists any errors or warn-
ings found in the design, details how the design was mapped,
and supplies statistics about component usage in the mapped
design.

Register Ordering
When you map a design containing registers, the MAP software can
optimize the way the registers are grouped into CLBs (slices for
Virtex—in Virtex there are two slices per CLB). This optimized
mapping is called “register ordering.”

A CLB (or Virtex slice) has two flip-flops, so two register bits can be
mapped into one CLB. For PAR (Place And Route) to place a register
in the most effective way, you often want as many pairs of contiguous
bits as possible to be mapped together into the same CLBs (for
example, bit 0 and bit 1 together in one CLB, bit 2 and bit 3 in
another).

MAP pairs register bits (performing “register ordering”) if it can
recognize that a series of flip-flops comprise a register. When you
create your design, you can name register bits in a way that ensures
they are mapped using register ordering.

Note: MAP does not perform register ordering on any flip-flops which
have BLKNM, LOC, or RLOC properties attached to them. The
BLKNM, LOC, and RLOC properties define how blocks are to be
mapped, and these properties override register ordering.

To be recognized as a candidate for register ordering, the flip-flops
must have these characteristics.

• The flip-flops must share a common clock signal and common
control signals (for example, Reset and Clock Enable).

• The flip-flop output signals must all be named according to this
convention.

MAP—The Technology Mapper

Development System Reference Guide 6-19

• Output signal names must begin with a common root
containing at least one alphabetic character.

• The names must end with numeric characters or with
numeric characters surrounded by parentheses (“(“ and “)”
), angle brackets (“<“ and “>”), or square brackets (“[“ and
“]”).

For example, acceptable output signal names for register
ordering are

If a series of flip-flops are recognized as candidate for register
ordering, they are paired in CLBs in sequential numerical order. For
example, in the first set of names shown above, data1 and data2, are
paired in one CLB, while data3 and data4 are paired in another.

In the example below, no register ordering is performed, since the
root names for the signals are not identical.

Note: In the OrCAD® schematic capture program, an underbar (_)
and a sheet number are appended to each output signal name (for
example, data01_1 or add15_12). In order to allow register ordering
on designs developed using the OrCAD tools, MAP checks each
signal name to see if it ends with an underbar followed by numeric
characters.

When it finds a signal with this type of name, MAP ignores the
underbar and the numeric characters when it considers the signal for
register ordering. For example, if signals are named data00_1 and
data01_2, MAP considers them as data00 and data01 for purposes of
register ordering. These two signals are mapped to the same CLB.

data1 addr(04) bus<1>

data2 addr(08) bus<2>

data3 addr(12) bus<3>

data4 addr(16) bus<4>

bus<5>

data01

addr02

atod03

dtoa04

Development System Reference Guide

6-20 Xilinx Development System

Two extra notes:

• MAP does not change signal names when it checks for
underbars—it only ignores the underbar and the number when it
checks to see if the signal is a candidate for register ordering.

• Because of the way signals are checked, make sure you don’t use
an underbar as your bus delimiter. If you name a bus signal
data0_01 and a non-bus signal data1, MAP sees them as data0
and data1 and register orders them even though you do not want
them register ordered.

When you run the MAP command the default setting performs
register ordering. If you specify the –r option when you run the
command, the software does not perform register ordering and maps
the register bits as if they were unrelated.

Virtex does not support the -r option.

Guided Mapping
In guided mapping, an existing NCD is used to guide the current
MAP run. The guide file may be from any stage of implementation:
unplaced or placed, unrouted or routed.

Virtex does not support guided mapping.

The following figure shows the flow used when you perform guided
mapping.

MAP—The Technology Mapper

Development System Reference Guide 6-21

Figure 6-3 Guided Mapping

In the EXACT mode the mapping in the guide file is followed exactly.
Any logic in the input NGD file that matches logic mapped into the
physical components of the NCD guide file is implemented exactly as
in the guide file. Mapping (including signal to pin assignments),
placement and routing are all identical. Logic that is not matched to
any guide component is mapped by a subsequent mapping step.

If there is a match in EXACT mode, but your constraints would
conflict with the mapping in the guide file component, an error is
posted. If an error is posted, you can modify the constraints to
eliminate conflicts, change to the LEVERAGE guide mode (which is
less restrictive), modify the logical design changes to avoid conflicts,
or abandon using guided design.

In the LEVERAGE mode, the guide design is used as a starting point
in order to speed up the design process. However, in cases where the
guided design tools cannot find matches or your constraints rule out
any matches, the logic is not guided.

MAP

NGD

Input Design

NCD

Mapped Design

PAR

NCD

Placed and Routed Design

NGD

Modified Input Design

NCD

Guide File

MAP

NCD

New Mapped Design

MDF

Decomposition

Hints

X7206

First MAP Run Second MAP Run

Development System Reference Guide

6-22 Xilinx Development System

Whenever the guide design conflicts with the your mapping, place-
ment or routing constraints, the guide is ignored and your constraints
are followed.

Since the LEVERAGE mode only uses the guide design as a starting
point for mapping, MAP may subsequently choose to alter the
mapping to improve the speed or density of the implementation (for
example, MAP may choose to collapse additional gates into a guided
CLB).

Note: For Verilog® or VHDL netlist input designs, re-synthesizing
modules typically cause signal and instance names in the resulting
netlist to be significantly different from the netlist obtained in earlier
synthesis runs. This occurs even if the source level Verilog or VHDL
code only contains a small change. Because guided mapping depends
on signal and component names, synthesis designs often have a low
"match rate" when guided. Therefore, guided mapping is not recom-
mended for most synthesis-based designs, although there may be
cases where it could be a successful alternative technique.

Simulating Map Results
When simulating from NGM files, you are not simulating a mapped
result, that is, you are simulating the logical circuit description.
Simulating from the NCD file actually simulates the physical circuit
description.

MAP may generate an error that is not detected in the back-annotated
simulation netlist. For example, you may run the following command
after running MAP to generate the backannotated simulation netlist.

ngdanno mapped.ncd mapped.ngm -o mapped.nga

This command creates a back-annotated simulation netlist using the
logical-to-physical cross-reference file named mapped.ngm. This
cross-reference file contains information about the logical design
netlist which means that the back-annotated simulation netlist
(mapped.nga) is actually a back-annotated version of the logical
design. However, if MAP makes a physical error, for example,
implements an Active Low function for an Active High function, this
error will not be detected in the mapped.nga file which means that
the error will not show up in the simulation.

Consider the following logical circuit generated by NGBuild from an
input design file.

MAP—The Technology Mapper

Development System Reference Guide 6-23

Figure 6-4 Logical Circuit Representation

Note the Boolean output from the combinatorial logic. Suppose that
after running MAP for the preceding circuit, you obtain the following
result.

Figure 6-5 CLB Configuration

D Q

CLK

A * B + C * D

A
B

C
D

X8549

D Q

CLK

LUT

CLB

A * B + C * D

A

B

C

D

X8550

Development System Reference Guide

6-24 Xilinx Development System

Note that MAP has generated an active low (C) instead of an active
high (C). Therefore, the Boolean output for the combinatorial logic is
incorrect. When you run NGDAnno using the mapped.ngm file
(ngdanno mapped.ncd mapped.ngm -o mapped.nga), you will not
detect this logical error because the delays are back-annotated to the
correct logical design not to the physical design.

One way to detect the error is by running the NGDAnno command
without using the mapped.ngm cross-reference file.

ngdanno mapped.ncd -o mapped.nga

Then physical simulations using the mapped.nga file will normally
detect a physical error. However, even though, an error is detected,
the specific type of error is not easily recognizable. You can use EPIC
to try to pinpoint the error or call Xilinx Customer Support. It is also
possible that the physical simulation is reporting an error that does
not exist, that is, the CLB configuration is correct. In that instance,
you can use EPIC to determine if the CLB is correctly modelled.

Lastly, if both the logical and physical simulations do not discover
existing errors, you may need to use more test vectors in the
simulations.

The MAP Report (MRP) File
The MAP report (MRP) file is an ASCII (text) file containing
information about the MAP command run. Although detailed
information varies depending upon the device to which you have
mapped, the format of the file is the same regardless of the device
used.

Note: The MRP file is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.

A sample MRP file is shown below. This is an abbreviated file—most
MAP report files are considerably larger than the one shown below.

The report file is divided into a number of sections. Sections appear in
the report file even if they are empty (that is, even if there are no
messages that apply to them).

These are the sections in the MAP report file.

MAP—The Technology Mapper

Development System Reference Guide 6-25

• Design Information—Shows your MAP command, line, the
device to which the design has been mapped, and when the
mapping was performed.

• Design Summary—Summarizes the mapper run, showing the
number of errors and warnings, and how many of the resources
in the target device are used by the mapped design.

• Table of Contents—Lists the remaining sections of the MAP
report.

• Errors (Section 1)—Shows any errors generated as a result of the
following.

• Errors associated with the logical DRC tests performed at the
beginning of the mapper run. These errors do not depend on
the device to which you are mapping.

• Errors the mapper discovers (for example, a pad is not
connected to any logic, or a bidirectional pad is placed in the
design but signals only pass in one direction through the
pad). These errors may depend on the device to which you
are mapping.

• Errors associated with the physical DRC run on the mapped
design.

• Warnings (Section 2)—Shows any warnings generated as a result
of the following.

• Warnings associated with the logical DRC tests performed at
the beginning of the mapper run. These warnings do not
depend on the device to which you are mapping.

• Warnings the mapper discovers. These warnings may
depend on the device to which you are mapping.

• Warnings associated with the physical DRC run on the
mapped design.

• Design Attributes (Section 3)—Shows any attributes (properties)
specified when the design was created. Some of these attributes
also appear as physical constraints in the physical constraints file
(PCF) produced by the mapper run.

• Removed Logic Summary (Section 4)—Summarizes the number
of blocks and signals removed from the design. The section
reports on these kinds of removed logic.

Development System Reference Guide

6-26 Xilinx Development System

• Blocks trimmed—A “trimmed” block is a block removed
because it is along a path that has no driver or no load.
Trimming is recursive; that is, if Block A becomes
unnecessary because logic to which it is connected has been
trimmed, then Block A is also trimmed.

• Blocks removed—A “removed” block is removed because it
can be eliminated without changing the operation of the
design. Removal is recursive; that is, if Block A becomes
unnecessary because logic to which it is connected has been
removed, then Block A is also removed.

• Blocks optimized—An “optimized” block is a block removed
because its output remains constant regardless of the state of
the inputs (for example, an AND gate with one input tied to
ground). Logic generating an input to this optimized block
(and to no other blocks) is also removed, and appears in this
section.

• Signals removed—Signals that were removed because they
were attached only to removed blocks.

• Signals merged—A signal is merged when two signals are
combined because a component separating them was
removed.

• Removed Logic (Section 5)—Describes in detail all logic (design
components and nets) removed from the input NGD file when
the design was mapped. The preceding description of Section 4
defines the types of logic removed. More generally, logic may be
removed because

• A design uses only part of the logic in a library macro.

• The design has been mapped even though it is not yet
complete.

• The mapper has optimized the design logic.

• Unused logic has been created in error during schematic
entry.

This section also indicates which nets were merged (that is, two
nets were combined when a component separating them was
removed).

MAP—The Technology Mapper

Development System Reference Guide 6-27

In this section, if the removal of a signal or symbol results in the
subsequent removal of an additional signal or symbol, the line
describing the subsequent removal is indented. This indentation
is repeated as a chain of related logic is removed. To quickly
locate the cause for the removal of a chain of logic, look above the
entry in which you are interested and locate the top-level line,
which is not indented.

• Added Logic (Section 6)—Describes any logic that was added to
the design by the mapper. For example, logic is added when a
design contains global reset buffers but the device to which you
are mapping does not have global reset buffers. The mapper adds
the necessary logic to perform the global reset function.

• Expanded Logic (Section 7)—If enabled, describes the mapping
of logic that has been added to the database to resolve certain
design blocks (for example, LogiBLOX modules).

By default this section is empty, since the section may contain
thousands of lines and the information is not needed by the
majority of users. To enable this section, set the environment
variable MAP_REPORT_DETAIL to TRUE and rerun MAP.

• Signal Cross Reference (Section 8)—If enabled, shows where nets
in the logical design were mapped in the physical design. In this
section, signals that are reported as “covered” have been mapped
completely within a logic cell.

By default this section is empty, since the section may contain
thousands of lines and the information is not needed by the
majority of users. To enable this section, set the environment
variable MAP_REPORT_DETAIL to TRUE and rerun MAP.

• Symbol Cross Reference (Section 9)—If enabled, shows where
symbols in the logical design were mapped in the physical
design.

By default this section is empty, since the section may contain
thousands of lines and the information is not needed by the
majority of users. To enable this section, set the environment
variable MAP_REPORT_DETAIL to TRUE and rerun MAP.

• IOB Properties (Section 10)—Lists each IOB to which the user has
supplied constraints along with the applicable constraints. The
possible IOB properties are shown in the following table;

Development System Reference Guide

6-28 Xilinx Development System

the applicability of the properties and options varies from one
architecture to another. The following table applies only to the
XC4000X, Spartan and SpartanXL architectures.

• RPMs (Section 11)—Indicates each RPM (Relationally Placed
Macro) used in the design, and the number of device components
used to implement the RPM.

• Guide Report (Section 12)—If you have mapped using a guide
file, shows the guide mode used (EXACT or LEVERAGE) and the
percentage of objects that were successfully guided. (This section
does not apply to Virtex.)

A sample MAP Report (MRP) file is shown below.

Note: The MAP Report is formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
report uses a proportional font, the columns in the report do not line
up correctly.

Xilinx Mapping Report File for Design “main_pcb”
 Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.

Design Information

Command Line : map -p xc4006epq160-4 main_pcb.ngd
Target Device : x4006e
Target Package : pq160
Target Speed : -4

Table 6-2 IOB Properties

Property Meaning Options

SLEW Output slew rate SLOW or FAST

PULLUP Enable pull-up resistor N/A

PULLDOWN Enable pull-down resistor N/A

FF/LATCH Input flip-flop/latch data
source

NODELAY,
MEDDELAY, or SYNC

SYNC Fast capture latch data
source

NODELAY or
MEDDELAY

DRIVE Drive value on output
pads

12 or 24 ma.

MAP—The Technology Mapper

Development System Reference Guide 6-29

Mapper Version : xc4000e -- M1.5.15
Mapped Date : Tue Apr 28 09:41:41 1998

Design Summary

 Number of errors: 0
 Number of warnings: 0
 Number of CLBs: 248 out of 256 96%
 CLB Flip Flops: 311
 4 input LUTs: 394 (7 used as route-throughs)
 3 input LUTs: 138 (28 used as route-throughs)

16X1 RAMs: 19
 Number of bonded IOBs: 95 out of 128 74%
 IOB Flops: 7
 IOB Latches: 5

Number of clock IOB pads: 3 out of 8 37%
 Number of primary CLKs: 2 out of 4 50%
 Number of secondary CLKs: 2 out of 4 50%
 Number of RPM macros: 4
 Number of testdata: 1

2 unrelated functions packed into 2 CLBs.
(Less than 1% of the CLBs used are affected.)

Total equivalent gate count for design: 6213
Additional JTAG gate count for IOBs: 4608

Table of Contents

Section 1 - Errors
Section 2 - Warnings
Section 3 - Design Attributes
Section 4 - Removed Logic Summary
Section 5 - Removed Logic
Section 6 - Added Logic
Section 7 - Expanded Logic
Section 8 - Signal Cross-Reference
Section 9 - Symbol Cross-reference
Section 10 - IOB Properties
Section 11 - RPMs
Section 12 - Guide Report
Section 1 - Errors

Section 2 - Warnings

Development System Reference Guide

6-30 Xilinx Development System

Section 3 - Design Attributes

 Attribute LOC
 “P117” for signal(s) D24 on symbol “D24.PAD”
 “P113” for signal(s) D25 on symbol “D25.PAD”
 “P106” for signal(s) D26 on symbol “D26.PAD”
 .
 .
 .
 “P152” for signal(s) INC_IDX_DBG on symbol “INC_IDX_DBG.PAD”
 “P129” for signal(s) XMT_PND_DBG on symbol “XMT_PND_DBG.PAD”

Section 4 - Removed Logic Summary

 6 block(s) removed

6 block(s) optimized away
 11 signal(s) removed

Section 5 - Removed Logic

The trimmed logic report below shows the logic removed from your design
due to sourceless or loadless signals, and VCC or ground connections. If
the removal of a signal or symbol results in the subsequent removal of an
additional signal or symbol, the message explaining that second removal
will be indented. This indentation will be repeated as a chain of related
logic is removed.

To quickly locate the original cause for the removal of a chain of logic,
look above the place where that logic is listed in the trimming report,
then locate the lines that are least indented (begin at the leftmost
edge).

The signal "$2I194/O" is loadless and has been removed.
Loadless block "$2I194/BUF" (X_BUF) removed.

The signal "$2I206/O" is loadless and has been removed.
Loadless block "$2I206/BUF" (X_BUF) removed.

The signal "$2I226/O" is loadless and has been removed.
Loadless block "$2I226/BUF" (X_BUF) removed.

The signal "$2I236/O" is loadless and has been removed.
Loadless block "$2I236/BUF" (X_BUF) removed.

The signal "$2I286/O" is loadless and has been removed.
Loadless block "$2I286/BUF" (X_BUF) removed.

The signal "$3I565/O" is loadless and has been removed.
Loadless block "$3I565/BUF" (X_BUF) removed.

MAP—The Technology Mapper

Development System Reference Guide 6-31

The signal "$2I194/GE" is sourceless and has been removed.
The signal "$2I206/GE" is sourceless and has been removed.
The signal "$2I226/GE" is sourceless and has been removed.
The signal "$2I236/GE" is sourceless and has been removed.
The signal "$2I286/GE" is sourceless and has been removed.

Optimized Block(s):

TYPE BLOCK

X_ZERO XNFPREP_GND_0.ZERO
X_ZERO DE/MX/GND.ZERO
X_INV $4I248/INTBUF
X_INV $4I528/INTBUF
X_ZERO GND.ZERO
X_ONE VCC.ONE

To enable printing of redundant blocks removed and signals merged, set the
environment variable MAP_REPORT_DETAIL to TRUE and rerun map.
.

Section 6 - Added Logic

Section 7 - Expanded Logic

To enable this section, set the environment variable MAP_REPORT_DETAIL to
TRUE and rerun map.

Section 8 - Signal Cross-Reference

To enable this section, set the environment variable MAP_REPORT_DETAIL to
TRUE and rerun map.

Section 9 - Symbol Cross-Reference

To enable this section, set the environment variable MAP_REPORT_DETAIL to
TRUE and rerun map.

Section 10 - IOB Properties

"AMODE0" (IOB) : SLEW=SLOW
"AMODE1" (IOB) : SLEW=SLOW
 .

Development System Reference Guide

6-32 Xilinx Development System

 .
"VSEN" (IOB) : SLEW=SLOW
"VWBWEN" (IOB) : SLEW=SLOW PULLUP
“XMT_PND_DBG” (IOB) : SLEW=SLOW

Section 11 - RPMs

$3I283/hset - 5 comps
$6I223/hset - 4 comps
DE/$1I385/hset - 5 comps
DE/VR/$1I2/hset - 9 comps

Section 12 - Guide Report

Guide not run on this design.

Halting MAP
To halt MAP, enter CONTROL-C (on a workstation) or CONTROL-
BREAK (on a PC). On a workstation, make sure that when you enter
CONTROL-C the active window is the window from which you
invoked the mapper. The operation in progress is halted. Some files
may be left when the mapper is halted (for example, a MAP report
file or a physical constraints file), but these files may be discarded
since they represent an incomplete operation.

Development System Reference Guide—October 1998 7-1

Chapter 7

LCA2NCD

LCA2NCD is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E

• XC5200

This chapter describes LCA2NCD. The chapter contains the
following sections.

• “LCA2NCD”

• “LCA2NCD Syntax”

• “LCA2NCD Files”

• “LCA2NCD Options”

• “Translating Unnamed Components”

LCA2NCD
Earlier releases of the Xilinx Development System stored the physical
design in a Logic Cell™ Array (LCA™) file. The current Xilinx
Development System tools operate on physical designs in the NCD
(Circuit Description) format. LCA files are ASCII (human-readable)
files; NCD files are binary (machine-readable) files.

LCA2NCD converts an LCA file to an NCD file. The NCD file
produced by LCA2NCD can be placed and routed, viewed in EPIC,
analyzed for timing, and back-annotated in the current Xilinx
Development System.

Development System Reference Guide

7-2 Xilinx Development System

Figure 7-1 File Conversion Using LCA2NCD

LCA2NCD Syntax
The following syntax converts an LCA file to an NCD file.

lca2ncd [options] lca_file[.lca] [ncd_file][.ncd]]

Options can be any number of the options listed in the “LCA2NCD
Options” section. They do not need to be listed in any particular
order. Separate multiple options with spaces.

lca_file is the LCA file to be converted. If you enter a file name with no
extension, LCA2NCD looks for a file with an .lca extension and the
name you specified.

ncd_file is an optional name for the output NCD file. The output file
name, its extension, and its location are determined in this way.

• If you do not specify an output file name, the output file has the
same name as the input file, with an .ncd extension.

• If you specify an output file name with no extension, LCA2NCD
appends the .ncd extension to the file name.

• If you specify a file name with an extension other than .ncd, you
get an error message and LCA2NCD does not run.

LCA2NCD

X7473

NCD

Physical Circuit

Description

LCA

Physical Circuit

Description

MDF

Composition

Hints

L2N

LCA2NCD Report

LCA2NCD

Development System Reference Guide 7-3

• If you do not specify a full pathname, the output file is placed in
the directory from which you ran LCA2NCD.

LCA2NCD Files
The input files that LCA2NCD requires and the output files that
LCA2NCD generates are described below.

Input Files
Input to LCA2NCD consists of a Xilinx LCA file. This is a mapped
design file generated in a previous revision of the Xilinx
Development System. The file may also contain placement and
routing information.

Output Files
Output from LCA2NCD consists of the following files.

• NCD file—a physical description of the design in terms of Xilinx
components (logic cells, I/O cells, etc.).

• MDF file—MAP Directive File, a file describing how logic was
decomposed when the design was originally mapped. The MDF
file is used for guided mapping using the current Xilinx
Development System software. In guided mapping, the file
enables MAP to recreate the decompositions chosen when the
design was first mapped. This file is only created if there are
Mapper directives in the LCA file.

• L2N file—a report file containing information about the
LCA2NCD run.

LCA2NCD Options
Following is a description of the command line options and how they
affect the behavior of LCA2NCD.

–p (Placement Only)
If you specify the –p option, LCA2NCD includes placement
information from the input LCA file in the output NCD file, but
no routing information.

Development System Reference Guide

7-4 Xilinx Development System

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–w (Overwrite Existing File)
The –w option overwrites the output NCD file if it already exists. By
default (no –w specified) LCA2NCD does not overwrite an existing
file.

Translating Unnamed Components
A Xilinx LCA file can contain unnamed components. Components
that are unnamed in an LCA file are dynamically named when used
in the Xilinx Development System tools; that is, component names
change depending on whether the components are placed or
unplaced.

In an LCA file, components are assigned names using the NmBlk
construct. Although a component in an LCA file does not have to be
assigned a name, both EPIC and PAR require something by which to
refer to the component. In the Xilinx Development System tools, the
name applied to a component is dynamic—the same component has
a different name when it is placed or unplaced.

 If an unnamed component is placed, it is referred to in this way.

$sitename_id

sitename is the site in which the component is placed

id is an integer.

If an unnamed component is unplaced, it is referred to in this way.

$typename_id

typename is the type of component (CLB, IOB, TBUF, etc.).

id is an integer.

If an unplaced component is placed in PAR or EPIC, or if a placed
component is unplaced, the string by which it is referred to changes.

LCA2NCD

Development System Reference Guide 7-5

The EPIC editor allows you to rename components. If you use EPIC
to assign a name to an unnamed component, the name you supply
then remains with the component, whether the component is placed
or unplaced.

Development System Reference Guide

7-6 Xilinx Development System

Development System Reference Guide—October 1998 8-1

Chapter 8

The Physical Constraints (PCF) File

This chapter describes the Physical Constraints File (PCF). The
chapter contains the following sections.

• “The PCF File”

• “Interaction Between Constraints”

The PCF File
The NGD file produced when a design netlist is read into the Xilinx
Development System may contain a number of logical constraints.
These constraints originate in any of these sources.

• An attribute assigned within a schematic or HDL file.

• A constraint entered in a UCF (User Constraints File).

• A constraint appearing in an NCF (Netlist Constraints File)
produced by a CAE vendor toolset.

Logical constraints in the NGD file are read by MAP. MAP uses some
of the constraints to map the design, and converts other logical
constraints to physical constraints. MAP then writes these physical
constraints into a Physical Constraints File (PCF).

The PCF file is an ASCII file containing two separate sections: a
section for those physical constraints created by the mapper and a
section for physical constraints entered by the user. The mapper
section is rewritten every time you run the mapper. Mapper-
generated physical constraints appear first in the file, followed by
user physical constraints. This order dictates that in the event of
conflicts between mapper-generated and user constraints, user
constraints are last-read and override. The mapper-generated section
of the file is preceded by a SCHEMATIC START notation on a
separate line.

Development System Reference Guide

8-2 Xilinx Development System

The end of this section is indicated by SCHEMATIC END, also on a
separate line. User-generated constraints, such as timing constraints,
should always be entered after SCHEMATIC END.

You can write user constraints directly into the file or you can write
them indirectly (or undo them) from within EPIC. (For more informa-
tion on constraints in EPIC, see the “Using EPIC” chapter in the EPIC
Design Editor Reference/User Guide).

The PCF file is an optional input to PAR, EPIC, TRACE, NGDAnno,
and BitGen (see the following figure).

The file may contain any number of constraints and any number of
comments in any order. A comment consists of either a pound sign
(#) or double slashes (//) followed by any number of other characters
up to a new line. Illegal constraints are automatically commented out
by the program.

Figure 8-1 PCF File Flow

MAP

X7424

PCF

Physical Constraints

PAREPIC BitGenTRACE NGDAnno

NGD

Generic Database

(Containing Constraints)

The Physical Constraints (PCF) File

Development System Reference Guide 8-3

Interaction Between Constraints
Schematic constraints are placed at the beginning of the PCF file by
MAP. The start and end of this section is indicated with
SCHEMATIC START and SCHEMATIC END, respectively. Because
of a “last-read” order, all constraints that you enter in this file should
come after SCHEMATIC END.

Note: You are not prohibited from entering a user constraint before
the schematic constraints section, but if you do, a conflicting
constraint in the schematic-based section may override your entry.

Every time a design is remapped, the schematic section of the PCF file
is overwritten by the mapper. The user constraints section is left
intact, but certain constraints may be invalid because of the new
mapping.

Development System Reference Guide

8-4 Xilinx Development System

Development System Reference Guide—October 1998 9-1

Chapter 9

DRC—Physical Design Rule Check

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Virtex

• Spartan

• SpartanXL

This chapter describes DRC. The chapter contains the following
sections.

• “DRC”

• “DRC Syntax”

• “DRC Files”

• “DRC Options”

• “DRC Types”

• “DRC Errors and Warnings”

Development System Reference Guide

9-2 Xilinx Development System

DRC
The physical Design Rule Check (DRC) consists of a series of tests to
discover physical errors and some logic errors in the design. Three
Xilinx Development System modules employ physical DRC. The
physical DRC is used in the following ways.

• MAP automatically runs physical DRC after it has mapped the
design.

• PAR (Place and Route) automatically runs physical DRC on nets
when it routes the design.

• You can run physical DRC from within EPIC (the design editor).
The DRC also runs automatically after certain EPIC operations
(for example, when you edit a logic cell or when you manually
route a net). For a description of how the DRC works within
EPIC, see the section titled “Physical Design Rule Check” in the
“Using EPIC” chapter of the EPIC Design Editor Reference/User
Guide.

• BitGen, which creates a a BIT file for programming the device,
automatically runs physical DRC.

• You can run physical DRC from the UNIX or DOS command line.

DRC Syntax
To run DRC, enter the following on the UNIX or DOS command line.

drc [options] file_name

Options can be any number of the DRC options listed in the “DRC
Options” section. They do not need to be listed in any particular
order. Separate multiple options with spaces.

File_name is the name of the NCD file on which DRC is to be run.

DRC—Physical Design Rule Check

Development System Reference Guide 9-3

DRC Files
This section describes the DRC input and output files.

Input File
The input to DRC is an NCD file. The NCD file is a mapped, physical
description of your design.

Output File
The output of DRC is a TDR file. The TDR file is an ASCII DRC
report. The contents of this file is determined by the options you
select for the DRC command.

DRC Options
This section describes the options that are available for the DRC
command line.

–e (Error Report)
The –e option produces a report containing details about errors only.
No details are given about warnings.

–o (Output file)
–o outfile_name

The –o option overrides the default output report file file_name.tdr
with outfile_name.tdr.

–s (Summary Report)
The –s option produces a summary report only. The report indicates
the number of errors and warnings found but does not supply any
details about them.

–v (Verbose Report)
The –v option reports all warnings and errors. This is the default
option for DRC.

Development System Reference Guide

9-4 Xilinx Development System

–z (Report Incomplete Programming)
The –z option reports incomplete programming as errors. Certain
DRC violations are considered errors when the DRC runs as part of
the BitGen command but are considered warnings at all other times
the DRC runs. These violations usually indicate the design is
incompletely programmed (for example, a logic cell has been only
partially programmed or a signal has no driver). The violations
would create errors if you tried to program the device, so they are
reported as errors when BitGen creates a BIT file for device
programming. If you run DRC from the command line without the -z
option, these violations are reported as warnings only. With the -z
option, these violations are reported as errors.

DRC Types
Physical DRC can perform four types of checks.

• Net check—examines one or more routed or unrouted signals
and reports any problems with pin counts, tristate buffer incon-
sistencies, floating segments, antennae, and partial routes.

• Block check—examines one or more placed or unplaced compo-
nents and reports any problems with logic, physical pin connec-
tions, or programming.

• Chip check—examines a special class of checks for signals,
components, or both at the chip level, such as placement rules
with respect to one side of the device, etc.

• All checks—performs net, block, and chip checks.

When you run DRC from the command line (as described in the
previous sections), it automatically performs net, block, and chip
checks.

In EPIC, you can run the net check on selected objects or on all of the
signals in the design. Similarly, the block check can be performed on
selected components or on all of the design’s components. When you
check all components in the design, the block check performs extra
tests on the design as a whole (for example, tristate buffers sharing
long lines and oscillator circuitry configured correctly) in addition to
checking the individual components. In EPIC, you can run the net
check and block check separately or together.

DRC—Physical Design Rule Check

Development System Reference Guide 9-5

For a description of how the DRC works within EPIC, see the section
titled “Physical Design Rule Check” in the “Using EPIC” chapter of
the EPIC Design Editor Reference/User Guide.

DRC Errors and Warnings
A DRC error indicates a condition in which the routing or component
logic will not operate correctly (for example, a net without a driver or
a logic block that is incorrectly programmed). A DRC warning
indicates a condition where the routing or logic is incomplete (for
example, a net is not fully routed or a logic block has been
programmed to process a signal but there is no signal on the
appropriate logic block pin).

Certain messages may appear as either warnings or errors,
depending on the application and signal connections. For example, in
a net check, a pullup not used on a signal connected to a decoder
generates an error message. A pullup not used on a signal connected
to a tristate buffer only generates a warning.

Incomplete programing (for example, a signal without a driver or a
partially programmed logic cell) is reported as an error when the
DRC runs as part of the BitGen command, but is reported as a
warning when the DRC runs as part of any other program. The –z
option to the DRC command reports incomplete programming as an
error instead of a warning. For a description of the –z DRC option,
see the “–z (Report Incomplete Programming)” section.

Development System Reference Guide

9-6 Xilinx Development System

Development System Reference Guide—October 1998 10-1

Chapter 10

PAR—Place and Route

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

This chapter describes PAR. The chapter contains the following
sections.

• “PAR”

• “PAR and the Timing Analysis Software”

• “PAR Syntax”

• “PAR Files”

• “PAR Options”

• “PAR Operation”

• “Guided PAR”

• “Output from PAR”

• “Scoring the Routed Design”

• “Turns Engine (PAR Multi-Tasking Option)”

Development System Reference Guide

10-2 Xilinx Development System

• “Command Line Examples”

• “Halting PAR”

PAR
After a design has undergone the necessary translation to bring it into
the NCD (Circuit Description) format, it is ready for placement and
routing. This phase is done by PAR (Xilinx’s Place and Route
program). PAR takes an NCD file, places and routes the design, and
outputs an NCD file which is used by the bitstream generator
(BitGen). The output NCD file can also act as a guide file when you
reiterate placement and routing for a design to which minor changes
have been made after the previous iteration.

In the Xilinx Development System, PAR places and routes a design
using a combination of two methods.

• Cost-based—This means that placement and routing are
performed using various cost tables which assign weighted
values to relevant factors such as constraints, length of
connection, and available routing resources. Cost-based
placement and cost-based routing are further described in the
“PAR Operation” section.

• Timing-Driven—The Xilinx timing analysis software enables
PAR to place and route a design based upon your timing
constraints. Timing-driven PAR is described in the “PAR and the
Timing Analysis Software” section.

Flow through the PAR module is shown in the following figure. The
figure shows a PAR run that produces a single output design file.

PAR—Place and Route

Development System Reference Guide 10-3

Figure 10-1 PAR Flow

PAR and the Timing Analysis Software
Timing-driven PAR is based upon Xilinx’s timing analysis software,
an integrated static timing analysis tool (that is, it does not depend on
input stimulus to the circuit). This means that placement and routing
are executed according to timing constraints that you specify up front
in the design process. The timing analysis software interacts with
PAR to ensure that the timing constraints you impose on the design
are met.

To use timing-driven PAR, you can specify your timing constraints in
any of these ways.

• You can enter the timing constraints as properties in a schematic
capture or HDL design entry program.

• You can write your timing constraints into a User Constraints File
(UCF). This file is processed by NGDBuild when the logical
design database is generated.

PAR

NCD

Circuit Description

(Mapped)

X7205

Guide File

Input for Re-Entrant PAR

DLY

Delay Information

PAR

PAR Report

PAD

Pin Information

NCD

Circuit Description

(Placed/Routed)

PCF

Physical Constraints

Development System Reference Guide

10-4 Xilinx Development System

• You can enter the timing constraints in the Physical Constraints
File (PCF), a file that is generated by MAP. The PCF file contains
any timing constraints specified using the two previously
described methods and any additional constraints you enter
directly in the file.

Timing-driven placement and timing-driven routing are
automatically invoked if PAR finds timing constraints in the physical
constraints file. The physical constraints file serves as input to the
timing analysis software. The timing constraints supported by the
Xilinx Development System are described in the “Using Timing
Constraints” chapter.

Note: Depending upon the types of timing constraints specified and
the values assigned to the constraints, PAR run time may be
increased.

When PAR is complete, you can verify that the design’s timing
characteristics (relative to the physical constraints file) have been met
by running TRACE (Timing Reporter and Circuit Evaluator), Xilinx’s
timing verification and reporting utility. TRACE, which is described
in detail in the “TRACE” chapter, issues an ASCII report showing
any timing warnings and errors and other information relevant to the
design.

For Release 1.5, PAR uses a new method for performing timing
analysis. Refer to the -kpaths option write-up for a discussion of the
old and new methods.

Note: If you are going to run a design without timing constraints,
better circuit performance most likely can be obtained by enabling
the Delay Based Cleanup router pass. Alternatively, consider running
timing driven PAR by supplying timing constraints with the input
design.

PAR Syntax
The following syntax places and routes your design.

par [options] infile[.ncd] outfile pcf_file[.pcf]

Options can be any number of the PAR options listed in the “PAR
Options” section. They do not need to be listed in any particular
order. Separate multiple options with spaces.

PAR—Place and Route

Development System Reference Guide 10-5

Infile is the design file you wish to place and/or route. The file must
have an .ncd extension, but you do not have to specify the .ncd
extension on the command line.

Outfile is the target design file which is written after PAR is finished.
If the command options you specify yield a single output design file,
outfile has an extension of .ncd or .dir. An .ncd extension generates an
output file in NCD format; the .dir extension directs PAR to create a
directory in which to place the output file (in NCD format). If the
command options you specify yield more than one output design file
(that is, you enter the –n option described in the “PAR Options”
section), outfile must have an extension of .dir. The multiple output
files (in NCD format) are placed in the directory with the .dir
extension.

If the file or directory you specify already exists, you get an error
message and the operation does not run. You can override this
protection and automatically overwrite existing files by using the –w
option (described in the “PAR Options” section).

Pcf_file is a physical constraints file. The file contains the constraints
you entered during design entry, constraints you added using the
UCF (User Constraints File), and constraints you added directly in
the PCF file. If you do not enter the name of a physical constraints file
on the command line and the current directory contains an existing
physical constraints file with the infile name and a .pcf extension, PAR
uses the PCF file.

PAR Files
This section describes the PAR input and output files.

Input Files
Input to PAR consists of the following files.

• NCD file—a mapped design.

• PCF file—an ASCII file containing constraints based on attributes
in the schematic or on constraints you have placed in a UCF file.
A complete list of constraints can be found in the “Attributes,
Constraints, and Carry Logic” chapter of the Libraries Guide. PAR
supports all of the timing constraints described in that chapter.

Development System Reference Guide

10-6 Xilinx Development System

• Guide NCD file—an optional template file for placing and
routing the design.

Output Files
Output from PAR consists of the following files.

• NCD file—a placed and routed design file (may contain
placement and routing information in varying degrees of
completion).

• PAR file—a PAR report including summary information of all
placement and routing iterations.

• DLY file—a file containing delay information for each net in the
design.

• PAD file—a file containing I/O pin assignments.

PAR Options
You can customize the PAR operation by specifying options when
you run PAR. You can have PAR place without routing. You can have
PAR perform a single placement, or perform a number of placements
using different cost tables. You can specify an effort level to indicate
to PAR whether the design is simple or complex. You can also specify
the maximum number of passes the router may perform and the
number and type of cleanup passes the router runs.

PAR options are entered on the command line in any order, preceded
by a hyphen (–), and separated by spaces. You must enter options in
lower case letters. For those options that require an additional
parameter, the option and the parameter must be separated by spaces
or tabs. Options that do not require an additional parameter may be
grouped together preceded by a single hyphen (for example, –rwx is
the same as –r –w –x).

Following is a description of the command line options and how they
affect the behavior of PAR. If you run PAR with illegal options or do
not specify an input file, a brief listing of the supported options and
their functions is printed on the screen. If you want to view all of the
options, type the following on the command line.

par | more

This allows you to scroll through the options.

PAR—Place and Route

Development System Reference Guide 10-7

OR

par > filename

This redirects the options to a file that you specify.

–c (Number of Cost-Based Router Cleanup Passes)
–c cost_passes

If you run both cost-based cleanup passes and delay-based cleanup
passes (see –d and –e options below), the cost-based passes run
before the delay-based passes. The valid range of cost_passes is 0–5.
The default setting for –c depends on the –rl (router effort level)
setting for the PAR run. The default is 0 for router effort level 1, 2, or 3
and 1 for router effort level 4 or 5.

Following are some strategies for using the cleanup routers (either
cost or delay based).

• On non-timing driven runs, cleanup routing can significantly
improve delays and is, in fact, mandatory for XC3000 devices.

• If cost-based cleanup does not yield the desired performance on a
non-timing driven run, running a delay-based cleanup pass may
often significantly improve circuit performance.

• For timing-driven runs, the cleanup passes can improve timing
on those elements of the design that are not covered by timing
constraints.

• Also, for designs in which normal iterative routing is not quite
making the timing goal (but is somewhat close, say 3 - 5%) a
delay-based cleanup pass can sometimes reorganize the routing
enough such that follow-up re-entrant iterative routing passes
are then able to meet timing.

Note: The -c option is not recommended for use with Virtex.The eval-
uation of this option with Virtex indicates that it creates much longer
runtimes with hardly any improvement.

Development System Reference Guide

10-8 Xilinx Development System

–d (Number of Delay-Based Router Cleanup Passes)
–d delay_passes

If you do not use the –d option, the router does not run any delay-
based cleanup passes (described in the “Routing” section). If you run
both delay-based cleanup passes and cost-based cleanup passes (see
–c option above), the cost-based passes run before the delay-based
passes. Typically, the first delay-based cleanup pass produces the
greatest improvement, with less improvement on each successive
pass. It is also possible that delay passes do not show any
improvement.

The valid range of delay_passes is 0–5, and the default is 0.

If you want to run delay-based cleanup passes only on designs that
have been routed to completion (100% routed), use the –e option
(described below) instead of the –d option.

Note: The -d option is not recommended for use with Virtex. The
evaluation of this option with Virtex indicates that it creates much
longer runtimes with little improvement.

-dfs (Thorough timing analysis of paths)
The -dfs option specifies that PAR utilize depth-first search timing
analysis, which analyzes all paths covered by timing constraints in
order to perform timing-driven place and route. This method is more
thorough than the default method (-kpaths) and may result in longer
PAR runtimes. In previous releases, the depth-first search was the
default method. See the “-kpaths (Faster Analysis of Paths)” section
for a discussion of the new connection-based method.

–e (Delay-based cleanup passes—Completely
Routed Designs)

–e number

The –e option operates in the same way as the –d option described
above, but the –d option runs on all output designs produced by the
PAR run, while the –e option only runs on those output designs
which have been routed to completion. The number of passes is 0–5,
and the default is 0.

PAR—Place and Route

Development System Reference Guide 10-9

Note: This option is not recommended for use with Virtex. The evalu-
ation of this option with Virtex indicates that it creates much longer
runtimes with little improvement.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–gf (Guide NCD File)
–gf guide_file

The –gf option specifies the name of an NCD file (from a previous
MAP or PAR run) to be used as a guide for this PAR run. The guide
file is an NCD file which is used as a template for placing and routing
the input design. For more information on the guide file, see the
“Guided PAR” section.

–gm (Guide Mode)
–gm {exact | leverage }

The –gm option specifies the form of guided placement and routing
PAR uses—exact or leveraged. The default is exact mode. For more
information on the guide modes, see the “Guided PAR” section.

You specify the NCD to use as a guide file by entering a –gf option
(see the “–gf (Guide NCD File)” section) on the PAR command line. If
you do not specify a guide file, PAR is guided by the placement and
routing information in the input NCD file. The “Guided PAR” section
describes how PAR operates if no guide file is specified.

–i (Number of Router Iterations)
–i route_passes

Run a maximum number of passes of the router, stopping earlier only
if the routing goes to 100% completion and all constraints are met.
Each pass is a single attempt to route a placement to completion, and
the screen displays a message for each pass.

Development System Reference Guide

10-10 Xilinx Development System

The valid range of route_passes is 0–2000. If you do not use the –i
option, the router runs until it either routes to 100% completion and
meets its timing constraints or intelligently determines it will not
succeed.

-k (Re-Entrant Routing)
The –k option runs re-entrant (also called incremental) routing. Re-
entrant routing skips placement and routes the design. Routing
begins with the existing placement and routing left in place. Re-
entrant routing is useful if you wish to manually route parts of the
design and then continue automatic routing, if you halted the route
prematurely (for example, with a Control-C) and wish to resume, or if
you wish to run additional route or delay reduction passes.

-kpaths (Faster Analysis of Paths)
The non-enumerative connection-based method (the new default
method) has a runtime proportional to the size of the design, unlike
the DFS method, which has a runtime proportional to the number of
paths in the design.

There are two significant differences between the connection-based
method and the DFS method.

• The DFS method analyzes all paths except those that actually
contain a circuit loop, including paths that contain connections
that causes a circuit loop for other paths in the circuit. The
connection-based method may not analyze these paths
depending on circuit topology. Consider the following example
circuit.

PAR—Place and Route

Development System Reference Guide 10-11

Figure 10-2 Circuit Loops

The DFS method traces the path from IN, through A, through the
signal LOOP, back to the left-most logic block and to the signal
OUT. The new connection-based method may not trace this path
because a combinatorial loop exists at the output of A.

• The DFS method removes false paths from a design that requires
contending tristate enable signals. The connection-based method
does not perform this optimization which means that it may
analyze some paths that are statically false based on tristate
enable signals. Consider the following circuit.

Figure 10-3 Tristate Buffer Paths

IN

A

OUT

B
LOOP

X8725

A1

A

B1

B

A2

A

B2

B

X8724

Development System Reference Guide

10-12 Xilinx Development System

A signal can pass through four paths in the preceding circuit but two
of the paths are false (A1 to B2 and B1 to A2). In order for a signal to
pass through the upper left tristate buffer A1, the enable signal A
must be true. In order to prevent a bus contention on the A1 output,
the enable signal B must be false. Since buffer B2 is also controlled by
the enable signal B, the path through A1 cannot pass through B2
(because when A is enabled, B is disabled). The converse is also true,
if B is enabled, the only valid path is from B1 to B2.

In the example circuit, the DFS method only considers true paths. The
connection-based will trace the false paths and the true paths.

–l (Overall Effort Level)
–l effort_level

The –l option is identical to the –ol option. See the “–ol (Overall Effort
Level)” section.

–m (Multi-Tasking Mode)
–m nodefile_name

The –m option allows you to assign PAR multi-run jobs (specified
with the –n option) to a group of nodes. See the “Turns Engine (PAR
Multi-Tasking Option)” section.

–n (Number of Iterations)
–n iterations

The –n option determines the number of iterations (place and route
passes) performed at the effort level specified by the –l option.

Each iteration uses a different cost table when the design is placed
and produces a different NCD file. If you enter -n 0 , the software
continues to place and route, stopping either after the design is fully
routed or after completing the iteration at cost table 100 and meeting
all timing constraints. If you don’t specify the –n option, one place
and route iteration runs.

If you specify a –t option, the iterations begin at the cost table
specified by –t.

The valid range of iterations is 0–100, and the default is 1.

PAR—Place and Route

Development System Reference Guide 10-13

–ol (Overall Effort Level)
–ol effort_level

The –ol option sets the overall PAR effort level. The effort level
specifies the level of effort PAR uses to place and route your design to
completion and achieve your timing constraints.

There are five values for effort_level. Level 1 is the lowest level, and
corresponds to the least complex design. Level 5 would be used on
the most complex design. The level is not an absolute; it shows
instead relative effort. After you use PAR for a while, you will be
better able to estimate whether a design is simple or complex.

If you place and route a simple design at a complex level, the design
is placed and routed properly, but the process takes more time than
placing and routing at a simpler level. If you place and route a
complex design at a simple level, the design may not route to
completion or may route less completely (or with worse delay
characteristics) than at a more complex level.

The effort_level range is 1–5, and the default level is 2.

The –ol level sets an effort level for placement and another effort level
for routing. These levels also have a range of 1–5. The placement and
routing levels set at a given –ol level depend on the device family in
the NCD file. You can determine the default placer and router effort
levels for a device family by reading the PAR Report file produced by
your PAR run.

You can override the placer level set by the –ol option by entering a
–pl (Placer Effort Level) option, and you can override the router level
by entering a –rl (Router Effort Level) option.

–p (No placement)
The –p option bypasses both constructive and optimizing placement
(described in the “Placement” section). When you use this option,
existing routes are ripped up before routing begins. You can,
however, leave the existing routing in place if you use the –k option
instead of the –p option.

Development System Reference Guide

10-14 Xilinx Development System

–pl (Placer Effort Level)
–pl placer_effort_level

The –pl option sets the placer effort level. The effort level specifies the
level of effort used when placing the design. Level 1 is the lowest
level, and corresponds to the least complex design. Level 5 would be
used on the most complex design. For a description of effort level, see
the “–ol (Overall Effort Level)” section.

The placer_effort_level range is 1–5, and the default level set if you do
not enter a –pl option is determined by the setting of the –ol option.
This default varies depending on the device family in the input NCD
file. You can determine the default placer effort level for a given –ol
level and device family by reading the PAR Report file produced by
your PAR run.

–r (No Routing)
Do not route the design.

–rl (Router Effort Level)
–rl router_effort_level

The –rl option sets the router effort level. The effort level specifies the
level of effort used when routing the design. Level 1 is the lowest
level and corresponds to the least complex design. Level 5 would be
used on the most complex design. For a description of effort level, see
the “–ol (Overall Effort Level)” section.

The router_effort_level range is 1–5, and the default level set if you do
not enter a –rl option is determined by the setting of the –ol option.
This default varies depending on the device family in the input NCD
file. You can determine the default router effort level for a given –ol
level and device family by reading the PAR Report file produced by
your PAR run.

–s (Number of Results to Save)
–s number_to_save

The –s option saves only the number of results you specify. If you do
not use the –s option, all results are saved.

PAR—Place and Route

Development System Reference Guide 10-15

The –s option does not care how many iterations you performed or
how many effort levels were used. It compares every result to every
other result and leaves you with the best number of NCD files. The
best outputs are determined by a score assigned to each output
design. This score takes into account such factors as the number of
unrouted nets, the delays on nets and conformance to your timing
constraints. The lower the score, the better the design. This score is
described in the “Scoring the Routed Design” section.

The valid range for number_to_save is 0–100, and the default –s setting
(no –s option specified) saves all results.

–t (Starting Placer Cost Table)
–t placer_cost_table

The –t option specifies the cost table at which the placer starts (placer
cost tables are described in the “Placement” section). If you do not
specify the –t option, the PAR software starts at placer cost table 1. If
cost table 100 is reached, placement does not begin at 1 again, even if
command options specify that more placements should be
performed. Cost tables are not an ordered set. There is no correlation
between a cost table’s number and its relative value.

The placer_cost_table range is 1–100, and the default is 1.

–ub (Use Bonded I/Os)
If you do not specify the –ub option, I/O logic that MAP has
identified as internal can only be placed in unbonded I/O sites.

If the –ub option is specified, PAR can place this internal I/O logic
into bonded I/O sites in which the I/O pad is not used. The option
also allows PAR to route through bonded I/O sites.

If you use the –ub option, you must make sure this logic is not placed
in bonded sites connected to external signals, power, or ground. You
can prevent this condition by placing PROHIBIT constraints on the
appropriate bonded I/O sites.

–w (Overwrite Existing Files)
If the specified output file already exists, overwrite the existing file
(including the input file).

Development System Reference Guide

10-16 Xilinx Development System

If the specified output is a directory, overwrite files in the directory.
With this option, any PAR, PAD, and DLY files generated overwrite
existing PAR, PAD, and DLY files.

–x (Ignore Timing Constraints)
If you do not specify the –x option, the PAR software automatically
runs a timing-driven PAR run if any timing constraints are found in
the physical constraints file. If you do specify –x, timing-driven PAR
is not invoked in any case.

The –x option might be used if you have timing constraints specified
in your physical constraints file, but you want to execute a quick PAR
run without using the timing-driven PAR feature, to give you a rough
idea of how difficult the design is to place and route.

Summary of PAR Options
Options, default values, and ranges are summarized below.

Option Default Setting Range

–c number 0 (No cost-based router cleanup pass)
for –rl (router effort level) setting of 1,
2, or 3.

1 (One cost-based router cleanup pass)
for –rl (router effort level) setting of 4
or 5.

0–5

–d number 0 (No delay-based router cleanup
passes)

0–5

–dfs Run connection- based method
(No –dfs, -kpaths is the default)

N/A

–e number 0 (No delay-based router cleanup
passes on completely routed designs)

0–5

–gf No guide file N/A

–gm [leverage | exact] Exact N/A

–i number Run until completion or until router
decides it can not complete

0–2000

–k Run placement (Do not run re-entrant
routing)

N/A

PAR—Place and Route

Development System Reference Guide 10-17

PAR Operation
The following sections describe how placement and routing are
performed by PAR.

Placement
The PAR module places in two stages: a constructive placement and
an optimizing placement. PAR writes the NCD file after constructive
placement and modifies the NCD after optimizing placement.

During constructive placement, PAR places components into sites
based on factors such as constraints specified in the input file (for
example, certain components must be in certain locations), the length
of connections, and the available routing resources. This placement
also takes into account “cost tables”, which assign weighted values to
each of the relevant factors. There are 100 possible cost tables.
Constructive placement continues until all components are placed.
PAR writes the NCD file after constructive placement.

-kpaths Run connection-based method
(-kpaths is the default)

N/A

–l number 2 (Overall effort level 2) 1–5

–m nodefile_name Do not run the Turns Engine N/A

–n number 1 (One place and route iteration) 0–100

–ol number 2 (Overall effort level 2) 1–5

–p Run placement N/A

–pl number Determined by –ol setting 1–5

–r Run router N/A

–rl number Determined by –ol setting 1–5

–s number Save all 1–100

–t number 1 (Start placer at cost table 1) 1–100

–ub Do not use bonded I/Os N/A

–w Do not overwrite N/A

–x Use timing constraints in PCF file N/A

Option Default Setting Range

Development System Reference Guide

10-18 Xilinx Development System

The optimizing placement is a fine tuning of the results of the
constructive placement. Optimizing is run only at specific levels, and
the number of passes may vary. PAR rewrites the NCD file after opti-
mizing placement.

Timing-driven placement is automatically invoked if PAR finds
timing constraints in the physical constraints file.

Routing
Routing is done in two stages: constructive routing and cleanup. PAR
writes the NCD file after every 60 minutes of routing, and it only
writes out a new NCD file if the design quality improves.

During constructive routing, the router performs an iterative
procedure to converge on a solution that accomplishes these goals.

• Routing the design to completion.

• Meeting your timing constraints.

If both of these goals cannot be met, the first is considered more
important; that is, PAR tries to route to completion even if your
timing constraints are not met.

During cleanup routing, the router takes the result of constructive
routing and reroutes some connections to accomplish these goals.

• Minimizing the delays on all nets.

• Decreasing the number of routing resources used.

If both of these goals cannot be met, the first is considered more
important; that is, PAR tries to route to minimize delays in preference
to decreasing the number of routing resources used.

There are two types of cleanup routing you can perform—a faster
cost-based cleanup routing and a more intensive delay-based cleanup
routing. Cost-based cleanup runs much faster than delay-based
cleanup, but delay-base cleanup usually produces a result that has
faster in-circuit performance.

Timing-driven routing is automatically invoked if PAR finds timing
constraints in the physical constraints file.

PAR—Place and Route

Development System Reference Guide 10-19

Note: To achieve your timing constraints while routing an XC4000E/
L/EX/XL design, PAR may add an additional pullup to a net at the
output of a TBUF. PAR adds this pullup to the longline on which the
net is routed. The pullup is added if the net contains a single pullup
and the design has been completely routed, but the net containing the
pullup has one or more timing errors.

Guided PAR
An optional guide design file can be fed into PAR. The guide file is an
NCD file which is used as a template for placing and routing the
input design. This is useful if minor incremental changes have been
made to create a new design. To increase productivity, you can use
your last design iteration as a guide design for the next design
iteration, that is, your output NCD file becomes the guide design file
for your next iteration of the design (see the following figure).

Figure 10-4 Guided PAR

Two command line options control guided PAR. The –gf option
specifies the NCD guide file, and the –gm option determines whether
exact mode or leveraged mode is used to guide PAR.

The guide design is used as follows.

PAR

NCD

Input Design

NCD

Placed and Routed

 Design

NCD

Modified Input Design

NCD

Guide File

PAR

X7202

First PAR Run Second PAR Run

NCD

New Placed and Routed

 Design

Development System Reference Guide

10-20 Xilinx Development System

• If a component in the new design has the same name as a
component in the guide, it is placed where it was in the guide
design.

• If an unnamed component in the new design is of the same type
as an unnamed component in the guide design, and the two
components have identical signals attached to them, the
component is placed where the matching component was placed
in the guide design.

• If the signals attached to a component in the new design match
the signals attached to the component in the guide design, the
pins are swapped to match the guide design, if possible.

• If the signal names in the input design match the guide, and have
the same sources and loads, the routing information from the
guide design is copied to the new design.

When PAR runs using a guide design as input, PAR first places and
routes any components and signals that fulfill the matching criteria
described above. Then PAR places and routes the remainder of the
logic.

To place and route the remainder of the logic, PAR does the
following.

• If you have selected exact guided PAR (by entering the –gm
exact option on the PAR command line), the placement and
routing of the matching logic are locked. Neither placement nor
routing can be changed to accommodate the additional logic.

• If you have selected leveraged guided PAR (by entering the –gm
leverage option on the PAR command line), PAR tries to
maintain the placement and routing of the matching logic, but
changes placement or routing if it is necessary in order to place
and route to completion and achieve your timing constraints (if
possible).

Some cases where the leveraged mode is necessary are

• You have added logic that makes it impossible to meet your
timing constraints without changing the placement and
routing in the guide design.

• You have added logic that demands a certain site or certain
routing resource, and that site or routing resource is already
being used in the guide design.

PAR—Place and Route

Development System Reference Guide 10-21

As one example of this condition, in XC4000EX devices
TBUFs must be routed along long lines. If you add TBUFs to
an XC4000EX design but your guide design uses too many of
the required long lines, you are not able to route this design
to completion unless you use the leveraged option.

If you enter a –gm (guide mode) option but do not specify a guide file
with the –gf option, PAR is guided by the placement and routing
information in the input NCD file. Depending on whether you
specify exact mode or leveraged mode, PAR locks the input NCD’s
existing placement and routing (exact mode), or tries to maintain the
placement and routing, but modifies them in an effort to place and
route to completion and achieve your timing constraints (leveraged
mode).

Note: For Verilog or VHDL netlist input designs, re-synthesizing
modules typically cause signal and instance names in the resulting
netlist to be significantly different from the netlist obtained in earlier
synthesis runs. This occurs even if the source level Verilog or VHDL
code only contains a small change. Because guided PAR depends on
signal and component names, synthesis designs often have a low
"match rate" when guided. Therefore, guided PAR is not recom-
mended for most synthesis-based designs, although there may be
cases where it could be a successful alternative technique.

Output from PAR
The output of PAR is a placed and routed NCD file (the output design
file). In addition to the output design file, a PAR run generates a
report file with a .par extension, a delay file with a .dly extension, and
a pinout file with a .pad extension. The PAR file contains execution
information about the place and route job as well as all constraint
messages. The DLY file contains delay information about the routed
nets in the design. The PAD file lists IOBs (Input/Output Blocks) on
the chip and the primary pins associated with the IOBs.

If the options that you specify when running PAR are options that
produce a single output design file, your output is the output design
file, a PAR file, a DLY file, and a PAD file. The PAR file, the DLY file,
and the PAD file all have the same root name as the output design
file.

Development System Reference Guide

10-22 Xilinx Development System

If you run multiple iterations of placement and routing, you produce
an output design file, a PAR file, a DLY file, and a PAD file for each
iteration. Consequently, when you run multiple iterations you have
to specify a directory in which to place these files.

As the command is performed, PAR records a summary of all
placement and routing iterations in one PAR file at the same level as
the directory you specified, then places the output files (in NCD
format) in the specified directory. Also, a PAR file, a DLY file, and a
PAD file are created for each NCD file, describing in detail each
individual iteration.

For example, suppose you have a directory named design with a
design file called address.ncd, as shown in the following figure.

Suppose you run three iterations of place and route, using a different
cost table entry each time (cost tables are explained in the
“Placement” section) and specify that the resulting output be put into
a directory called output.dir. The actual command would be

par –n 3 -l 1 address.ncd output.dir

–n 3 is the number of iterations you want to run, –l 1 sets the place-
ment effort level, address.ncd is your input design file, and
output.dir is the name of the directory in which you want to place
the results of the PAR run.

The files resulting from the command are shown in the following
figure.

X7231

design

address.ncd

PAR—Place and Route

Development System Reference Guide 10-23

The naming convention for the files, which may contain placement
and routing information in varying degrees of completion, is
placer_level_router_level_table.file_extension.

In the sample above, the effort level and cost table entries start at 1
(the default value). The PAR, DLY, and PAD files are described in the
following sections. When you run multiple iterations, you get a
summary PAR report file like the one shown below.

Note: The PAR Report is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.

PAR: Xilinx Place And Route M1.5.13.

Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.

Tue Apr 28 10:57:28 1998

par -ol 3 -n 5 -i 20 main_pcb.ncd routed main_pcb.pcf

Constraints file: main_pcb.pcf

Level/ Design Timing Number Run NCD
Cost [ncd] Score Score Unrouted Time Status
---------- ------ -------- -------- ----- ------------
3_3_3 * 737 0 0 04:55 Complete
3_3_5 * 748 0 0 05:13 Complete
3_3_4 * 756 0 0 05:12 Complete
3_3_1 * 773 0 0 06:00 Complete
3_3_2 * 816 0 0 05:22 Complete

* : Design saved.

PAR done.

X7232

design

output.dir

1_1_1.ncd

output.par

1_1_1.dly 1_1_1.pad 1_1_1.par

address.ncd

1_1_2.ncd 1_1_3.ncd 1_1_3.dly 1_1_3.pad 1_1_3.par1_1_2.dly 1_1_2.pad 1_1_2.par

Development System Reference Guide

10-24 Xilinx Development System

At the top of the summary PAR file is information regarding the
software level, copyright information, and the date and time of the
run. Directly below that is the command line used to run PAR,
followed by the name of any physical constraints file used.

The body of the report consists of the following columns.

Level/Cost [ncd] —indicates the effort level (1–5) at which PAR is
run. In the sample above, 3_3_4 indicates placer level 3, router level 3,
and the fourth cost table used.

Design Score —see “The Place and Route (PAR) Report File”
section.

Timing Score —see “The Place and Route (PAR) Report File”
section.

Number Unrouted —indicates the number of unrouted nets in the
design.

Run Time —the time required to complete the job in minutes and
seconds.

NCD Status —describes the state of the output NCD file generated
by the PAR run. Possible values for this column are

• Complete —an NCD file has been generated by a full PAR run.

• ^C Checkpoint —initiated by the user, the PAR run was stopped
at one of the PAR checkpoints. PAR produced an NCD file, but all
iterations may not have been completed.

• Checkpoint —the PAR run was stopped at one of the PAR
checkpoints, not because of user intervention but because of
some unknown reason.

• No NCD—the PAR job was stopped prematurely and the NCD file
was not checkpointed.

The Place and Route (PAR) Report File
The place and route (PAR) report file contains execution information
about the PAR command run. The file shows the steps taken as the
program converges on a placement and routing solution. A sample
PAR file is shown following.

PAR—Place and Route

Development System Reference Guide 10-25

Note: The PAR Report is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.

PAR: Xilinx Place And Route M1.5.15.
Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.

Tue Apr 28 12:05:37 1998

Constraints file: timing.pcf

Loading device database for application par from file "x403-001.ncd".
"x403-001" is an NCD, version 2.27,device xc4028ex,package hq208, speed -3
Loading device for application par from file '4028ex.nph' in environment
/build/bcxfndry/rtf/x1_5.13.Device speed data version: x1_0.26 1.8

Device utilization summary:

 Number of External IOBs 60 out of 160 37%
 Flops: 32
 Latches: 0
 Number of Global Buffer IOBs 4 out of 8 50%
 Flops: 0
 Latches: 0
 Number of CLBs 94 out of 1024 9%
 Total Latches: 0 out of 2048 0%
 Total CLB Flops: 105 out of 2048 5%
 4 input LUTs: 136 out of 2048 6%
 3 input LUTs: 42 out of 1024 4%

 Number of BUFGLSs 4 out of 8 50%
 Number of TBUFs 54 out of 2176 2%

Overall effort level (-ol): 2 (default)
Placer effort level (-pl): 2 (default)
Placer cost table entry (-t): 1
Router effort level (-rl): 2 (default)
Timing method (-kpaths|-dfs): -kpaths (default)

Starting initial Timing Analysis. REAL time: 47 secs
Finished initial Timing Analysis. REAL time: 1 mins 21 secs

Starting initial Placement phase. REAL time: 1 mins 21 secs
Finished initial Placement phase. REAL time: 1 mins 36 secs

Starting Constructive Placer. REAL time: 1 mins 43 secs
Placer score = 575479
Placer score = 362356

Development System Reference Guide

10-26 Xilinx Development System

Placer score = 279001
.

 .

 .

Placer score = 57390
Placer score = 56110
Finished Constructive Placer. REAL time: 5 mins 15 secs

Writing design to file "routed.ncd".

Starting Optimizing Placer. REAL time: 5 mins 16 secs
Optimizing
Swapped 83 comps.
Xilinx Placer [1] 49960 REAL time: 6 mins 9 secs

Finished Optimizing Placer. REAL time: 6 mins 9 secs

Writing design to file "routed.ncd".

Total REAL time to Placer completion: 6 mins 11 secs
Total CPU time to Placer completion: 3 mins 1 secs

0 connection(s) routed; 836 unrouted active, 2 unrouted PWR/GND.
Starting router resource preassignment
Completed router resource preassignment. REAL time: 6 mins 19 secs
Starting iterative routing.
Routing active signals
End of iteration 1
836 successful; 0 unrouted active,
 2 unrouted PWR/GND; (0) REAL time: 7 mins 14 secs
End of iteration 2
836 successful; 0 unrouted active,
 2 unrouted PWR/GND; (0) REAL time: 7 mins 20 secs
Constraints are met.
Routing PWR/GND nets.
Power and ground nets completely routed.
Writing design to file "routed.ncd".
Starting cleanup
Improving routing.
End of cleanup iteration 1
838 successful; 0 unrouted; (0) REAL time: 10 mins 46 secs
Writing design to file "routed.ncd".
Total REAL time: 10 mins 47 secs
Total CPU time: 5 mins 21 secs
End of route. 838 routed (100.00%); 0 unrouted.
No errors found.
Completely routed.

PAR—Place and Route

Development System Reference Guide 10-27

Total REAL time to Router completion: 10 mins 51 secs
Total CPU time to Router completion: 5 mins 23 secs

Generating PAR statistics.

 The Delay Summary Report

 The Score for this design is: 673

The Number of signals not completely routed for this design is: 0

 The Average Connection Delay for this design is: 3.890 ns
 The Average Connection Delay on critical nets is: 0.000 ns
 The Average Clock Skew for this design is: 1.173 ns
 The Maximum Pin Delay is: 22.769 ns
 The Average Connection Delay on the 10 Worst Nets is: 14.210 ns

 Listing Pin Delays by value: (ns)

 d <= 10 < d <= 20 < d <= 30 < d <= 40 < d <= 50 d > 50
 --------- --------- --------- --------- --------- ---------
 750 39 4 0 0 0

Timing Score: 0

 Constraint | Requested | Actual | Logic
 | | | Levels

 NET "CTLR/2SCLK" PERIOD = 43.000000 nS | 43.000ns | 32.913ns | 2

 NET "CTLR/SCLK" PERIOD = 45.000000 nS | 45.000ns | 30.140ns | 2

All constraints were met.
Writing design to file "routed.ncd".

All signals are completely routed.

Total REAL time to PAR completion: 11 mins 1 secs
Total CPU time to PAR completion: 5 mins 29 secs

PAR done.

Sometimes the design is completely routed, but the router continues
to route in the attempt to meet timing constraints.

Development System Reference Guide

10-28 Xilinx Development System

Note that in the sample PAR file above, in the “starting iterative
routing” section, after the end of iteration 1, there is a figure in
parentheses (0). This represents the timing score for the design (not to
be confused with the PAR score) at the end of the particular iteration.
This figure appears in the PAR file only when timing constraints have
been specified in a PCF file. When the timing score is 0 (as it is in this
example after iteration 1), this means that all timing constraints have
been met. This score (0) also appears at the end of the delay report
section of the PAR file.

The timing score at the end of the “starting iterative routing” section
may not agree with the timing score in the Delay Summary Report.
This can occur if a MAXSKEW constraint is scored and not met.

Had the design been completely routed but failed to meet all timing
constraints, the score would have been a figure other than 0. A non-
zero number would appear at the end of the delay report section.
This tells you immediately whether your timing constraints have
been met. It is possible that the timing score shown in parentheses at
the top of the file may be different from the one shown in the delay
summary section of the file. The score shown in the delay summary
section is always the correct one.

The last section of the PAR file contains a summary of the delay
information for the routed design. The DLY (delay) file produced by
the PAR run contains more detailed timing information. The DLY file
is discussed in the following section.

If you specify a command option that produces multiple output
design files, there is a PAR file indicating all of the place and route
iterations performed, and individual PAR files describing placement
and routing for each design file produced.

Note: In PAR reporting, a tilde (~) preceding a delay value indicates
that the delay value is approximate. Values with the tilde cannot be
calculated exactly because of excessive delays, resistance, or
capacitance on the net. You can use the PENALIZE TILDE constraint
to penalize these delays by a specified percentage (see the “TRACE”
chapter and the “Attributes, Constraints, and Carry Logic” chapter of
the Libraries Guide for a description of the PENALIZE TILDE
constraint).

Some notes about the entries in the PAR file.

PAR—Place and Route

Development System Reference Guide 10-29

• The Placer score is a rating of the relative “cost” of a placement. A
lower score indicates a better (that is, less “costly”) placement.

• In the Delay Summary Report section of the PAR report file
where average delays are listed (beginning with THE AVERAGE
CONNECTION DELAY for this design), there are two columns of
figures. The first column gives the actual averages for the design.
The figures in the second column, which are enclosed by
parentheses, indicate the averages after the imposition of a tilde
penalty.

• The Score For This Design is a rating of the routed design. The
score is discussed in the “Scoring the Routed Design” section.

• Timing score is always 0 (zero) if all timing constraints have been
met. If not, the figure is other than 0.

For the Virtex devices, if more than one SelectIO standard is used, an
additional section on Select IO utilization and usage summary is
added to the PAR file. This section shows details for the different IO
banks. It shows the IO standard, the output reference voltage
(VCCO)] for the bank, the input reference voltage (VREF) for the
bank, the PAD and Pin names. In addition, the section gives a
summary for each bank with the number of pads being used, the
voltages of the VREFs, and the VCCOs. A sample Select IO utilization
and Usage Summary of the PAR file follows.

Select IO Utilization and Usage Summary

NR - means Not Required.
Each Group of a specific Standard is listed.

IO standard (LVTTL Vref=NR Vcco=3.30) occupies 45 pads.

IO standard (CTT Vref=1.50 Vcco=3.30) occupies 8 pads.

IO standard (SSTL3_I Vref=0.90 Vcco=3.30) occupies 12 pads.

Bank Summary

NR - means Not Required
Bank 0 has 20 pads and is 80% utilized.
Vref should be set to NR volts.
Vcco should be set to 3.30 volts.

Development System Reference Guide

10-30 Xilinx Development System

 Name IO Select Std Vref Vcco Pad Pin
 ---- -- ---------- ------ ------ ------ ------
 bidir<7> IO LVTTL NR 3.30 PAD2 P238
 bidir<6> IO LVTTL NR 3.30 PAD3 P237
 bidir<3> IO LVTTL NR 3.30 PAD8 P231
 bidir<1> IO LVTTL NR 3.30 PAD10 P230
 b<10> I LVTTL NR PAD11 P229
 .
 .
 .
 b<7> I LVTTL NR PAD17 P221
 a<10> I LVTTL NR PAD18 P220

Bank 1 has 22 pads and is 13% utilized.
Vref should be set to NR volts.

 Name IO Select Std Vref Vcco Pad Pin
 ---- -- ---------- ------ ------ ------ ------
 .
 .
 .
Bank 7 has 21 pads and is 38% utilized.
Vref should be set to 0.90 volts.
Vref sites in this bank cannot be used for user IOBs.
Vcco should be set to 3.30 volts.

 Name IO Select Std Vref Vcco Pad Pin
 ---- -- ---------- ------ ------ ------ ------
 bidir<11> IO SSTL3_I 0.90 3.30 PAD169 P28
 bidir<8> IO SSTL3_I 0.90 3.30 PAD170 P27
 bidir<9> IO SSTL3_I 0.90 3.30 PAD172 P25
 bidir<10> IO SSTL3_I 0.90 3.30 PAD173 P24
 c<9> O CTT 3.30 PAD181 P13
 c<10> O CTT 3.30 PAD187 P7
 c<7> O LVTTL 3.30 PAD190 P4
 c<8> O CTT 3.30 PAD191 P3

Total REAL time to Placer completion: 40 secs
Total CPU time to Placer completion: 31 secs

The Delay (DLY) File
The delay file is output by each PAR run and is placed in the
directory with the NCD output of the design file and the PAR file.
The delay file contains delay information for each net in the design
and includes

PAR—Place and Route

Development System Reference Guide 10-31

• A listing of the 20 nets with the longest delays., In a DLY file,
maximum delays are preceded by a tilde, indicating that the
delay shown is only approximate. Following each tilde delay is a
figure in parentheses. This figure represents the approximate
delay with a certain percentage automatically added to it (a
“worst case” situation) when specified by the user in the physical
constraints (PCF) file. When the Xilinx Development System’s
timing analysis software looks at the delays, it uses the value in
parentheses rather than the approximate value represented by
the tilde. For more information on the PENALIZE TILDE
constraint, see the “TRACE” chapter in this manual and the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide.

• A delay analysis for each net, including the net name, followed
by the driver pin and the load pin(s).

The following is a portion of a delay file. If this were a complete file, it
would show the load delays for all nets in the design.

Note: The Delay Report is formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
report uses a proportional font, the columns in the report do not line
up correctly.

File: routed.dly

 The 20 Worst Net Delays are:

| Max Delay (ns) | Netname |

 22.769 CTLR/VID/MUX/RHORZ
19.962 CTLR/VID/MUX/RVERT
18.060 CTLR/VID/S3
15.488 CTLR/VID/VA6
15.009 CTLR/VID/MUX/AVERT
13.171 CTLR/VID/MUX/AHORZ
12.829 CTLR/VID/VA1
12.829 CTLR/VID/VA3
12.641 CTLR/VID/VA7
12.629 CTLR/VID/VA8
11.315 CTLR/VID/VA4

Development System Reference Guide

10-32 Xilinx Development System

11.315 CTLR/VID/VA2
10.881 CTLR/PA9
10.486 CTLR/VID/VA0
10.197 CTLR/VID/VA5

9.541 CTLR/PA11
9.306 CTLR/PA13
9.180 CTLR/VISC/VCS_ACK
8.981 CTLR/ODM/EF7
8.941 CTLR/SCLK

--
Net Delays

2SCLK_I
 2SCLK_I.CLKIN
 0.100 CTLR/$1I293.I

ALE_I
 ALE_I.CLKIN
 0.100 CTLR/VISC/$1I354.I

CTLR/2SCLK
 CTLR/$1I293.O
 5.424 CTLR/ODM/FIFOCTRL/READ.F2
 4.920 CTLR/ODM/FIFOCTRL/NS_FBYT_CE.K
 4.902 CTLR/ODM/SE_FGEN/SEA2.K
 4.913 CTLR/PA19.K
 4.911 CTLR/PA18.K
 .
 .
 .

The PAD File
The PAD file contains a listing of all IOBs used in the design and their
associated pads. The file specifies connections to device pins (with a P
prefix).

The PAD file is divided into three sections.

• The first section lists the component name in the first column.
The second column of this section lists the designations of the
device pins.

PAR—Place and Route

Development System Reference Guide 10-33

• The second section lists the pin number in the first column, the
component name in the second column, and any constraints
assigned to the component in the third column.

• The third section lists the pinouts in the form of constraints.
These constraints can be cut and pasted into a PCF file as
constraints for later PAR runs.

A sample PAD file is shown following.

Note: The PAD Report is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.

PAR: Xilinx Place And Route M1.5
Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.
Thu Apr 16 15:21:43 1998

Xilinx PAD Specification File

Input file: x403-001.ncd
Output file: routed.ncd
Part type: xc4028ex
Speed grade: -3
Package: hq208

Tue Apr 28 12:16:35 1998

Pinout by Pin Name:

+--+-----------+----------+
| Pin Name | Direction | Pin Number |
+--+-----------+----------+
2SCLK_I	INPUT	P47
A2I	INPUT	P31
A3I	INPUT	P29

. .

Development System Reference Guide

10-34 Xilinx Development System

 . .
 . .
| VIDCS_I- | INPUT | P174 |

| VOC_O | OUTPUT | P195 |

| WR_I- | INPUT | P149 |

+--+-----------+----------+
| Dedicated or Special Pin Name | Pin Number |
+--+----------+
/PROGRAM	P108
CCLK	P153
DONE	P103
GND	P101
 . .
 . .
 . .

VCC	P55
VCC	P26
VCC	P183
+--+----------+

Pinout by Pin Number:
+--------------+-----------------------------------+-----------+--------+
| Pin Number | Pin Name | Direction | Constraint |
+--------------+-----------------------------------+-----------+--------+
P1	N.C.		
P2	GND		
P3	N.C.		
P4	SCLK_I	INPUT	
. .			
. .			
. .			
P204	SYSCLK_I	INPUT	
P205	VCC		
P206	N.C.		
P207	N.C.		
P208	N.C.		
+--------------+-----------------------------------+-----------+--------+

#
Pinout constraints listing
These constraints are in PCF grammar format
and may be cut and pasted into the PCF file
after the "SCHEMATIC END ;" statement to

PAR—Place and Route

Development System Reference Guide 10-35

preserve this pinout for future design iterations.
#

COMP "2SCLK_I" LOCATE = SITE "P47" ;
COMP "A2I" LOCATE = SITE "P31" ;
COMP "A3I" LOCATE = SITE "P29" ;

.
 .
 .

COMP "VERT_O-" LOCATE = SITE "P178" ;
COMP "VIDCS_I-" LOCATE = SITE "P174" ;
COMP "VOC_O" LOCATE = SITE "P195" ;
COMP "WR_I-" LOCATE = SITE "P149" ;

For the Virtex devices, when SelectIOs are used, the PAD file also
contains details of the pads that must be used for the input reference
voltage (VREF), and those that must be used for the output reference
voltage (VCCO). For the VREF pads, their location and the value of
the input reference voltage is shown. A sample Virtex PAD file
follows.

PAR: Xilinx Place And Route M1.5.13.
Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.
Wed May 6 10:15:49 1998

Xilinx PAD Specification File

Input file: virtex_test.ncd
Output file: virtex_test.out.ncd
Part type: xcv50
Speed grade: -5
Package: pq240

Wed May 6 10:15:49 1998

Pinout by Pin Name:
+--+-----------+----------+
| Pin Name | Direction | Pin Number |
+--+-----------+----------+
a<0>	INPUT	P97
a<1>	INPUT	P99
a<2>	INPUT	P103
a<3>	INPUT	P113

Development System Reference Guide

10-36 Xilinx Development System

 .
 .
 .
+--+-----------+----------+
| Dedicated or Special Pin Name | Pin Number |
+--+----------+
CCLK	P179
DONE	P120
GND	P14
 .
 .
 .
VCCO	P197
VCCO	P105
VREF (0.90V)	P9
VREF (0.90V)	P70
VREF (0.90V)	P84
VREF (1.50V)	P36
VREF (1.50V)	P50
+--+----------+	
Pinout by Pin Number:	
+--------------+-----------------------------------+-----------+--------+	
Pin Number	Pin Name
+--------------+-----------------------------------+-----------+--------+	
P1	GND
P2	TMS
 .
 .
 .
P9	VREF (0.90V)		
P36	VREF (1.50V)		
P61	VCCO		
+--------------+-----------------------------------+-----------+--------+
#
Pinout constraints listing
These constraints are in PCF grammar format
and may be cut and pasted into the PCF file
after the "SCHEMATIC END ;" statement to
preserve this pinout for future design iterations.
#
 .
 .
 .

PAR—Place and Route

Development System Reference Guide 10-37

Scoring the Routed Design
The SCORE FOR THIS DESIGN is a rating of the routed design. The
PAR file (a portion of which is shown below) shows the total score as
well as the individual factors making up the score. The score takes
the following factors into account (weighted by their relative
importance).

• The number of unrouted nets (unr)

• The number of timing constraints not met (ncst)

• The amount (expressed in ns) that the timing constraints were
not met (acst)

• Maximum delay on a net with a weight greater than 3

• Net weights or priorities

• The average of all of the maximum delays on all nets (av)

• The average of the maximum delays for the ten highest delay
nets (10w)

The lower the score, the better the result.

The formula that produces the score is

5000*unr + 1000*ncst + 20*acst + (delay*weight)*0.2 + av*100 +
10w*20

The score in the PAR Report is shown following.

Note: The PAR file is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.

The Delay Summary Report

 The Score for this design is: 673

The Number of signals not completely routed for this design is: 0

 The Average Connection Delay for this design is: 3.890 ns
 The Average Connection Delay on critical nets is: 0.000 ns
 The Average Clock Skew for this design is: 1.173 ns
 The Maximum Pin Delay is: 22.769 ns

Development System Reference Guide

10-38 Xilinx Development System

 The Average Connection Delay on the 10 Worst Nets is: 14.210 ns

 Listing Pin Delays by value: (ns)

 d <= 10 < d <= 20 < d <= 30 < d <= 40 < d <= 50 d > 50
 --------- --------- --------- --------- --------- ---------
 750 39 4 0 0 0

Timing Score: 0

When a design has been routed to your satisfaction, you can use
BitGen to produce a bitstream file.

Turns Engine (PAR Multi-Tasking Option)
This Xilinx Development System option allows you to use multiple
machines (nodes) that are networked together for a multi-run PAR
job, significantly reducing the total amount of time to completion.
You can specify multi-tasking from the UNIX command line.

Turns Engine Overview
Before the Turns Engine was developed for the Xilinx Development
System, PAR could only run multiple jobs in a linear way. The total
time required to complete PAR was equal to the sum of the times that
it took for each of the PAR jobs to run. This is illustrated by the
following PAR command.

par -l 5 -n 10 -i 10 -c 1 mydesign.ncd output.dir

The above tells PAR to run 10 place and route passes (-n 10) at effort
level 5 (-l 5), a maximum of 10 router passes (-i 10), and one cost-
based cleanup pass (c 1). It runs each of the 10 jobs consecutively,
generating an output NCD file for each job, i.e., output.dir/
5_5_1.ncd, output.dir/5_5_2.ncd, etc. If each job takes approximately
one hour, then the run takes approximately 10 hours.

Suppose, however, that you have five nodes available. The Turns
Engine allows you to use all five nodes at the same time, dramatically
reducing the time required for all ten jobs. To do this you must first
generate a file containing a list of the node names, one per line as in
the following example.

Note: A pound sign (#) in the example indicates a comment.

PAR—Place and Route

Development System Reference Guide 10-39

NODE names

jupiter #Fred’s node
mars #Harry’s node
mercury #Betty’s node
neptune #Pam’s node
pluto #Mickey’s node

Now run the job from the command line as follows.

par -m nodefile_name -l 5 -n 10 -i 10 -c 1 mydesign.ncd output.dir

nodefile_name is the name of the node file you created.

This runs the following jobs on the nodes specified.

jupiter: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_1.ncd
mars: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_2.ncd
mercury: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_3.ncd
neptune: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_4.ncd
pluto: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_5.ncd

As the jobs finish, the remaining jobs are started on the nodes until all
10 jobs are complete. Since each job takes approximately one hour, all
10 jobs complete in approximately two hours.

Note: You cannot judge the relative benefits of multiple placements
by running the Turns Engine with options that generate multiple
placements but do not route any of the placed designs (the –r PAR
option specifies “no routing”). The design score you receive is the
same for each placement. To get some indication of the quality of the
placed designs, run at least one routing iteration (–i 1) on each placed
design.

Turns Engine Input Files
The following are the input files to the Turns Engine.

• NCD File—A mapped design.

• Nodelist file—A user-created ASCII file listing workstation
names. A sample nodelist file is shown below.

This is a comment
Note: machines are accessed by Turns Engine
from top to bottom

Sparc 20 machines running Solaris

Development System Reference Guide

10-40 Xilinx Development System

kirk
spock
mccoy
krusher
janeway
picard

Sparc 10 machines running SunOS
michael
jermaine
marlon
tito
jackie

HPs running HP-UX
william
george
ronald
jimmy
gerald

Turns Engine NCD Output File
The naming convention for the NCD file, which may contain
placement and routing information in varying degrees of completion,
is placer_level_router_level_table.ncd. If any of these elements are not
used, they are replaced by an 'x'. For example, for the first design file
being run with the options -n 5 -t 16 -rl 4 -pl 2, the NCD output file
name would be 2_4_16.ncd. The second file would be named
2_4_17.ncd. For the first design file being run with the options -n 5 -t
16 -r -pl 2, the NCD output file name would be 2_x_16.ncd. The
second file would be named 2_x_17.ncd.

Homogeneous and Heterogeneous Networks
The Turns Engine can run on the following networks.

• Homogenous networks—All SunOS, all Solaris, or all HP-UX.

• Heterogeneous networks—A mix of SunOS, Solaris, and HP-UX.
You must have the Xilinx software and a license for each platform
on which you intend to run. See the sample .cshrc file below to
set up the environment variables. This is possible because the
nodes read their environment variables from the .cshrc file; they
do not receive them from the launching node.

PAR—Place and Route

Development System Reference Guide 10-41

Limitations
The following limitations apply to the Turns Engine.

• The Turns Engine can operate only on Xilinx FPGA families. It
cannot operate on CPLDs.

• The Turns Engine can only operate on UNIX workstations.

• Each run targets the same part, and uses the same algorithms and
options. Only the starting point, or the cost table entry, is varied.

System Requirements
These are the system requirements for running the Turns Engine.

• rsh must be located through the path variable.

• The executables required on the machines defined in the nodes
file are

• /bin/sh

• par (must be located through path variable).

• The Turns Engine logs onto a node and then invokes PAR. The
environment variables on the node are read from the node’s
.cshrc file (or equivalent); they are not passed from the host to the
node. Therefore, all the Xilinx environment variables below must
be defined in the .cshrc file. If not, the PAR process on the node
will not be able to find the software or the licenses.

• XILINX (points at Xilinx directory structure — must be a
path accessible to both the machine from which the Turns
Engine is run and the node).

• LD_LIBRARY_PATH (supports par path for shared libraries
— must be a path accessible to both the machine from which
the Turns Engine is run and the node).

• path (contains $XILINX/bin/$PLATFORM, where
$PLATFORM is one of the following: sun, sol, hp, or rs6000).

To determine if everything is set up correctly, you can run the rsh
command to the nodes to be used. Type the following.

rsh node_name /bin/sh -c par

Development System Reference Guide

10-42 Xilinx Development System

If you get the usage message back on your screen, everything is set
correctly.

Turns Engine Environment Variables
The environment variables below are interpreted by the Turns Engine
manager.

• PAR_AUTOMNTPT—Specifies the network automount point.
The Turns Engine uses network path names to access files. For
example, a local path name to a file may be designs/cpu.ncd, but
the network path name may be /home/machine_name/ivan/
designs/cpu.ncd or /net/machine_name/ivan/designs/cpu.ncd.
The PAR_AUTOMNT environment variable should be set to the
value of the network automount point. The automount points for
the examples above are /home and /net. The default value for
PAR_AUTOMNT is /net.

The line below sets the automount point to /nfs. If the current
working directory is /usr/user_name/design_name on node
mynode, the command cd /nfs/mynode/usr/ user_name/
design_name is generated before PAR runs on the machine.

setenv PAR_AUTOMNTPT /nfs

The setting below does not issue a cd command; you are required
to enter full paths for all of the input and output file names.

setenv PAR_AUTOMNTPT ""

The setting below tells the system that paths on the local
workstation are the same as paths on remote workstations. This
can be the case if your network does not use an automounter and
all of the mounts are standardized, or if you do use an
automounter and all mount points are handled generically.

setenv PAR_AUTOMNTPT "/"

• PAR_AUTOMNTTMPPT—Most networks use the /tmp_mnt
temporary mount point. If your network uses a temporary mount
point with a different name, like /t_mnt, then you must set the
PAR_AUTOMNTTMPPT variable to the temporary mount point
name. In the example above you would set
PAR_AUTOMNTTMPPT to /t_mnt. The default value for
PAR_AUTOMNTTMPPT is /tmp_mnt.

PAR—Place and Route

Development System Reference Guide 10-43

• PAR_M_DEBUG—Causes the Turns Engine to run in debug
mode. If the Turns Engine is causing errors that are difficult to
correct, you can run PAR in debug mode in the following way.

a) Set the PAR_M_DEBUG variable.

setenv PAR_M_DEBUG 1

b) Create a node list file containing only a single entry (one
node).

This single entry is necessary because if the node list contains
multiple entries, the debug information from all of the nodes
is intermixed, and troubleshooting is difficult.

c) Run PAR with the –m (multi-tasking mode) option.

In debug mode, all of the output from all commands gener-
ated by the PAR run is echoed to the screen. There are also
additional checks performed in debug mode, and additional
information supplied to aid in solving the problem.

Security
If you attempt to run multiple PAR jobs with the –m nodefile_name
option, the Turns Engine manager (impman) license must be
available so that jobs can be allotted to the designated hosts to
perform each individual PAR run. If the impman license is not
available, you get an error message.

If PAR is able to lock the impman license, each job running on a node
tries to lock a Turns Engine place and route (imppar) license. If it is
able to do this, the job is automatically timing-driven and device-
independent. You see a message like this on your screen.

Starting job 5_1 on node NODE1

If PAR is unable to lock an imppar license, you do not see a “starting
job” message and PAR reverts to the normal sequence of par, tdpar,
and family licensing.

For more information on Xilinx security, see the applicable Install and
Release Document.

Development System Reference Guide

10-44 Xilinx Development System

Starting the Turns Engine From the Command Line
The following is the PAR command line syntax to run the Turns
Engine.

par -m nodelist_file -n #_of_iterations -s #_of_iterations_to_save
mapped_desgin.ncd output_directory.dir

-m nodelist_file specifies the nodelist file for the Turns Engine run.

-n #_of_iterations specifies the number of place and route passes.

-s #_of_iterations_to_save saves only the best -s results.

mapped design.ncd is the input NCD file.

output_directory.dir is the directory where the best results (–s
option) are saved. Files include placed and routed NCD, summary
timing reports (DLY), pinout files (PAD), and log files (PAR).

Debugging
With the Turns Engine you may receive messages from the login
process. The problems are usually related to the network or to
environment variables.

• Network Problem—You may not be able to logon to the machines
listed in the nodelist file.

• Try to ping the nodes by running the following command.

ping machine_name

You should get a message that the machine is alive. The ping
command should also be in your path (UNIX cmd: which
ping).

• Try to logon to the nodes using the command rsh machine_
name. You should be able to logon to the machine. If you
cannot, make sure rsh is in your path (UNIX cmd: which rsh).
If rsh is in your path, but you still cannot logon, contact your
network administrator.

• Try to launch PAR on a node by entering the following
command.

rsh machine_name /bin/sh -c par.

PAR—Place and Route

Development System Reference Guide 10-45

This is the same command that the Turns Engine uses to
launch PAR. If this command is successful, everything is set
up correctly for the machine_name node.

• Environment Problem—logon to the node with the problem by
entering the following UNIX command

rsh machine name

Check the $XILINX, $LD_LIBRARY_PATH, and $PATH variables
by entering the UNIX command echo $ variable_name.

If these variables are not set correctly, check to make sure these
variables are defined in your .cshrc file.

Note: Some, but not all, errors in reading the .cshrc may prevent the
rest of the file from being read. These errors may need to be corrected
before the XILINX environment variables in the .cshrc are read.

The error message /bin/sh: par not found indicates that
the environment in the .cshrc file is not being correctly read by
the node.

Screen Output
When PAR is running multiple jobs and is not in multi-tasking mode,
output from PAR is displayed on the screen as the jobs run. When
PAR is running multiple jobs in multi-tasking mode, you only see
information regarding the current status of the Turns Engine. For
example, when the job described in the “Turns Engine Overview”
section is executed, the following screen output would be generated.

Starting job 5_5_1 on node jupiter
Starting job 5_5_2 on node mars
Starting job 5_5_3 on node mercury
Starting job 5_5_4 on node neptune
Starting job 5_5_5 on node pluto

When one of the jobs finishes, a message similar to the following
displays.

Finished job 5_5_3 on node mercury

These messages continue until there are no jobs left to run, at which
time “Finished” appears on your screen.

Development System Reference Guide

10-46 Xilinx Development System

Note: For HP workstations, you are not able to interrupt the job with
Control-C as described below if you do not have Control-C set as the
escape character. To set the escape character, refer to your HP manual.

You may interrupt the job at any time by pressing Control-C. If you
interrupt the program, you see the following on your screen.

CONTRL-C interrupt detected.

Please choose one of the following options:
1. Continue processing and ignore the inter-
rupt.
2. Normal program exit at next check point.
3. Exit program immediately.
4. Add a node for running jobs.
5. Stop using a node.
6. Display current status.

Enter choice - - >

Choices are described below.

1. Continue processing and ignore the interrupt—self-
explanatory.

2. Normal program exit at next check point—allows the Turns
Engine to wait for all jobs to finish before terminating. PAR is
allowed to generate the master PAR output file (PAR), which
describes the overall run results.

When you select option 2, a secondary menu appears as shown
below.

How would you like to handle the currently
running job?
 1. Allow jobs to finish.
 2. Halt jobs at next checkpoint.
 3. Halt jobs immediately.
Enter choice - - >

a) Allow jobs to finish — current jobs finish but no other jobs
start if there are any. For example, if you are running 100 jobs
(–n 100) and the current jobs running are 5_5_49 and 5_5_50,
when these jobs finish, job 5_5_51 is not started.

PAR—Place and Route

Development System Reference Guide 10-47

b) Halt jobs at next checkpoint — all current jobs stop at the
next checkpoint; no new jobs are started.

c) Halt jobs immediately — all current jobs stop immediately;
no other jobs start.

3. Exit program immediately — all running jobs stop immediately
(without waiting for running jobs to terminate) and PAR exits the
Turns Engine.

4. Add a node for running jobs — allows you to dynamically add a
node on which you can run jobs. When you make this selection,
you are prompted as follows.

Input the name of the node to be added to the
list

After you enter the node name, a job starts immediately on that
node and a “Starting job” message is displayed.

5. Stop using a node — allows you to remove a node from the list
so that no job runs on that node.

If you select Stop using a node, you must also select from the
following options.

Which node do you wish to stop using?
 1. jupiter
 2. mars
 3. mercury
Enter number identifying the node.(<CR> to
ignore)

Enter the number identifying the node. If you enter a legal
number, you are asked to make a selection from this menu.

Do you wish to
 1.Terminate the current job immediately and
resubmit.
 2.Allow the job to finish.
Enter number identifying choice. (<CR> to
ignore)

The options are described below.

a) Terminate the current job immediately and resubmit—halts
the job immediately and sets it up again to be run on the next

Development System Reference Guide

10-48 Xilinx Development System

available node. The halted node is not used again unless it is
enabled by the “add” function.

b) Allow the job to finish—finishes the node’s current job, then
disables the node from running additional jobs.

Note: The list of nodes described above is not necessarily numbered
in a linear fashion. Nodes that are disabled are not displayed. For
example, if NODE2 is disabled, the next time “Stop using a node” is
opted, the following is displayed.

Which node do you wish to stop using?

 1. jupiter
 3. mercury
Enter number identifying the node. (<CR> to
ignore)

6. Display current status — displays the current status of the Turns
Engine. It shows the state of nodes and the respective jobs. Here
is a sample of what you would see if you chose this option.

ID NODE STATUS JOB TIME

1. jupiter Job Running 5_5_10 02:30:45
2. mars Job Running 5_5_11 02:28:03
3. mercury Not Available
4. neptune Pending Term 5_5_12 02:20:01
5. pluto Job Running 5_5_13 02:20:01
6. venus Idle
7. earth Job Running 5_5_12 25

Each entry is described below:

• jupiter has been running job 5_5_10 for approximately 2 1/2
hours.

• mars has been running job 5_5_11 for approximately 2 1/2 hours.

• mercury has been deactivated by the user with the “Stop using a
node” option or it was not an existing node or it was not running.
Nodes are “pinged” to see if they exist and are running before
attempting to start a job.

• neptune has been halted “immediately” with job resubmission.
The Turns Engine is waiting for the job to terminate. Once this
happens the status is changed to “not available”.

PAR—Place and Route

Development System Reference Guide 10-49

• pluto has been running job 5_5_13 for 2 hours 20 minutes.

• venus has finished its current job and is available for another.
When you see the “Idle” message, it usually means that no other
jobs are available.

• earth is running job 5_5_12. This job was resubmitted when
neptune was dropped. It has been running for 25 seconds. It is
unlikely that you will see the same job listed twice (as in the
sample above) since the job pending termination usually finishes
very quickly.

There is also a status named “Job Finishing”. This appears if the
Turns Engine has been instructed to halt the job at the next check-
point.

Command Line Examples
Following are a few examples of PAR command lines and a descrip-
tion of what each does.

Example 1

The following command places and routes the design in the file
input.ncd and writes the placed and routed design to output.ncd.

par input.ncd output.ncd

Example 2

The following command skips the placement phase and preserves all
routing information without locking it (re-entrant routing). Then it
runs up to 999 passes of the router or stops upon completion and
conformance to timing constraints found in the pref.pcf file. Then it
runs three delay-based cleanup router passes. If the design is already
completely routed, the effect of this command is to just run three
delay-based cleanup passes.

par -k -i 999 -c 0 -d 3 input.ncd output.ncd
pref.pcf

Example 3

The following command runs 20 place and route iterations at overall
effort level 3. The mapping of the overall level (–ol) to placer effort
level (–pl) and router effort level (–rl) depends on the device to which
the design was mapped, and placer level and router level do not

Development System Reference Guide

10-50 Xilinx Development System

necessarily have the same value. The iterations begin at cost table
entry 5. Only the best 3 output design files are saved. The output
design files (in NCD format) are placed into a directory called
results.dir.

par -n 20 -ol 3 -t 5 -s 3 input.ncd
results.dir

Now, if you wanted to run two passes of cost-based and delay-based
cleanup on the three designs saved (without running placement), you
would enter this command for each design.

par -k -i 0 -c 2 -d 2 input.ncd output.ncd

Example 4

The following command copies the input design to the output
design. The placement and routing phases are skipped completely.
Since a delay file is generated as a result of the command, you can use
these options to check the delay times in your design without having
PAR change any of the design’s placement or routing.

par -pr input.ncd output.ncd

Example 5

The following command allows re-entrant routing. Use this
command when your design is only partially routed and you want to
complete it or when the design does not meet your timing constraints
and additional routing passes are needed to meet the constraints.
Placement and placement optimization are skipped. In this case up to
30 router passes are run (you could run up to 2000). This may result
in local rip-up and reroute if 20 router passes are run with no
progress.

par -k -i 30 input.ncd output.ncd

Example 6

The following command gives you a delay report for a placed and
routed file without modifying the file.

par -pwr input.ncd input.ncd

Example 7

The following command runs PAR (using the Turns Engine) on all
nodes listed in the file named “allnodes”. It runs 10 place and route

PAR—Place and Route

Development System Reference Guide 10-51

passes at placer effort level 3 and router effort level 2 on the file
“mydesign.ncd”. It runs one cost-based cleanup pass of the router.

par -m allnodes -pl 3 –rl 2 -n 10 -i 10 -c l
mydesign.ncd output.dir

Halting PAR
Note: For HP workstations, you are not able to halt PAR with
Control-C as described below if you do not have Control-C set as the
escape character. To set the escape character, enter stty ^V^C in the
.login file or .cshrc file.

To halt a PAR operation, enter Control-C. In a few seconds, this
message appears.

CNTRL-C interrupt detected.

Please choose one of the following options:
 1. Continue processing and ignore the
 interrupt.
 2. Normal program exit at next check point.
 This will result in saving the best results
 so far,after concluding current processing.
 3. Exit program immediately.

Enter choice -->

You then select one of the three options shown on the screen. The
options work in this way.

• Option 1—this option causes PAR to continue operating as before
the interruption. PAR then runs to completion.

• Option 2—this option continues the current place/route iteration
until one of the following “check points”.

• After constructive placement

• After the current optimization pass

• After the current routing iteration

The system then exits the PAR run and saves an output file
containing the results up to the check point.

If you use this option, you may continue the PAR operation at a
later time. To do this, you must look in the PAR report file to find

Development System Reference Guide

10-52 Xilinx Development System

the point at which you interrupted the PAR run. You can then run
PAR on the output NCD file produced by the interrupted run,
setting command line options to continue the run from the point
at which it was interrupted.

Option 2 halt during routing may be helpful if you notice that the
router is performing multiple passes without improvement, and
it is obvious that the router will not achieve 100% completion. In
this case, you may want to halt the operation before it ends and
use the results to that point instead of waiting for PAR to end by
itself.

• Option 3—this option stops the PAR run immediately. You do not
get any output file for the current place/route iteration. You do,
however, still have output files for previously completed place/
route iterations.

Note: If you started the PAR operation from the Design Manager as a
background process on a workstation, you must bring the process to
the foreground using the fg command before you can halt the PAR
operation.

After you run PAR, you can run EPIC on the NCD file to examine and
edit the results. You can also perform a static timing analysis using
TRACE or the Timing Analyzer. When the design is routed to your
satisfaction, you can input the resulting NCD file into the Xilinx
Development System’s BitGen program. BitGen creates files that are
used for downloading the design configuration to the target FPGA.
For details on BitGen, see the “BitGen” chapter.

Development System Reference Guide—October 1998 11-1

Chapter 11

PIN2UCF

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

• XC9500

• XC9500XL

This chapter describes PIN2UCF. The chapter contains the following
sections.

• “PIN2UCF”

• “PIN2UCF Syntax”

• “PIN2UCF Files”

• “PIN2UCF Options”

• “PIN2UCF Scenarios”

Development System Reference Guide

11-2 Xilinx Development System

PIN2UCF
PIN2UCF is a program that generates pin locking constraints in a
UCF file by reading a placed NCD file for FPGAs or GYD file for
CPLDs. PIN2UCF writes its output to an existing UCF file. If there is
no existing UCF file, PIN2UCF creates a new file.

Figure 11-1 PIN2UCF Flow

The PIN2UCF is used to back-annotate pin locking constraints to the
UCF file from a successfully placed and routed design (FPGAs) or
successfully fit design (CPLDs).

The following list describes PIN2UCF.

• The program extracts pin locations and logical pad names from
an existing NCD or GYD file and writes this information to a
UCF file.

• Pin locking constraints are written to a PINLOCK section in the
UCF file. The PINLOCK section begins with the statement
#PINLOCK BEGIN and ends with the statement #PINLOCK
END.

PIN2UCF

NCD

(Placed and Routed -- For FPGAs)

or

GYD

(Pin Freeze File -- for CPLDs)

UCF File

Report File

X8629

PIN2UCF

Development System Reference Guide 11-3

• By default, PIN2UCF does not write conflicting constraints to a
UCF file. Prior to creating a PINLOCK section, if PIN2UCF
discovers conflicting constraints, it writes information to a report
file, named pinlock.rpt.

• The report file has two sections: Constraint Conflicts Information
and List of Errors and Warnings.

• The Constraints Conflicts Information section does not
display if there are fatal input errors, for example, missing
inputs or invalid inputs. However, the created report file will
contains the List of Errors and Warnings.

• The Constraints Conflicts Information section has two
subsections:

-- Net name conflicts on the pins
-- Pin name conflicts on the nets

If there are no conflicting constraints, both subsections under
the Constraint Conflicts Information section contain a single
line indicating that there are no conflicts.

• The List of Errors and Warnings displays only if there are
errors or warnings.

• User-specified pin locking constraints are never overwritten in a
UCF file. However, if the user-specified constraints are exact
matches of PIN2UCF generated constraints, a pound sign (#) is
added in front of all matching user-specified location constraint
statements. The pound sign indicates that a statement is a
comment. To restore the original UCF file (the file without the
PINLOCK section), remove the PINLOCK section and delete the
pound sign from each of the user-specified statements.

• PIN2UCF does not check if existing constraints in the UCF file are
valid pin locking constraints.

• PIN2UCF writes to an existing UCF file under the following
conditions.

a) The contents in the PINLOCK section are all pin lock matches
and there are no conflicts between the PINLOCK section and
the rest of the UCF file.

b) The PINLOCK section contents are all comments and there
are no conflicts outside the PINLOCK section.

Development System Reference Guide

11-4 Xilinx Development System

c) There is no PINLOCK section and no other conflicts in the
UCF file.

d) Comments inside an existing PINLOCK section are never
preserved by a new run of PIN2UCF.

e) If PIN2UCF finds a CSTTRANS comment, it equates “INST
name” to “NET name” and then checks for comments.

PIN2UCF Syntax
To invoke PIN2UCF from the UNIX or DOS command line, enter the
following.

pin2ucf {ncd_file.ncd | pin_freeze_file.gyd } [–r report_file_name
-o output.ucf]

ncd_file or pin_freeze_file must be the name of an existing file.

PIN2UCF Files
This section describes the PIN2UCF input and output files.

Input Files
Input to PIN2UCF can be either of the following files.

• NCD file—The minimal requirement is a placed NCD file, but in
practice you would normally use a placed and routed NCD file
that meets or is fairly close to meeting timing specifications.

• GYD file—The PIN2UCF pin locking utility replaces the old GYD
file mechanism that was used by CPLDs to lock pins. The GYD
file is still available as an input guide file to control pin locking.
Running PIN2UCF is the recommended method of pin locking to
be used instead of specifying the .GYD file as a Guide file.

Output Files
If there is no existing UCF file, PIN2UCF creates one. If a design.ucf
file is not specified for PIN2UCF and a UCF file with the same root
name exists in the same directory as the design file, the program
appends to that file automatically unless there are constraint conflicts.

A pinlock.rpt file is written to the current directory by default. Use
the -r option to write a report file to another directory.

PIN2UCF

Development System Reference Guide 11-5

PIN2UCF Options
The -o and -r options are the only PIN2UCF option.

–o (Output File Name)
–o outfile[.ucf]

Specifies the name of the output UCF file for the design. The -o option
is useful in the following ways.

• The UCF file used for the design has a different root name than
the design name. By default, PIN2UCF writes a ncd_file.ucf file if
-o is not specified. You can use this option to write the (append)
pin locking constraints to the UCF file with a different root name.

• You want to write a UCF file to a different directory.

–r (Write to a Report File)
–r report_file_name

Writes the PIN2UCF report into the specified report file. If this option
is not used, then a pinlock.rpt file is automatically written to the
current directory.

Development System Reference Guide

11-6 Xilinx Development System

PIN2UCF Scenarios
The following table describes the various PIN2UCF scenarios.

Scenarios PIN2UCF Behavior
Files

Created or
Updated

User does not have a
UCF file.

PIN2UCF creates a UCF file.

Writes the pin locking
constraints to the UCF file.

pinlock.rpt

design.ucf

User has a UCF file.

There are no pin locking
constraints in the UCF
file or this file contains
some user-specified pin
locking constraints
outside of the PINLOCK
section.

None of the user speci-
fied constraints conflict
with the PIN2UCF
generated constraints.

PIN2UCF appends the pin
locking constraints in the
PINLOCK section to the end
of the file.

pinlock.rpt

design.ucf

PIN2UCF

Development System Reference Guide 11-7

User has a UCF file.

This file contains some
user-specified pin
locking constraints
either inside or outside
of the PINLOCK
section.

Some of the user speci-
fied constraints conflict
with the PIN2UCF
generated constraints.

PIN2UCF will not write the
PINLOCK section. Instead it
exits after providing an error
message.

Writes a list of conflicting
constraints

pinlock.rpt

User has a UCF file.

There are no pin locking
constraints in the UCF
file.

There is a PINLOCK
section in the UCF file
generated from a
previous run of
PIN2UCF or manually
created by the user.

None of these
constraints in the
PINLOCK section
conflict with PIN2UCF
generated constraints.

PIN2UCF will write a new
PINLOCK section in the UCF
file after deleting the existing
PINLOCK section. The
contents of the existing
PINLOCK section will be
moved to the new PINLOCK
section.

design.ucf

pinlock.rpt

Scenarios PIN2UCF Behavior
Files

Created or
Updated

Development System Reference Guide

11-8 Xilinx Development System

Development System Reference Guide—October 1998 12-1

Chapter 12

TRACE

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

This chapter describes TRACE®. The chapter contains the following
sections.

• “TRACE”

• “TRACE Syntax”

• “TRACE Files”

• “TRACE Options”

• “Command Line Examples”

• “TRACE Input Details”

• “TRACE Output Details”

• “Halting TRACE”

Development System Reference Guide

12-2 Xilinx Development System

TRACE
TRACE (Timing Reporter And Circuit Evaluator) provides static
timing analysis of a design based on input timing constraints.

Note: On the command line, the TRACE command is entered as
trce (without an “A”).

TRACE performs two major functions.

• Timing verification—the process of verifying that the design
meets your timing constraints.

• Reporting—the process of enumerating input constraint
violations and placing them into an accessible file. TRACE can be
run on unplaced designs, completely placed and routed designs,
or designs that are placed and routed to any degree of
completion.

Figure 12-1 TRACE

TRACE Syntax
The following syntax runs TRACE.

trce [options] design[.ncd] [constraint[.pcf]]

Options can be any number of the TRACE options listed in the
“TRACE Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

NCD

TRACE

PCF
(optional)

TWR

X7218

TRACE

Development System Reference Guide 12-3

Design[.ncd] is the name of the input physical design file. If you
enter a file name with no extension, TRACE looks for an NCD file
with the name you specified.

Constraint[.pcf] specifies the name of a timing physical constraints
file. This file is used to define timing constraints for the design. If you
do not specify a physical constraints file, TRACE looks for one with
the same root name as the NCD file.

TRACE Files
This section describes the TRACE input and output files.

Input Files
Input files to TRACE are

• NCD file—a mapped design. The type of timing information you
receive depends on whether the design is unplaced, placed only,
or placed and routed.

• PCF file—an optional user-modifiable ASCII Physical
Constraints File produced by MAP. The PCF file contains timing
constraints used in the TRACE timing analysis.

Note: The Viewlogic® CAE tools create a file with a .pcf extension
when generating a plot of a Viewlogic schematic. This PCF file is not
related to a Xilinx PCF file. Since TRACE automatically reads a PCF
file with the same root name as your design file, make sure your
directory does not contain a Viewlogic PCF file with the same root
name as your NCD file.

Output Files
Output from TRACE is a timing report (TWR) file. There are three
different types of timing reports: summary report, error report, and
verbose report. The type of report produced is determined by the
TRACE command line options you enter, as shown in the following
table.

Development System Reference Guide

12-4 Xilinx Development System

TRACE Options
This section describes the options to the TRACE command.

–a (Advanced Analysis)
The –a option can only be used if you are not supplying any timing
constraints (in a PCF file) to TRACE. The –a option writes out a
timing report containing the following.

• An analysis that enumerates all clocks and the required OFFSETs
for each clock.

• An analysis of paths having only combinatorial logic, ordered by
delay.

This information is supplied in place of the default information for
the output timing report type (summary, error, or verbose).

If you want to perform an advanced analysis and you have timing
constraints, then move the PCF file to another directory or rename the
PCF file to a name other than the input design name. Remember to
replace the PCF file when you are finished.

-dfs (Thorough timing analysis of paths)
The -dfs option specifies that TRACE utilize depth-first search timing
analysis, which analyzes all paths covered by timing constraints in
order to perform timing-driven place and route. This method is more
thorough than the default method and may result in longer TRACE
runtimes. In previous M1 release, the depth-first search was the
default method. See the -kpaths option for a discussion of the new
connection-based method.

Table 12-1 TRACE Options and Reports

TRACE Option Report Produced

No –e or –v Summary report

–e Error report

–v Verbose report

TRACE

Development System Reference Guide 12-5

–e (Generate an Error Report)
–e [limit]

The –e option generates an error report. The report has the same root
name as the input design and a .twr extension. You can assign a
different root name for the report on the command line, but the exten-
sion must be .twr.

The limit is an integer limit on the number of items reported per
constraint. The integer limit can be used to limit the number of items
reported for each timing constraint in the report file (the default is
4096 items).

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

-kpaths (Faster Analysis of Paths)
The non-enumerative connection-based method (the new default)
has a runtime proportional to the size of the design, unlike the DFS
method, which has a runtime proportional to the number of paths in
the design.

There are two significant differences between the connection-based
method and the DFS method.

• The DFS method analyzes all paths except those that actually
contain a circuit loop, including paths that contain connections
that cause a circuit loop for other paths in the circuit. The
connection-based method may not analyze these paths
depending on circuit topology. The TRACE timing report
contains a list of design connections that cause circuit loops. The
connection-based timing analysis may give more optimistic
results for designs that have long paths with connections that
cause circuit loops.

Consider the following example circuit.

Development System Reference Guide

12-6 Xilinx Development System

Figure 12-2 Circuit Loops

The DFS method traces the path from IN, through A, through the
signal LOOP, back to the left-most logic block and to the signal
OUT. The new connection-based method may not trace this path
because a combinatorial loop exists at the output of A.

• The DFS method removes false paths from a design that requires
contending tristate enable signals. The connection-based method
does not perform this optimization, which means that it may
analyze some paths that are statically false based on tristate
enable signals. The connection-based timing analysis may give
more pessimistic results of designs that contain static false paths.

Consider the following circuit.

IN

A

OUT

B
LOOP

X8725

TRACE

Development System Reference Guide 12-7

Figure 12-3 Tristate Buffer Paths

A signal can pass through four paths in the preceding circuit, but two
of the paths are false (A1 to B2 and B1 to A2). In order for a signal to
pass through the upper left tristate buffer A1, the enable signal A
must be true. In order to prevent a bus contention on the A1 output,
the enable signal B must be false. Since buffer B2 is also controlled by
the enable signal B, the path through A1 cannot pass through B2
(because when A is enabled, B is disabled). The converse is also true,
if B is enabled, the only valid path is from B1 to B2.

In the example circuit, the DFS method only considers true paths. The
connection-based method will trace the false paths and the true
paths.

–o (Output File Name)
–o outfile[.twr]

The –o option specifies the name of the output timing report. The .twr
extension is optional.

–s (Change Speed)
–s [speed]

The –s option overrides the device speed contained in the input NCD
file and instead performs an analysis for the device speed you specify.

A1

A

B1

B

A2

A

B2

B

X8724

Development System Reference Guide

12-8 Xilinx Development System

The –s option applies to whichever report type you produce in this
TRACE run. The option allows you to see if faster or slower speed
grades meet your timing requirements.

The device speed can be entered with or without the leading dash. For
example, both –s 3 and –s –3 are valid entries.

Some architectures support minimum timing analysis. The command
line syntax for min timing analysis is: trace -s min . Do not place a
leading dash before min.

Note: The –s option only changes the speed grade for which the
timing analysis is performed; it does not save the new speed grade to
the NCD file.

–skew (Analyze Clock Skew for All Clocks)
–skew

This -skew option analyzes clock skew for all clocks including those
using non-dedicated clock routing resources.

–u (Report Uncovered Paths)
–u

The –u option reports delays for paths that are not covered by timing
constraints. The -u option adds an “Unconstrained path analysis”
constraint to your existing constraints. This constraint performs a
default path enumeration on any paths for which no other constraints
apply. The default path enumeration includes circuit paths to data
and clock pins on sequential components and data pins on primary
outputs.

In the TRACE report, the following is included for the
“Unconstrained path analysis” constraint.

• The minimum period for all of the uncovered paths to sequential
components.

• The maximum delay for all of the uncovered paths containing
only combinatorial logic.

• For a verbose report only, a listing of periods for sequential paths
and delays for combinatorial paths. The list is ordered by delay in
descending order, and the number of entries in the list can be

TRACE

Development System Reference Guide 12-9

controlled by specifying a limit when you enter the –v (Generate
a Verbose Report) command line option.

–v (Generate a Verbose Report)
–v [limit]

The –v option generates a verbose report. The report has the same
root name as the input design and a .twr extension. You can assign a
different root name for the report on the command line, but the
extension must be .twr.

The limit is an integer limit on the number of items reported per
constraint. The integer limit can be used to limit the number of items
reported for each timing constraint in the report file (the default is
4096 items).

Command Line Examples
The following command verifies the timing characteristics of the
design named design1.ncd, generating a summary timing report.
Timing constraints contained in the file group1.pcf are the timing
constraints for the design. This generates the report file design1.twr.

trce design1.ncd group1.pcf

The following command produces a file listing all delay characteris-
tics for the design named design1.ncd, using the timing constraints
contained in the file group1.pcf. The verbose report file is called
output.twr.

trce –v design1.ncd group1.pcf –o output.twr

The following command analyzes the file design1.ncd and reports on
the three worst errors for each constraint in timing.pcf. The report is
called design1.twr.

trce –e 3 design1.ncd timing.pcf

TRACE Input Details
Input to TRACE is a mapped NCD design and an optional physical
constraints (PCF) file based upon timing constraints that you specify.
Constraints can indicate such things as clock speed for input signals,
the external timing relationship between two or more signals,

Development System Reference Guide

12-10 Xilinx Development System

absolute maximum delay on a design path, or a general timing
requirement for a class of pins.

TRACE Output Details
TRACE output is an ASCII timing report file that enables you to see
how well the timing constraints for the design have been met. The file
is written into your current working directory and has a .twr
extension. The default name for the file is the same root name as the
NCD file. You can designate a different root name for the file, but it
must have a .twr extension. The extension .twr is assumed if not
specified.

The timing report lists statistics on the design, any detected timing
errors, and a number of warning conditions.

Timing errors indicate absolute or relative timing constraint violations.
These include the following.

• Path delay errors—where the path delay exceeds the maximum
delay constraint for a path.

• Net delay errors—where a net connection delay exceeds the
maximum delay constraint for the net.

• Offset errors—where either the delay offset between an external
clock and its associated data-in pin is insufficient to meet the
internal logic’s timing requirements or the delay offset between
an external clock and its associated data-out pin exceeds the
external logic’s timing requirements.

• Net skew errors—where skew between net connections exceeds
the maximum skew constraint for the net.

Timing errors may require design modifications, running PAR, or
both.

Warnings point out potential problems such as circuit loops or a
constraint that does not define any paths.

Three types of reports are available. You determine the report type by
entering the appropriate option entry on the UNIX or DOS command
line or by selecting the type of report from the Timing Analyzer (see
the “TRACE Options” section). Each type of report is described in the
“Reporting with TRACE” section.

TRACE

Development System Reference Guide 12-11

Timing Verification with TRACE
TRACE checks the delays in the NCD design file against your timing
constraints. If delays are exceeded, TRACE issues the appropriate
timing error.

Net Delay Constraints

The delay for a constrained net is checked to ensure that the
constraint is equal to or greater than the routedelay.

constraint ≥ routedelay

routedelay is the signal delay between the driver pin and the load
pin(s) on a net. This is an estimated delay if the design is placed but
not routed.

Any nets showing delays that do not meet this condition generate
timing errors in the timing report.

Net Skew Constraints

Signal skew on a net with multiple load pins is the difference
between minimum and maximum load delays. Skew is checked
against the specified maximum skew for constrained nets in the PCF
file.

constraint ≥ (maxdelay - mindelay)

maxdelay is the maximum delay between the driver pin and a load
pin.

mindelay is the minimum delay between the driver pin and a load
pin.

If the skew is found to exceed the maximum skew constraint, the
timing report shows a skew error.

Path Delay Constraints

The delay through a constrained path is checked to ensure that the
constraint is greater than or equal to the sum of logic (component)
delay, route (wire) delay, and setup time (if any), minus clock skew (if
any).

constraint ≥ logicdelay + routedelay + setuptime – clockskew

Development System Reference Guide

12-12 Xilinx Development System

logicdelay is the pin-to-pin delay through a component.

routedelay is the signal delay between component pins in a path.
This is an estimated delay if the design is placed but not routed.

setuptime (for clocked paths only) is the time that data must be
present on an input pin before the arrival of the triggering edge of a
clock signal.

clockskew (for register-to-register clocked paths only) is the differ-
ence between the amount of time the clock signal takes to reach the
destination register and the amount of time the clock signal takes to
reach the source register. Clock skew is discussed in the following
section.

Paths showing delays that do not meet this condition generate timing
errors in the timing report.

Clock Skew and Setup Checking

Clock skew must be accounted for in register-to-register setup checks.
For register-to-register paths, the data delay must reach the
destination register within a single clock period for the destination
register. The timing analysis software ensures that any clock skew
between the source and destination registers is accounted for in this
check.

Note: In default mode, that is, without using the -skew option, only
dedicated clock resource skew accounting is performed. With the
-skew option, non-dedicated clock skew accounting is also
performed.

A setup check performed on register-to-register paths checks the
following condition.

Slack = constraint + Tsk (Tpath + Tsu)

constraint is the required time interval for the path, either specified
explicitly by you with a FROM:TO constraint, or derived from a
PERIOD constraint.

Tpath is the summation of component and connection delays along
the path (including the Tcko delay from the source register).

Tsu is the setup requirement for the destination register.

Tsk is the difference between the arrival time for the destination
register and the source register.

TRACE

Development System Reference Guide 12-13

Negative slack indicates that a setup error may occur, because the
data from the source register does not set up at the target register for
a subsequent clock edge.

In the following figure, the clock skew Tsk is the delay from the clock
input (CLKIOB) to register D (TclkD) less the delay from the clock
input (CLKIOB) to register S (TclkS). Negative skew relative to the
destination reduces the amount of time available for the data path,
and positive skew relative to the destination register is truncated to
zero.

Figure 12-4 Clock Skew Example

Because the total clock path delay is used to determine the clock
arrival times at the source register (TclkS) and the destination register
(TclkD), this check still applies if the source and destination clocks
originate at the same chip input but travel through different clock
buffers and/or routing resources, as shown in the following figure.

Figure 12-5 Clock Passing Through Multiple Buffers

When the source and destination clocks originate at different chip
inputs, no obvious relationship between the two clock inputs exists
for the timing software (because the software cannot determine the
clock arrival time or phase information).

Interconnect

and Logic

S D

CLKIOB

X8260

Interconnect

and Logic

S D

CLKIOB
X8261

Development System Reference Guide

12-14 Xilinx Development System

For FROM:TO specifications, the software assumes you have taken
into account the external timing relationship between the chip inputs.
The software assumes both clock inputs arrive simultaneously, and
the difference between the destination clock arrival time (TclkD) and
the source clock arrival time (TclkS) does not account for any differ-
ence in the arrival times at the two chip clock inputs.

Figure 12-6 Clocks Originating at Different Chip Inputs

The clock skew Tsk is not accounted for in setup checks covered by
PERIOD constraints where the clock paths to the source and
destination registers originate at different clock inputs.

Reporting with TRACE
The timing report produced by TRACE is an ASCII file prepared for a
particular design. It reports statistics on the design, a summary of
timing warnings and errors, and optional detailed net and path delay
reports.

Note: All TRACE reports are formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
reports uses a proportional font, the columns in the reports do not
line up correctly.

This section covers the three different types of timing reports
generated by TRACE. They are as follows.

• The summary report—Contains summary information, design
statistics, and statistics for each constraint in the PCF file.

• The error report—Lists timing errors and associated net/path
delay information.

Interconnect

and Logic

S D

X8262

CLKIOB

CLKIOB

TRACE

Development System Reference Guide 12-15

• The verbose report—Lists delay information for all nets and
paths.

In each type of report, the header specifies the type of report, the
input design name, the optional input physical constraints file name,
and device and speed data for the input NCD file. At the end of each
report is a timing summary, which includes the following
information.

• The number of timing errors found in the design. This informa-
tion appears in all reports

• A timing score, showing the total amount of error (in picosec-
onds) for all timing constraints in the design

• The number of paths and nets covered by the constraints

• The number of route delays and the percentage of connections
covered by timing constraints

Note: The percentage of connections covered by timing constraints is
given in a “% coverage” statistic. The statistic does not indicate the
percentage of paths covered; it indicates the percentage of
connections covered. Even if you have entered constraints that cover
all paths in the design, this percentage may be less than 100%, since
some connections are never included for timing analysis (for
example, connections to the STARTUP component).

• The number of nets covered by constraints

• A list of global statistics for the design

In the following sections, a description of each report is accompanied
by a sample.

Following are some additional notes about timing reports.

• For any of the three types of reports, if you specify a physical
constraints file that contains invalid data, a list of physical
constraints file errors appears at the beginning of the report.
These include errors in constraint syntax.

• In a TRACE report, a tilde (~) preceding a delay value indicates
that the delay value is approximate. Values with the tilde cannot
be calculated exactly because of excessive delays, resistance, or
capacitance on the net, that is, the path is too complex too
calculate accurately.

Development System Reference Guide

12-16 Xilinx Development System

The tilde (~) also means that the path may exceed the numerical
value listed next to the tilde by as much as 20%. You can use the
PENALIZE TILDE constraint to penalize these delays by a
specified percentage (see the “Attributes, Constraints, and Carry
Logic” chapter of the Libraries Guide for a description of the
PENALIZE TILDE constraint).

• In a TRACE report, an “R” appended to a delay value indicates
the value was calculated for a rising signal, and an “F” indicates
the value for a falling signal. If rising and falling values are
different, TRACE reports the appropriate delay.

• TRACE detects when a path loops (that is, when the path passes
through a driving output more than once), and reports the total
number of loops detected in the design. When TRACE detects a
loop, it disables the loop from being analyzed. If the loop itself is
made up of many possible routes, each route is disabled for all
paths which converge through the loop in question and the total
number is included in the reported loop tally.

A path is considered to loop outside of the influence of other
paths in the design. Thus if a valid path follows a loop from
another path, but actually converges at an input and not a
driving output, the path is not disabled and will contain the
elements of the loop which may be disabled on another path.

• In Xilinx FPGAs, tristate buffer (TBUF) outputs are always routed
on longlines. Pullup resistors may also be tied to these longlines.
The timing effects of a TBUF/pullup combination is handled
differently in the various FPGA architectures.

• In XC3000A/L, XC3100A/L, 4000E/L, XC5200, and Spartan
designs, the delay associated with the longline is built into
the component delay for the TBUF, and is not included in the
delay reported for the net on the longline.

• In XC4000EX/XL/XV designs, the net delay on the longline
is computed and reported as if the pullup (and not the TBUF
output) is driving the net. If you want the delay to be
computed with the TBUF driving the net, do not include any
pullups at the output of the TBUF.

TRACE

Development System Reference Guide 12-17

• For Release 1.5, if you are using the new default connection-
based analysis method instead of the DFS option, error counts
reflect the number of path endpoints (register setup inputs,
output pads) that fail to meet timing specifications, not the
number of paths that fail the specification. Consider the
following circuit.

Figure 12-7 Error Reporting

Assume that you are using the new connection-based analysis
method. If an error is generated at both the endpoints of A and B, the
timing report would list two errors—one for each endpoint.

If you are using the -dfs option, the timing report would list ten
errors, that is, the report would list the paths instead of the endpoints.

9 paths

A
1 path

B

X8360

Development System Reference Guide

12-18 Xilinx Development System

Summary Report
The summary report includes the name of the design file being
analyzed, the device speed and report level, followed by a statistical
brief that includes the summary information (timing errors, etc.
described above) and design statistics. The report also list statistics
for each constraint in the PCF file, including the number of timing
errors for each constraint.

A summary report is produced when you do not enter an –e (error
report) or –v (verbose report) option on the TRACE command line.

Two sample summary reports are shown below. The first sample
shows the results without having a physical constraints file. The
second sample shows the results when a physical constraints file is
specified.

If no physical constraints file exists or if there are no timing
constraints in the PCF file, TRACE performs default path and net
enumeration to provide timing analysis statistics. Default path
enumeration includes all circuit paths to data and clock pins on
sequential components and all data pins on primary outputs. Default
net enumeration includes all nets.

Note: The summary report is formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
report uses a proportional font, the columns in the report do not line
up correctly.

Summary Report (Without a Physical Constraints File Specified)

The following sample summary report represents the output of this
TRACE command.

trce -o summary1.twr trace1.ncd

The name of the report is summary1.twr. No preference file is
specified on the command line, and the directory containing the file
trace1.ncd did not contain a PCF file called trace1.pcf.

TRACE

Development System Reference Guide 12-19

Xilinx TRACE, Version M1.5.15
Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.

Design file: trace1.ncd
Device,speed: xc4028ex,-3 (x1_0.28 1.8 PRELIMINARY)
Report level: summary report

WARNING:bastw:170 - No timing constraints found, doing default
enumeration.

 Constraint | Requested | Actual | Logic
 | | | Levels

 Default period analysis | | 32.913ns |

 Default net enumeration | | 22.769ns |

All constraints were met.

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 1662 paths, 261 nets, and 836 connections (100.0%
coverage)

Design statistics:
 Minimum period: 32.913ns (Maximum frequency: 30.383MHz)
 Maximum combinational path delay: 67.491ns
 Maximum net delay: 22.769ns

Analysis completed Tue Apr 28 13:56:52 1998

Development System Reference Guide

12-20 Xilinx Development System

Summary Report (With a Physical Constraints File Specified)

The following sample summary report represents the output of this
TRACE command.

trce -o summary.twr trace1.ncd trace1.pcf

The name of the report is summary.twr. The timing analysis
represented in the file were performed by referring to the constraints
in the file trace1.pcf.

Xilinx TRACE, Version M1.5.15
Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.

Design file: trace1.ncd
Physical constraint file: trace1.pcf
Device,speed: xc4028ex,-3 (x1_0.28 1.8)
Report level: summary report

 Constraint | Requested | Actual | Logic
 | | | Levels

 NET "CTLR/2SCLK" PERIOD = 43.000000 nS | 43.000ns | 32.913ns | 2

 NET "CTLR/SCLK" PERIOD = 45.000000 nS | 45.000ns | 30.140ns | 5

All constraints were met.

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 1459 paths, 0 nets, and 631 connections (75.5% coverage)

Design statistics:
 Minimum period: 32.913ns (Maximum frequency: 30.383MHz)

TRACE

Development System Reference Guide 12-21

Analysis completed Tue Apr 28 13:52:20 1998

When the physical constraints file includes timing constraints, the
summary report lists the percentage of all design connections
covered by timing constraints. If there are no timing constraints, the
report shows 100 percent coverage. An asterisk precedes constraints
that fail.

Error Report
The error report lists timing errors and associated net/path delay
information. Errors are ordered by constraint and, within constraints,
by slack (the difference between the constraint and the analyzed
value, with a negative slack indicating an error condition). The
number of errors listed for each constraint is set by the limit you enter
on the command line. The error report also contains a list of all time
groups defined in the PCF file and all of the members defined within
each group.

The main body of the error report lists all timing constraints as they
appear in the input PCF file. If the constraint is met, the report simply
states the number of items scored by TRACE, reports no timing errors
detected, and issues a brief report line, indicating important
information (for example, the maximum delay for the particular
constraint). If the constraint is not met, it gives the number of items
scored by TRACE, the number of errors encountered, and a detailed
breakdown of the error. For errors in which the path delays are
broken down into individual net and component delays, the report
lists each physical resource and the logical resource from which the
physical resource was generated.

As in the other three types of reports, descriptive material appears at
the top. A timing summary always appears at the end of the report. A
sample error report follows.

Note: The error report is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.

Development System Reference Guide

12-22 Xilinx Development System

Sample Error Report

The following sample error report (error.twr) represents the output of
this TRACE command.

trce -o error2.twr -e 2 trace2.ncd trace2.pcf

Xilinx TRACE, Version M1.5.15
Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.

Design file: trace2.ncd
Physical constraint file: trace2.pcf
Device,speed: xc4028ex,-3 (x1_0.28 1.8)
Report level: error report, limited to 2 items per constraint

===
Timing constraint: NET "CTLR/2SCLK" PERIOD = 30.000000 nS ;
294 items analyzed, 1 timing error detected.
 Minimum period is 32.913ns.

Slack: -2.913ns path CTLR/ODM/FBYT0 to RD_EN_O- relative to
 30.000ns delay constraint

Path CTLR/ODM/FBYT0 to RD_EN_O- contains 7 levels of logic:
Path starting from Comp: CLB_R14C13.K (from CTLR/2SCLK)
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
CLB_R14C13.XQ Tcko 1.830R CTLR/ODM/FBYT0
 CTLR/ODM/FBYTCNTR/Q0
CLB_R15C11.F4 net (fanout=8) 2.150R CTLR/ODM/FBYT0
CLB_R15C11.Y Tiho 3.100R CTLR/ODM/FBYT_TC
 CTLR/ODM/FBYTCNTR/TC
CTLR/ODM/LD0/CTLR/ODM/LD_VBYT/2.0
CLB_R16C11.F3 net (fanout=1) 1.515R CTLR/ODM/LD_VBYT/2.0
CLB_R16C11.Y Tiho 3.100R CTLR/ODM/LD_VBYT
 CTLR/ODM/LD0/CTLR/ODM/

LD_VBYT
 CTLR/ODM/VBYTCNTR/M0P/$1I5
CLB_R15C12.F1 net (fanout=1) 1.238R CTLR/ODM/VBYTCNTR/M0P
CLB_R15C12.X Tilo 1.700R CTLR/ODM/VBYTCNTR/NS0
 CTLR/ODM/VBYTCNTR/M0C/$1I5
CLB_R17C21.F1 net (fanout=2) 5.015R CTLR/ODM/VBYTCNTR/NS0

TRACE

Development System Reference Guide 12-23

CLB_R17C21.X Tilo 1.700R CTLR/ODM/NS1-4

CTLR/ODM/ODM_SM/G11/CTLR/ODM/NS1-4
CLB_R19C29.F1 net (fanout=2) 3.723R CTLR/ODM/NS1-4
CLB_R19C29.Y Tiho 3.100R CTLR/ODM/FIFOCTRL/RD_EN

CTLR/ODM/FIFOCTRL/G1/CTLR/ODM/FIFOCTRL/NS1-1-3-4
 CTLR/ODM/FIFOCTRL/G6
P126.O net (fanout=1) 4.253R CTLR/ODM/FIFOCTRL/RD_EN
P126.OK Took 0.489R RD_EN_O-
 CTLR/ODM/FIFOCTRL/RD_EN

Total (15.019ns logic, 17.894ns route) 32.913ns (to CTLR/2SCLK)
 (45.6% logic, 54.4%% route)

Slack: -2.871ns path CTLR/ODM/FBYT0 to RD_EN_O- relative to
 30.000ns delay constraint

Path CTLR/ODM/FBYT0 to RD_EN_O- contains 7 levels of logic:
Path starting from Comp: CLB_R14C13.K (from CTLR/2SCLK)
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
CLB_R14C13.YQ Tcko 1.830R CTLR/ODM/FBYT0
 CTLR/ODM/FBYTCNTR/Q1
CLB_R15C11.F3 net (fanout=8) 2.108R CTLR/ODM/FBYT1
CLB_R15C11.Y Tiho 3.100R CTLR/ODM/FBYT_TC
 CTLR/ODM/FBYTCNTR/TC
CTLR/ODM/LD0/CTLR/ODM/LD_VBYT/2.0
CLB_R16C11.F3 net (fanout=1) 1.515R CTLR/ODM/LD_VBYT/2.0
CLB_R16C11.Y Tiho 3.100R CTLR/ODM/LD_VBYT

CTLR/ODM/LD0/CTLR/ODM/
LD_VBYT

 CTLR/ODM/VBYTCNTR/M0P/$1I5
CLB_R15C12.F1 net (fanout=1) 1.238R CTLR/ODM/VBYTCNTR/M0P
CLB_R15C12.X Tilo 1.700R CTLR/ODM/VBYTCNTR/NS0
 CTLR/ODM/VBYTCNTR/M0C/$1I5
CLB_R17C21.F1 net (fanout=2) 5.015R CTLR/ODM/VBYTCNTR/NS0
CLB_R17C21.X Tilo 1.700R CTLR/ODM/NS1-4

CTLR/ODM/ODM_SM/G11/CTLR/ODM/NS1-4
CLB_R19C29.F1 net (fanout=2) 3.723R CTLR/ODM/NS1-4

Development System Reference Guide

12-24 Xilinx Development System

CLB_R19C29.Y Tiho 3.100R CTLR/ODM/FIFOCTRL/RD_EN

CTLR/ODM/FIFOCTRL/G1/CTLR/ODM/FIFOCTRL/NS1-1-3-4
 CTLR/ODM/FIFOCTRL/G6
P126.O net (fanout=1) 4.253R CTLR/ODM/FIFOCTRL/RD_EN
P126.OK Took 0.489R RD_EN_O-
 CTLR/ODM/FIFOCTRL/RD_EN

Total (15.019ns logic, 17.852ns route) 32.871ns (to CTLR/2SCLK)
 (45.7% logic, 54.3%% route)

===
Timing constraint: NET "CTLR/SCLK" PERIOD = 45.000000 nS ;
 1054 items analyzed, 0 timing errors detected.
 Minimum period is 30.140ns.

1 constraint not met.

Timing summary:

Timing errors: 1 Score: 2913

Constraints cover 1459 paths, 0 nets, and 631 connections (75.5% coverage)

Design statistics:
 Minimum period: 32.913ns (Maximum frequency: 30.383MHz)

Analysis completed Mon May 18 07:53:11 1998
--

Verbose Report
The verbose report is similar to the error report, providing more
details on delays for all constrained paths and nets in the design.
Entries are ordered by constraint and, within constraints, by slack.
The number of items listed for each constraint is set by the limit you
enter on the command line.

TRACE

Development System Reference Guide 12-25

The verbose report also contains a list of all time groups defined in
the PCF file, and all of the members defined within each group.

As in the other types of reports, descriptive material appears at the
top.

The body of the verbose report enumerates each constraint as it
appears in the input physical constraints file, the number of items
scored by TRACE for that constraint, and the number of errors
detected for the constraint. Each item is described, ordered by
descending slack. A Report line for each item provides important
information, such as the amount of delay on a net and by how much
the constraint is met.

For path constraints, if there is an error, the report indicates the
amount by which the constraint is exceeded. For errors in which the
path delays are broken down into individual net and component
delays, the report lists each physical resource and the logical resource
from which the physical resource was generated.

If there are no errors, the report indicates that the constraint passed
and by how much. Each logic and route delay is analyzed, totaled,
and reported.

Note: The verbose report is formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
report uses a proportional font, the columns in the report do not line
up correctly.

Development System Reference Guide

12-26 Xilinx Development System

Sample Verbose Report

The following sample verbose report (verbose.twr) represents the
output of this TRACE command.

trce -o verbose.twr -v 2 trace1.ncd trace1.pcf

Xilinx TRACE, Version M1.5.15
Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.

Design file: trace1.ncd
Physical constraint file: trace1.pcf
Device,speed: xc4028ex,-3 (x1_0.28 1.8 PRELIMINARY)
Report level: verbose report, limited to 2 items per constraint

===
Timing constraint: NET "CTLR/2SCLK" PERIOD = 43.000000 nS ;
 294 items analyzed, 0 timing errors detected.
 Minimum period is 32.913ns.

Slack: 10.087ns path CTLR/ODM/FBYT0 to RD_EN_O- relative to
 43.000ns delay constraint

Path CTLR/ODM/FBYT0 to RD_EN_O- contains 7 levels of logic:
Path starting from Comp: CLB_R14C13.K (from CTLR/2SCLK)
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
CLB_R14C13.XQ Tcko 1.830R CTLR/ODM/FBYT0
 CTLR/ODM/FBYTCNTR/Q0
CLB_R15C11.F4 net (fanout=8) 2.150R CTLR/ODM/FBYT0
CLB_R15C11.Y Tiho 3.100R CTLR/ODM/FBYT_TC
 CTLR/ODM/FBYTCNTR/TC
CTLR/ODM/LD0/CTLR/ODM/LD_VBYT/2.0
CLB_R16C11.F3 net (fanout=1) 1.515R CTLR/ODM/LD_VBYT/2.0
CLB_R16C11.Y Tiho 3.100R CTLR/ODM/LD_VBYT
 CTLR/ODM/LD0/CTLR/ODM/

LD_VBYT
 CTLR/ODM/VBYTCNTR/M0P/$1I5
CLB_R15C12.F1 net (fanout=1) 1.238R CTLR/ODM/VBYTCNTR/M0P
CLB_R15C12.X Tilo 1.700R CTLR/ODM/VBYTCNTR/NS0

TRACE

Development System Reference Guide 12-27

 CTLR/ODM/VBYTCNTR/M0C/$1I5
CLB_R17C21.F1 net (fanout=2) 5.015R CTLR/ODM/VBYTCNTR/NS0
CLB_R17C21.X Tilo 1.700R CTLR/ODM/NS1-4
CTLR/ODM/ODM_SM/G11/CTLR/ODM/NS1-4
CLB_R19C29.F1 net (fanout=2) 3.723R CTLR/ODM/NS1-4
CLB_R19C29.Y Tiho 3.100R CTLR/ODM/FIFOCTRL/RD_EN

CTLR/ODM/FIFOCTRL/G1/CTLR/ODM/FIFOCTRL/NS1-1-3-4
 CTLR/ODM/FIFOCTRL/G6
P126.O net (fanout=1) 4.253R CTLR/ODM/FIFOCTRL/RD_EN
P126.OK Took 0.489R RD_EN_O-
 CTLR/ODM/FIFOCTRL/RD_EN

Total (15.019ns logic, 17.894ns route) 32.913ns (to CTLR/2SCLK)
 (45.6% logic, 54.4%% route)

Slack: 10.129ns path CTLR/ODM/FBYT0 to RD_EN_O- relative to
 43.000ns delay constraint

Path CTLR/ODM/FBYT0 to RD_EN_O- contains 7 levels of logic:
Path starting from Comp: CLB_R14C13.K (from CTLR/2SCLK)
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
CLB_R14C13.YQ Tcko 1.830R CTLR/ODM/FBYT0
 CTLR/ODM/FBYTCNTR/Q1
CLB_R15C11.F3 net (fanout=8) 2.108R CTLR/ODM/FBYT1
CLB_R15C11.Y Tiho 3.100R CTLR/ODM/FBYT_TC
 CTLR/ODM/FBYTCNTR/TC
CTLR/ODM/LD0/CTLR/ODMLD_VBYT/2.0
CLB_R16C11.F3 net (fanout=1) 1.515R CTLR/ODM/LD_VBYT/2.0
CLB_R16C11.Y Tiho 3.100R CTLR/ODM/LD_VBYT

CTLR/ODM/LD0/CTLR/ODM/
LD_VBYT

 CTLR/ODM/VBYTCNTR/M0P/$1I5
CLB_R15C12.F1 net (fanout=1) 1.238R CTLR/ODM/VBYTCNTR/M0P
CLB_R15C12.X Tilo 1.700R CTLR/ODM/VBYTCNTR/NS0
 CTLR/ODM/VBYTCNTR/M0C/$1I5
CLB_R17C21.F1 net (fanout=2) 5.015R CTLR/ODM/VBYTCNTR/NS0
CLB_R17C21.X Tilo 1.700R CTLR/ODM/NS1-4

Development System Reference Guide

12-28 Xilinx Development System

CTLR/ODM/ODM_SM/G11/CTLR/ODM/NS1-4
CLB_R19C29.F1 net (fanout=2) 3.723R CTLR/ODM/NS1-4
CLB_R19C29.Y Tiho 3.100R CTLR/ODM/FIFOCTRL/RD_EN

CTLR/ODM/FIFOCTRL/G1/CTLR/ODM/FIFOCTRL/NS1-1-3-4
 CTLR/ODM/FIFOCTRL/G6
P126.O net (fanout=1) 4.253R CTLR/ODM/FIFOCTRL/RD_EN
P126.OK Took 0.489R RD_EN_O-
 CTLR/ODM/FIFOCTRL/RD_EN

Total (15.019ns logic, 17.852ns route) 32.871ns (to CTLR/2SCLK)
 (45.7% logic, 54.3%% route)

===
Timing constraint: NET "CTLR/SCLK" PERIOD = 45.000000 nS ;
 1054 items analyzed, 0 timing errors detected.
 Minimum period is 30.140ns.

Slack: 7.430ns path CTLR/VID/S2 to ME_WE_O- relative to
 22.500ns delay constraint (two-phase clock)

Path CTLR/VID/S2 to ME_WE_O- contains 3 levels of logic:
Path starting from Comp: CLB_R7C18.K (from CTLR/SCLK)
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
CLB_R7C18.YQ Tcko 1.830R CTLR/VID/S2
 CTLR/VID/V_SM/S2/$1I1
CLB_R2C30.F2 net (fanout=11) 6.631R CTLR/VID/S2
CLB_R2C30.X Tilo 1.700R CTLR/VID/V_FGEN/WE
 CTLR/VID/V_FGEN/M1/$1I5
P148.O net (fanout=1) 4.420R CTLR/VID/V_FGEN/WE
P148.OK Took 0.489R ME_WE_O-
 CTLR/VID/V_FGEN/ME_WE

Total (4.019ns logic, 11.051ns route) 15.070ns (to CTLR/SCLK)
 (26.7% logic, 73.3%% route)

Slack: 8.037ns path CTLR/VID/S2 to TR_OE_O- relative to

TRACE

Development System Reference Guide 12-29

 22.500ns delay constraint (two-phase clock)

Path CTLR/VID/S2 to TR_OE_O- contains 3 levels of logic:
Path starting from Comp: CLB_R7C18.K (from CTLR/SCLK)
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
CLB_R7C18.YQ Tcko 1.830R CTLR/VID/S2
 CTLR/VID/V_SM/S2/$1I1
CLB_R2C30.G1 net (fanout=11) 6.458R CTLR/VID/S2
CLB_R2C30.Y Tilo 1.760R CTLR/VID/V_FGEN/WE
 CTLR/VID/V_FGEN/M2/$1I5
P150.O net (fanout=1) 3.926R CTLR/VID/V_FGEN/OE
P150.OK Took 0.489R TR_OE_O-
 CTLR/VID/V_FGEN/TR_OE

Total (4.079ns logic, 10.384ns route) 14.463ns (to CTLR/SCLK)
 (28.2% logic, 71.8%% route)

All constraints were met.

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 1459 paths, 0 nets, and 631 connections (75.5% coverage)

Design statistics:
 Minimum period: 32.913ns (Maximum frequency: 30.383MHz)

Analysis completed Tue Apr 28 13:55:21 1998

Development System Reference Guide

12-30 Xilinx Development System

Halting TRACE
To halt TRACE, enter CONTROL-C (on a workstation) or
CONTROL-BREAK (on a PC). On a workstation, make sure that
when you enter CONTROL-C, the active window is the window
from which you invoked TRACE. The program prompts you to
confirm the interrupt. Some files may be left when TRACE is halted
(for example, a TRACE report file or a physical constraints file), but
these files may be discarded because they represent an incomplete
operation.

Development System Reference Guide—October 1998 13-1

Chapter 13

BitGen

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

This chapter describes BitGen. The chapter contains the following
sections.

• “BitGen”

• “BitGen Syntax”

• “BitGen Files”

• “BitGen Options”

BitGen
BitGen produces a bitstream for Xilinx device configuration. After the
design has been completely routed, it is necessary to configure the
device so that it can execute the desired function. This is done with
BitGen, Xilinx’s bitstream generation program. BitGen takes a fully
routed NCD (Circuit Description) file as its input and produces a
configuration bitstream—a binary file with a .bit extension.

Development System Reference Guide

13-2 Xilinx Development System

The BIT file contains all of the configuration information from the
NCD file defining the internal logic and interconnections of the
FPGA, plus device-specific information from other files associated
with the target device. The binary data in the BIT file can then be
downloaded into the FPGA’s memory cells or it can be used to create
a PROM file (see the “PROMGen” chapter).

Figure 13-1 BitGen

BitGen Syntax
bitgenThe following syntax creates a bitstream from your NCD file.

bitgen [options] infile[.ncd] [outfile] [pcf_file]

options is one or more of the options listed in the “BitGen Options”
section.

X7217

DRC

BGN

BitGen

LL

(Optional)

NCD

Circuit Description

(Placed/Routed)

MSK

(Optional)

PROMGen

BIT RBT

Hardware Debugger

BitGen

Development System Reference Guide 13-3

Infile is the name of the NCD design for which you want to create the
bitstream. You may specify only one design file, and it must be the
first file specified on the command line.

You do not have to use an extension. If you do not, .ncd is assumed. If
you do use an extension, it must be .ncd.

Outfile is the name of the output file. If you do not specify an output
file name, BitGen creates one in the input file’s directory. If you
specify -l on the command line, the extension is .ll (see –l command
line option). If you specify –m (see –m command line option), the
extension is .msk. If you specify –b, the extension is .rbt. Otherwise
the extension is .bit. If you do not specify an extension, BitGen
appends one according to the aforementioned rules. If you do include
an extension, it must also conform to the rules.

Pcf_file is the name of a physical constraints (PCF) file. BitGen uses
this file to determine which nets in the design are critical for tiedown
(see the “–t (Tie Unused Interconnect)” section). BitGen automatically
reads the .pcf file by default. If the physical constraints file is the
second file specified on the command line, it must have a .pcf
extension. If it is the third file specified, the extension is optional; .pcf
is assumed. If a .pcf file name is specified, it must exist, otherwise the
input design name with a .pcf extension is read if that file exists.

A report file containing all of BitGen’s output is automatically created
under the same directory as the output file. The report file has the
same root name as the output file and a .bgn extension.

BitGen Files
The input files that BitGen requires and the output files that BitGen
generates are described below.

Input Files
Input to BitGen consists of the following files.

• NCD file—a physical description of the design mapped, placed
and routed in the target device. The NCD file must be fully
routed.

• PCF—an optional user-modifiable ASCII Physical Constraints
File. If you specify a PCF file on the BitGen command line,

Development System Reference Guide

13-4 Xilinx Development System

BitGen uses this file to determine which nets in the design are
critical for tiedown (see the “–t (Tie Unused Interconnect)”
section).

Output Files
Output from BitGen consists of the following files.

• BIT file—a binary file with a .bit extension. The BIT file contains
all of the configuration information from the NCD file defining
the internal logic and interconnections of the FPGA, plus device-
specific information from other files associated with the target
device. The binary data in the BIT file can then be downloaded
into the FPGA’s memory cells or it can be used to create a PROM
file (see the “PROMGen” chapter).

• RBT file—an optional “rawbits” file with an .rbt extension. The
rawbits file consists of ASCII ones and zeros representing the
data in the bitstream file. If you enter a –b option on the BitGen
command line. an RBT file is produced in addition to the binary
BIT file (see the “–b (Create Rawbits File)” section).

• LL file—an optional ASCII logic allocation file with an .ll
extension. The logic allocation file indicates the bitstream
position of latches, flip-flops, and IOB inputs and outputs. An LL
file is produced if you enter a –l option on the BitGen command
line (see the “–l (Create a Logic Allocation File)” section).

• MSK file—an optional mask file with an .msk extension. This file
is used to compare relevant bit locations for executing a readback
of configuration data contained in an operating FPGA. A MSK
file is produced if you enter a –m option on the BitGen command
line (see the “–m (Generate a Mask File)” section).

• BGN file—a report file containing information about the BitGen
run.

• DRC file—a Design Rule Check (DRC) file for the design. A DRC
runs and the DRC file is produced unless you enter a –d option
on the BitGen command line (see the “–d (Do Not Run DRC)”
section).

BitGen

Development System Reference Guide 13-5

BitGen Options
Following is a description of the command line options and how they
affect the behavior of BitGen.

Note: For a complete description of the Xilinx Development System
command line syntax, see the “Command Line” section of the
“Introduction” chapter.

Options for the BitGen command are as follows.

–a (Tie All Interconnect)
Used with the -t option to force tiedown to fail if all nodes are not
tied. This option also allows tiedown to implement user signals.
Tiedown with -a is equivalent to the M1.4 behavior of the -t option.

–b (Create Rawbits File)
Create a "rawbits" (file_name.rbt) file. The rawbits file consists of
ASCII ones and zeros representing the data in the bitstream file.

If you are using a microprocessor to configure a single FPGA, you can
include the rawbits file in the source code as a text file to represent the
configuration data. The sequence of characters in the rawbits file is
the same as the sequence of bits written into the FPGA.

–d (Do Not Run DRC)
Do not run DRC (Design Rule Check). Without the –d option, BitGen
runs a DRC and saves the DRC results in two output files: the BitGen
report file (file_name.bgn) and the DRC file (file_name.drc). If you enter
the –d option no DRC information appears in the report file and no
DRC file is produced.

Running DRC before a bitstream is produced detects any errors that
could cause the FPGA to malfunction. If DRC does not detect any
errors, BitGen produces a bitstream file (unless you use the –j option
described in the “–j (No BIT File)” section).

You cannot disable the DRC with the –d option if you have specified
a –t (Tie Unused Interconnect) option. The DRC always runs if you
specify –t.

Development System Reference Guide

13-6 Xilinx Development System

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–g (Set Configuration)
The –g option specifies the startup timing and other bitstream
options for Xilinx FPGAs. The settings for the –g option depend on
the design’s architecture. These settings are described in the
following sections.

• “–g (Set Configuration—XC3X00 Devices)”

• “–g (Set Configuration—XC4000 and Spartan Devices)”

• “–g (Set Configuration—XC5200 Devices)”

• “–g (Set Configuration—Virtex Devices)”

–g (Set Configuration—XC3X00 Devices)
The –g option has sub-options that represent settings you use to set
the configuration for an XC3X00A/L design. These options have the
following syntax.

bitgen –g option: setting

For example, to set the input-signal thresholds to CMOS level instead
of TTL level, use the following syntax.

bitgen –g inputs:CMOS

The following sections describe the startup sequences for the –g
option applied to an XC3X00 design.

DonePin

Enables or disables internal pull-up on the DONE/PROGRAM (D/P)
pin. The Pullnone setting indicates there is no connection to the pull-
up.

Use this option only if you are planning to connect an external pull-
up resistor to this pin. The internal pull-up resistor has a value of 2 to
8 kΩ and is automatically connected if you do not use this option.

BitGen

Development System Reference Guide 13-7

The D/P pins configure an open-drain driver that requires a pull-up
resistor to indicate the end of the configuration.

DoneTime

Releases the DONE/PROGRAM (D/P) pin one Cclk cycle before the
IOBs become active (Before setting) or one Cclk cycle after the IOBs
become active (After setting).

The After setting clearly indicates the end of the configuration
process. The Before setting can be used to de-activate external
configuration drivers so that they do not contend with active outputs
on the same pin. The use of After would create a 1-Cclk-period
contention. The alternative, using the LDC output, might cause a
short contention spike. Before avoids these problems.

Input

This option sets the FPGA design input-signal thresholds to TTL or
CMOS level for interface capability. CMOS improves noise immunity
and reduces static power consumption.

The special-purpose clock inputs, TCLKIN, BCLKIN, and PWRDN
always require CMOS-level signals, even if the FPGA design input
thresholds are specified as TTL compatible.

Architectures: XC3000A/L, XC3100A/L

Settings: Pullup , Pullnone

Default: Pullup

Architectures: XC3000A/L, XC3100A/L

Settings: Before , After

Default: Before

Architectures: XC3000A/L, XC3100A/L

Settings: TTL, CMOS

Default: TTL

Development System Reference Guide

13-8 Xilinx Development System

LC_Alignment

Determines how length count is calculated to control when the device
changes from configuration to user operation. The two methods of
calculating length count, DONE Alignment and Length Count
Alignment, are discussed in The Programmable Logic Data Book. The
FPGA Configuration Guidelines Application Note also contains length
count information.

Oscillator

This option specifies crystal oscillator options for XC3X00 series
devices. The crystal oscillator is associated with the auxiliary clock
buffer in the lower-right corner of the die.

The Disable option disables the FPGA crystal oscillator; Enable
enables it. The EnableDiv2 option enables the oscillator and divides
the crystal output frequency by two in order to guarantee a
symmetrical clock signal.

ReadBack

This option specifies readback options for XC3X00 families. After the
FPGA design has been configured, the FPGA configuration data can
be read back and compared with the original configuration data.
Readback is initiated by a Low-to-High transition on the M0/RTRIG
pin. Once you give the readback command, external logic must drive
the Cclk input to read back each data bit. The readback data appears
on the RDATA pin.

The Disable option disables readback. The Once option enables a one-
time readback and Command enables readback on command.

The Disable and Once options are used for design security. The Once
option allows only one readback, typically performed during
manufacturing. After this, readback can never be invoked again.

Architectures: XC3000A/L, XC3100A/L

Settings: Length , DONE

Default: Length

Architectures: XC3000A/L, XC3100A/L

Settings: Disable , Enable , EnableDiv2

Default: Disable

BitGen

Development System Reference Guide 13-9

If the FPGA device is powered by a standby battery and the
configuration source is removed, the FPGA design configuration data
is completely secure from being read or copied.

ResetTime

Removes INTERNAL RESET one clock cycle before or one clock cycle
after the IOB becomes active.

When you specify the After setting, the outputs go active while all
internal flip-flops are still being held in Reset. When you specify the
Before setting, the internal logic becomes operational before the
outputs go active.

–g (Set Configuration—XC4000 and Spartan
Devices)

This option specifies the startup timing and other bitstream options
for the XC4000E/L, XC4000EX/XL/XV, and Spartan devices. Timing
sequences are predefined startup defaults that use the following
syntax.

bitgen –g timing_sequence

There are four valid startup sequences: Cclk_Nosync, Cclk_Sync,
Uclk_Nosync, and Uclk_Sync. These startup sequences are described
in the next section. For more information about startup timing, refer
to The Programmable Logic Data Book.

The default startup sequence for the –g option is Cclk_Nosync. This
startup sequence makes an XC4000 or Spartan device compatible
with an XC3X00 device that is set for early Done and late Reset. Enter
the following,

bitgen –g cclk_nosync

Architectures: XC3000A/L, XC3100A/L

Settings: Command, Disable , Once

Default: Command

Architectures: XC3000A/L, XC3100A/L

Settings: Before , After

Default: After

Development System Reference Guide

13-10 Xilinx Development System

The –g option has sub-options that represent settings you use to set
the configuration for an XC4000 or Spartan design. These options
have the following syntax.

bitgen –g option: setting

For example, to enable Cyclic Redundancy Checking (CRC), use the
following syntax.

bitgen –g crc:enable

The following sections describe the startup sequences for the –g
option.

Startup Sequences and the –g Option

This section describes the four predefined startup sequences and
their defaults; then it describes the options, their settings, and their
defaults.

Note: When mixing devices, the one with the latest “finished point”
should be the master. The master stops clocking when it reaches the
finished point. See The Programmable Logic Data Book for more
information.

Cclk_Nosync

This is the default startup sequence for the –g option. Selecting this
sequence causes the following defaults to take effect.

This startup sequence makes an XC4000, Spartan, or XC5200 device
consistent with an XC3X00 device set for early Done and late Reset.

Cclk_Sync

Selecting this sequence causes the following defaults to take effect.

StartupClk: Cclk

SyncToDone: No

DoneActive: C1

OutputsActive: C2

GSRInactive: C3

StartupClk: Cclk

SyncToDone: Yes

BitGen

Development System Reference Guide 13-11

This startup sequence is the most consistent with the XC3X00 devices,
since it synchronizes the release of GSR and I/Os to the external
DoneIn signal. This startup sequence makes an XC4000 or Spartan
device consistent with an XC3X00 device set for early Done and late
Reset.

Uclk_Nosync

Selecting this sequence causes the following defaults to take effect.

This startup sequence makes XC4000 or Spartan devices inconsistent
with XC3X00 devices if they are in the same daisy chain, since the
release of Done is synchronized to an external User Clock. There is no
synchronization of I/Os or GSR to DoneIn.

Uclk_Sync

Selecting this sequence causes the following defaults to take effect.

This startup sequence makes XC4000 or Spartan devices inconsistent
with XC3X00 devices if they are in the same daisy chain, since the
release of Done is synchronized to an external User Clock. I/Os and
GSR are synchronous to the clocks following DoneIn.

DoneActive: C1

OutputsActive: DI_PLUS_1

GSRInactive: DI_PLUS_1

StartupClk: Userclk

SyncToDone: No

DoneActive: U2

OutputsActive: U3

GSRInactive: U4

StartupClk: Userclk

SyncToDone: Yes

DoneActive: U2

OutputsActive: DI_PLUS_1

GSRInactive: DI_PLUS_2

Development System Reference Guide

13-12 Xilinx Development System

When using Uclk_Sync or Uclk_Nosync you must provide a user
clock to finish the configuration sequence. Without a user clock the
FPGA will not configure.

Sub-Options for Startup Sequence (–g Option)

The sub-options available with the four startup sequences are
described below. These sub-options use the –g option: setting syntax.

AddressLines

Determines the number of address lines (18 or 22) used for device
configuration. The 22 setting activates four extra device pins as
configuration address lines.

BSCAN_Config

When disabled, BSCAN_Config inhibits the BSCAN-based
configuration after the device is successfully configured. This feature
allows board testing without the risk of reconfiguring XLA devices
by toggling the TCK/TMS/TDI/TDO lines.

BSCAN_Status

When enabled, BSCAN_Status allows direct sensing of the DONE
configuration state after performing a BSCAN-based configuration.
Previously, there was no direct method for determining if a BSCAN-
based configuration was successful.

Architectures: XC4000EX only (XC4000XL, XC4000XLA, and
XC4000XV always have 22 active address lines)

Settings: 18 , 22

Default: 18

Architectures: XC4000XLA, XC4000XV, SpartanXL

Settings: Disable, Enable

Default: Enable

Architectures: XC4000XLA, XC4000XV, SpartanXL

Settings: Disable, Enable

Default: Disable

BitGen

Development System Reference Guide 13-13

5V_Tolerant_IO

If set to On, this option allows a 3.3V device circuitry to tolerate 5V
operation. For any device that operates on a mixed circuit
environment with 3.3V and 5V, ensure that On is set. For any circuitry
that operates exclusively on 3.3V, such as in a laptop computer, set
the option to Off. The Off option reduces power consumption.

ConfigRate

Selects the configuration clock rate. There are two choices: slow or
fast. Slow is equivalent to 1 MHz, and fast is equivalent to 8 MHz
(nominal).

CRC

Enables or disables Cyclic Redundancy Checking (CRC) on a chip-
by-chip basis during configuration.

DoneActive

Selects the event that activates the FPGA Done signal. There are a
maximum of four events that you can select from at one time. These
events are Cclk edges or external (user) clock edges.

Architectures: XC4000XLA, XC4000XV, SpartanXL

Settings: On, Off

Default: On

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
and SpartanXL

Settings: Slow , Fast

Default: Slow

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
and SpartanXL

Settings: Enable , Disable

Default: Enable

Development System Reference Guide

13-14 Xilinx Development System

The actual options available at any time depend on the selections
made for StartupClk and SyncToDone.

Valid settings for DoneActive are

DonePin

Enables or disables internal pull-up on the DONE pin. The Pullnone
setting indicates there is no connection to the pull-up.

Architectures: XC4000E/L, XC4000EX/XL/XV/XLA, Spartan,
and SpartanXL

Settings: C1 — first-Cclk rising edge after the length
count is met.
C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1.
U3 — third-valid-user-clock rising edge after C1.
U4 — fourth-valid-user-clock rising edge after
C1.

Default: C1

StartupClk SyncToDone DoneActive

Cclk Yes C1, C2 or C3

Cclk No C1, C2, C3, or C4

UserClk Yes C1 or U2

UserClk No C1, U2, U3, or U4

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
and SpartanXL

Settings: Pullup , Pullnone

Default: Pullup

BitGen

Development System Reference Guide 13-15

ExpressMode

When enabled, ExpressMode creates a unique type of bitstream for
configuration.

GSRInactive

Selects the event that releases the internal set-reset to the latches and
flip-flops. You can select one of nine events: a Cclk edge, an external
(user) clock edge, or the external signal DoneIn. Only some of these
events become options at one time depending on the combination of
StartupClk and SyncToDone selected.

Architectures: XC4000XLA, XC4000XV

Settings: Disable , Enable

Default: Disable

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
U3 — third-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met).
U4 — fourth-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
DI — when the DoneIn signal goes High.
DI_PLUS_1 — first Cclk or valid user clock
rising edge (depending on selection of Star-
tupClk) after DoneIn goes High.
DI_PLUS_2 — second Cclk or valid user clock
rising edge (depending on selection of Star-
tupClk) after DoneIn goes High.

Default: C3

Development System Reference Guide

13-16 Xilinx Development System

Valid settings for GSRInactive are

Input

Sets the input threshold level for IOBs.

LC_Alignment

The LC_Alignment option determines how length count is calculated
to control when the device changes from configuration to user
operation. The two methods of calculating length count, DONE
Alignment and Length Count Alignment, are discussed in the
Configuration section of the The Programmable Logic Data Book. The
FPGA Configuration Guidelines Application Note also contains length
count information.

StartupClk SyncToDone GSRInactive

Cclk Yes C2, C3, DI, or DI_PLUS_1

Cclk No C2, C3, or C4

UserClk Yes U2, DI, DI_PLUS_1, or DI_PLUS_2

UserClk No U2, U3, or U4

Architectures: XC4000E/L, XC4000EX, Spartan

Settings: TTL, CMOS

Default: TTL

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Length , DONE

Default: Length

BitGen

Development System Reference Guide 13-17

M0Pin

Adds a pull-up or a pull-down to the M0 (Mode 0) pin. Selecting one
option enables it and disables the others. The Pullnone setting
indicates there is no connection to either the pull-up or the pull-
down.

M1Pin

Adds a pull-up or a pull-down to the M1 (Mode 1) pin. Selecting one
option enables it and disables the others. The Pullnone setting
indicates there is no connection to either the pull-up or the pull-
down.

M2Pin

Adds a pull-up or a pull-down to the M2 (Mode 2) pin. Selecting one
option enables it and disables the others. The Pullnone setting
indicates there is no connection to either the pull-up or the pull-
down.

Output

Sets the output level for IOBs.

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spar-
tanXL

Settings: Pullup , Pulldown , Pullnone

Default: Pullnone

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV

Settings: Pullup , Pulldown , Pullnone

Default: Pullnone

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV

Settings: Pullup , Pulldown , Pullnone

Default: Pullnone

Architectures: XC4000E/L, XC4000EX, Spartan

Settings: TTL, CMOS

Default: TTL

Development System Reference Guide

13-18 Xilinx Development System

OutputsActive

Selects the event that releases the I/O from 3-state condition and
turns the configuration related pins operational. There are a
maximum of four events that you can select from at one time. These
events are selected from a group of Cclk edges, a group of external
(user) clock edges, and the external signal DoneIn. The actual options
available at any time depend on the selections made for StartupClk
and SyncToDone.

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
U3 — third-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met).
U4 — fourth-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
DI — when the DoneIn signal goes High
DI_PLUS_1 — first Cclk or valid user clock
rising edge (depending on selection of
StartupClk) after DoneIn goes High
DI_PLUS_2 — second Cclk or valid user clock
rising edge (depending on selection of
StartupClk) after DoneIn goes High

Default: C2

BitGen

Development System Reference Guide 13-19

Valid settings for OutputsActive are

PowerDown

Enables or disables internal pull-up on the PowerDown pin. The
Pullnone setting indicates there is no connection to the pull-up.

ReadAbort

Enables or disables aborting the readback sequence during the
readback sequence.

ReadCapture

Enables or disables readback of configuration bitstream.

StartupClk SyncToDone OutputsActive

Cclk Yes C2, C3, DI, or DI_PLUS_1

Cclk No C2, C3, or C4

UserClk Yes U2, DI, DI_PLUS_1, or DI_PLUS_2

UserClk No U2, U3, or U4

Architectures: SpartanXL

Settings: Pullup, Pullnone

Default: Pullup

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Enable , Disable

Default: Disable

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Enable , Disable

Default: Disable

Development System Reference Guide

13-20 Xilinx Development System

ReadClk

Sets the readback clock to be CClk or to a user-supplied clock (from a
net inside the FPGA that is connected to the ‘i’ pin of the RDCLK
schematic block).

Note: In modes where CClk is an output, the pin is driven by the
internal oscillator.

StartupClk

Selects a user-supplied clock or the internal Cclk for controlling the
post-configuration startup phase of the FPGA initialization.

Note: In modes where Cclk is an output, the pin is driven by the
internal oscillator.

SyncToDone

Synchronizes the I/O startup sequence to the external DoneIn signal.

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Cclk (pin—see Note), Rdbk (user-supplied)

Default: Cclk

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Cclk (pin—see Note), UserClk (user-supplied)

Default: Cclk

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Yes , No

Default: No

BitGen

Development System Reference Guide 13-21

TdoPin

Adds a pull-up, a pull-down, or neither to the TDO pin (Test Data
Out for Boundary Scan). Selecting one option enables it and disables
the others. The Pullnone setting indicates there is no connection to
either the pull-up or the pull-down.

–g (Set Configuration—XC5200 Devices)
The –g option has sub-options that represent settings you use to set
the configuration for an XC5200 design. These options have the
following syntax.

bitgen –g option: setting

For example, to enable Cyclic Redundancy Checking (CRC), use the
following syntax.

bitgen –g crc:enable

The following sections describe the startup sequences for the –g
option.

BSReconfig

Enable or disable reconfiguration via boundary scan.

BSReadback

Enable or disable reading back configuration data via boundary scan.

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Pullup , Pulldown , Pullnone

Default: Pullnone

Architectures: XC5200

Settings: Disable , Enable

Default: Disable

Architectures: XC5200

Settings: Disable , Enable

Default: Disable

Development System Reference Guide

13-22 Xilinx Development System

ConfigRate

Selects the configuration clock rate. There are three choices: slow,
med, and fast. Slow is equivalent to .75 MHz, med is equivalent to 6
MHz, and fast is equivalent to 12 MHz (nominal).

CRC

Enables or disables Cyclic Redundancy Checking (CRC) on a chip-
by-chip basis during configuration.

Input

This option sets the FPGA design input-signal thresholds to TTL or
CMOS level for interface capability. CMOS improves noise immunity
and reduces static power consumption.

The special-purpose clock inputs, TCLKIN, BCLKIN, and PWRDN
always require CMOS-level signals, even if the FPGA design input
thresholds are specified as TTL compatible.

DoneActive

Selects the event that activates the FPGA Done signal. There are a
maximum of four events that you can select from at one time. These
events are Cclk edges or external (user) clock edges.

Architectures: XC5200

Settings: Slow , Med, Fast

Default: Slow

Architectures: XC5200

Settings: Enable , Disable

Default: Enable

Architectures: XC5200

Settings: TTL, CMOS

Default: TTL

BitGen

Development System Reference Guide 13-23

The actual options available at any time depend on the selections
made for StartupClk and SyncToDone.

Valid settings for DoneActive are

DonePin

Enables or disables internal pull-up on the DONE pin. The Pullnone
setting indicates there is no connection to the pull-up.

GSRInactive

Selects the event that releases the internal set-reset to the latches and
flip-flops. You can select one of nine events: a Cclk edge, an external
(user) clock edge, or the external signal DoneIn.

Architectures: XC5200

Settings: C1 — first-Cclk rising edge after the length
count is met.
C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1.
U3 — third-valid-user-clock rising edge after C1.
U4 — fourth-valid-user-clock rising edge after
C1.

Default: C1

StartupClk SyncToDone DoneActive

Cclk Yes C1, C2 or C3

Cclk No C1, C2, C3, or C4

UserClk Yes C1 or U2

UserClk No C1, U2, U3, or U4

Architectures: XC5200

Settings: Pullup , Pullnone

Default: Pullup

Development System Reference Guide

13-24 Xilinx Development System

Only some of these events become options at one time depending on
the combination of StartupClk and SyncToDone selected.

Valid settings for GSRInactive are

Architectures: XC5200

Settings: C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
U3 — third-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met).
U4 — fourth-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
DI — when the DoneIn signal goes High
DI_PLUS_1 — first Cclk or valid user clock
rising edge (depending on selection of
StartupClk) after DoneIn goes High
DI_PLUS_2 — second Cclk or valid user clock
rising edge (depending on selection of
StartupClk) after DoneIn goes High

Default: C3

StartupClk SyncToDone GSRInactive

Cclk Yes C2, C3, DI, or DI_PLUS_1

Cclk No C2, C3, or C4

UserClk Yes U2, DI, DI_PLUS_1, or DI_PLUS_2

UserClk No U2, U3, or U4

BitGen

Development System Reference Guide 13-25

Input

Sets the input threshold level for IOBs.

LC_Alignment

The LC_Alignment option determines how length count is calculated
to control when the device changes from configuration to user
operation. The two methods of calculating length count, DONE
Alignment and Length Count Alignment, are discussed in the
Configuration section of The Programmable Logic Data Book. The FPGA
Configuration Guidelines Application Note also contains length count
information.

OscClk

Determines whether the XC5200 oscillator is driven by the internal
16-MHz clock (CClk setting) or by a user clock (UserClk setting). If
you specify UserClk, the clock must be connected to the OSC.CK pin
of the device’s OSC component.

OutputsActive

Selects the event that releases the I/O from 3-state condition and
turns the configuration related pins operational. There are a
maximum of four events that you can select from at one time. These
events are selected from a group of Cclk edges, a group of external
(user) clock edges, and the external signal DoneIn.

Architectures: XC5200

Settings: TTL, CMOS

Default: TTL

Architectures: XC5200

Settings: Length , DONE

Default: Length

Architectures: XC5200

Settings: UserClk , CClk

Default: Cclk

Development System Reference Guide

13-26 Xilinx Development System

The actual options available at any time depend on the selections
made for StartupClk and SyncToDone.

Valid settings for OutputsActive are

Architectures: XC5200

Settings: C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
U3 — third-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met).
U4 — fourth-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
DI — when the DoneIn signal goes High
DI_PLUS_1 — first Cclk or valid user clock
rising edge (depending on selection of Star-
tupClk) after DoneIn goes High
DI_PLUS_2 — second Cclk or valid user clock
rising edge (depending on selection of
StartupClk) after DoneIn goes High

Default: C2

StartupClk SyncToDone OutputsActive

Cclk Yes C2, C3, DI, or DI_PLUS_1

Cclk No C2, C3, or C4

UserClk Yes U2, DI, DI_PLUS_1, or DI_PLUS_2

UserClk No U2, U3, or U4

BitGen

Development System Reference Guide 13-27

ProgPin

Enables or disables internal pull-up on the PROGRAM pin. The pull-
up affects the pin after configuration. The Pullnone setting indicates
there is no connection to the pull-up.

ReadAbort

Enables or disables aborting the readback sequence during the
readback sequence.

ReadCapture

Enables or disables readback of configuration bitstream.

ReadClk

Sets the readback clock to be CClk or to a user-supplied clock (from a
net inside the FPGA that is connected to the ‘i’ pin of the RDCLK
schematic block).

Note: In modes where CClk is an output, the pin is driven by the
internal oscillator.

Architectures: XC5200

Settings: Pullup , Pullnone

Default: Pullup

Architectures: XC5200

Settings: Enable , Disable

Default: Disable

Architectures: XC5200

Settings: Enable , Disable

Default: Disable

Architectures: XC5200

Settings: Cclk (pin—see Note), Rdbk (user-supplied)

Default: Cclk

Development System Reference Guide

13-28 Xilinx Development System

StartupClk

Selects a user-supplied clock or the internal Cclk for controlling the
post-configuration startup phase of the FPGA initialization.

Note: In modes where Cclk is an output, the pin is driven by the
internal oscillator.

SyncToDone

Synchronizes the I/O startup sequence to the external DoneIn signal.

–g (Set Configuration—Virtex Devices)
The –g option has sub-options that represent settings you use to set
the configuration for a Virtex design. These options have the
following syntax.

bitgen –g option: setting

For example, to enable Readback, use the following syntax.

bitgen –g Readback

The following sections describe the startup sequences for the –g
option.

ReadBack

This option allows you to perform Readback by the creating the
necessary bitstream.

Architectures: XC5200

Settings: Cclk (pin—see Note), UserClk (user-supplied)

Default: Cclk

Architectures: XC5200

Settings: Yes , No

Default: No

BitGen

Development System Reference Guide 13-29

ConfigRate

Virtex uses an internal oscillator to generate the configuration clock,
CCLK, when configuring in a master mode. Use the configuration
rate option to select the rate for this clock.

StartupClk

The startup sequence following the configuration of a device can be
synchronized to either Cclk, a User Clock, or the JTAG Clock. The
default is Cclk.

• Cclk

Enter Cclk to synchronize to an internal clock provided in the
FPGA device.

• UserClk

Enter UserClk to synchronize to a user-defined signal connected
to the CLK pin of the STARTUP symbol.

• Jtag Clock

Enter JtagClk to synchronize to the clock provided by JTAG. This
clock sequences the TAP controller which provides the control
logic for JTAG.

Note: In modes where Cclk is an output, the pin is driven by an
internal oscillator.

Architectures: Virtex

Settings: Final values not determined. To find out settings,
enter bitgen -h virtex . Values are in MHz.

Default: The default is the first item listed with bitgen -
h virtex command.

Architectures: Virtex

Settings: Cclk (pin—see Note), UserClk (user-supplied),
JtagCLK

Default: Cclk

Development System Reference Guide

13-30 Xilinx Development System

CclkPin

Adds an internal pull-up to the Cclk pin. The Pullnone setting
disables the pullup.

DonePin

Adds an internal pull-up to the DonePin pin. The Pullnone setting
disables the pullup.

Use this option only if you are planning to connect an external pull-
up resistor to this pin. The internal pull-up resistor is automatically
connected if you do not use this option.

M0Pin

The M0 pin is used to determine the configuration mode. Adds an
internal pull-up, pull-down or neither to the M0 pin. The following
settings are available. The default is PullUp. Select Pullnone to
disable both the pull-up resistor and pull-down resistor on the M0
pin.

M1Pin

The M1 pin is used to determine the configuration mode. Adds an
internal pull-up, pull-down or neither to the M1 pin. The following
settings are available. The default is PullUp.

Architectures: Virtex

Settings: Pullnone, Pullup

Default: Pullup

Architectures: Virtex

Settings: Pullup , Pullnone

Default: Pullup

Architectures: Virtex

Settings: Pullup , Pulldown , Pullnone

Default: Pullup

BitGen

Development System Reference Guide 13-31

Select Pullnone to disable both the pull-up resistor and pull-down
resistor on the M1 pin.

M2Pin

The M2 pin is used to determine the configuration mode. Adds an
internal pull-up, pull-down or neither to the M2 pin. The default is
PullUp. Select Pullnone to disable both the pull-up resistor and
pull-down resistor on the M2 pin.

ProgPin

Adds an internal pull-up to the ProgPin pin. The Pullnone setting
disables the pullup. The pull-up affects the pin after configuration.

TckPin

Adds a pull-up, a pull-down or neither to the TCK pin, the JTAG test
clock. Selecting one setting enables it and disables the others. The
Pullnone setting indicates there is no connection to either the pull-up
or the pull-down.

Architectures: Virtex

Settings: Pullup , Pulldown , Pullnone

Default: Pullup

Architectures: Virtex

Settings: Pullup , Pulldown , Pullnone

Default: Pullup

Architectures: Virtex

Settings: Pullup , Pullnone

Default: Pullup

Architectures: Virtex

Settings: Pullup , Pulldown , Pullnone

Default: Pullup

Development System Reference Guide

13-32 Xilinx Development System

TdiPin

Adds a pull-up, a pull-down, or neither to the TDI pin, the serial data
input to all JTAG instructions and JTAG registers. Selecting one
setting enables it and disables the others. The Pullnone setting
indicates there is no connection to either the pull-up or the pull-
down.

TdoPin

Adds a pull-up, a pull-down, or neither to the TdoPin pin, the serial
data output for all JTAG instruction and data registers. Selecting one
setting enables it and disables the others. The Pullnone setting
indicates there is no connection to either the pull-up or the pull-
down.

TmsPin

Adds a pull-up, pull-down, or neither to the TMS pin, the mode input
signal to the TAP controller. The TAP controller provides the control
logic for JTAG. Selecting one setting enables it and disables the
others. The Pullnone setting indicates there is no connection to either
the pull-up or the pull-down.

Architectures: Virtex

Settings: Pullup , Pulldown , Pullnone

Default: Pullup

Architectures: Virtex

Settings: Pullup , Pulldown , Pullnone

Default: Pullnone

Architectures: Virtex

Settings: Pullup , Pulldown , Pullnone

Default: Pullup

BitGen

Development System Reference Guide 13-33

GSR_cycle

Selects the Startup phase that releases the internal set-reset to the
latches, flip-flops, and BRAM output latches. The Done setting
releases GSR when the DoneIn signal is High. DoneIn is either the
value of the Done pin or a delayed version if DonePipe=Yes.

Keep should only be used when partial reconfiguration is going to be
implemented. Keep prevents the configuration state machine from
asserting control signals that could cause the loss of data.

GWE_cycle

Selects the Startup phase that asserts the internal write enable to flip-
flops, LUT RAMs, and shift registers. It also enables the BRAMs.
Before the Startup phase both BRAM writing and reading are
disabled.The Done setting asserts GWE when the DoneIn signal is
High. DoneIn is either the value of the Done pin or a delayed version
if DonePipe=Yes. The Keep setting is used to keep the current value
of the GWE signal.

GTS_cycle

Selects the Startup phase that releases the internal tristate control to
the IO buffers. The Done setting releases GTS when the DoneIn signal
is High. DoneIn is either the value of the Done pin or a delayed
version if DonePipe=Yes

Architectures: Virtex

Settings: Done, 1, 2, 3, 4, 5, 6, Keep

Default: 6

Architectures: Virtex

Settings: Done, 1, 2, 3, 4, 5, 6, Keep

Default: 6

Architectures: Virtex

Settings: Done, 1, 2, 3, 4, 5, 6, Keep

Default: 5

Development System Reference Guide

13-34 Xilinx Development System

LCK_cycle

Selects the Startup phase to wait until DLLs lock. If NoWait is
selected, the Startup sequence does not wait for DLLs.

DONE_cycle

Selects the Startup phase that activates the FPGA Done signal. Done
is delayed when DonePipe=Yes.

Persist

This option is needed for Readback and Partial Reconfiguration using
the configuration pins. It determines the data bus width and which
IOBs are always in Configuration mode. These IOBs will be excluded
from general use.

Architectures: Virtex

Settings: 0,1, 2, 3, 4, 5, 6, NoWait

Default: NoWait

Architectures: Virtex

Settings: 1, 2, 3, 4, 5, 6

Default: 4

Architectures: Virtex

Settings: No, X1, X8

Default: No

BitGen

Development System Reference Guide 13-35

Select X1 for serial modes or X8 for Super8 mode. The following table
illustrates which pins are persistent in serial and Super8
configurations.

DriveDone

This option actively drives CFG_DONE (Done) high as opposed to
using pullup.

DonePipe

This option is intended for use with FPGAs being set up in a high-
speed daisy chain configuration.When set to Yes, the FPGA waits on
the CFG_DONE (DONE) pin to go High and then waits for the first
clock edge before moving to the Done state.

Serial Modes Super8 Mode

CFG_RDY
(INIT) (I/O)

CFG_RDY
(INIT) (I/O)

DOUT (O) BUSY (O)

DIN (I) DATA 0 (I/O)

DATA 1 (I/O)

DATA 2 (I/O)

DATA 3 (I/O)

DATA 4 (I/O)

DATA 5 (I/O)

DATA 6 (I/O)

DATA 7 (I/O)

CS (I)

RDWR (I)

Architectures: Virtex

Settings: No, Yes

Default: No

Architectures: Virtex

Settings: No, Yes

Default: No

Development System Reference Guide

13-36 Xilinx Development System

Security

Selecting Level1 disables Readback. Selecting Level2 disables Read-
back and Partial Reconfiguration.

UserID

You can enter up to an 8-digit hexadecimal code in the User ID
register. You can use the register to identify implementation revi-
sions.

–h or –help (Command Usage)
–h architecture

Displays a usage message for BitGen. The usage message displays all
of the available options for BitGen operating on the specified
architecture.

–j (No BIT File)
Do not create a bitstream file (.bit file). This option is generally used
when you want to generate a report without producing a bitstream.
For example, if you wanted to run DRC without producing a
bitstream file, you would use the -j option.

Note: The .msk or .rbt files might still be created.

–l (Create a Logic Allocation File)
This option creates an ASCII logic allocation file (design.ll) for the
selected design. The logic allocation file indicates the bitstream
position of latches, flip-flops, and IOB inputs and outputs.

In some applications, you might want to observe the contents of the
FPGA internal registers at different times. The file created by the –l
option helps you identify which bits in the current bitstream
represent outputs of flip-flops and latches. Bits are referenced by
frame and bit number within the frame.

Architectures: Virtex

Settings: None, level1, Level2

Default: None

BitGen

Development System Reference Guide 13-37

The Hardware Debugger uses the design.ll file to locate signal
values inside a readback bitstream.

–m (Generate a Mask File)
Creates a mask file. This file is used to compare relevant bit locations
for executing a readback of configuration data contained in an
operating FPGA.

–n (Save a Tied design)
This command is used with the –t option (described below) to save
the tied NCD file as _file_name.ncd (note the underscore in front of the
file name). The tied design file is placed in the same directory as the
output file. It has the same root name as the output file with an .ncd
extension. If you do not specify an output file, the tied design file is
placed in the input file’s directory and is named _file_name.ncd,
where _file_name is the root name of the input file. Use TRACE to run
timing analysis on the tied design. You can also use EPIC to check the
effects of the tiedown. This option is not supported for Virtex.

–t (Tie Unused Interconnect)
This option causes all unused interconnect to be tied to a logic low or
to a known level, keeping internal noise and power consumption to a
minimum. When you use the –t option, DRC runs first (before
tiedown). BitGen terminates if any DRC error occurs. A DRC
warning does not cause the bitstream generation program to abort,
but it may cause tiedown to fail.

After DRC, the –t option does the following.

• Ties all possible unused interconnect to tie sites or unused CLB
outputs and configures those outputs with a logic low (F=0 or
G=0)

• Attempts to tie any remaining interconnect to CLB outputs which
have not been designated as critical

• Attempts to tie remaining interconnect to the global or to the
auxiliary clock buffer outputs if unused (only in conjunction with
the -a option)

Development System Reference Guide

13-38 Xilinx Development System

The only condition under which tie will add interconnect to a
“critical” net is if you use the –u option (allowing interconnect to be
added to critical nets as a “last resort”). A “critical” net is one with a
priority greater than 3.

The –t option does not add an XC4000 or XC5200 tristate buffer input
(I) pin or tristate (T) pin to a net.

When you add interconnect to used CLB or buffer outputs, delays
may be added on any net to which the outputs are connected. To
prevent the added delay, assign the net a priority greater than 3. You
can do this through the physical constraints file or through EPIC. See
the PRIORITIZE physical constraint in the “Attributes, Constraints,
and Carry Logic” chapter of the Libraries Guide. Note that flagging too
many nets as critical could cause the tiedown to fail. When an
interconnect is tied to a user-defined net, you get a message giving
the number of nodes added to the net. Delay characteristics for the
net associated with that source may change. (Only in conjunction
with the -a option)

When certain pins cannot be tied, you receive a warning message
supplying information about the design’s untied interconnect.

To remove the obstacles that have caused tiedown to fail, look
carefully at nets close to an untied PIP. An input pin could have
multiple input PIPs, and all of them could source the pin. If each of
these PIPs is associated with a critical net, they are not used, and the
input pin is left untied. To correct the problem, make one of the nets
“non-critical.” Do this by removing the PRIORITIZE constraint from
the net in the PCF file or in EPIC. Then run TRACE (the timing
analysis program) and evaluate any delay that might have been
added to the net. (Only in conjunction with the -a option)

If you use the –n option, the tied design is saved in a file
_file_name.ncd (note the underscore before the file name). You can
load the file into EPIC and examine the results of tiedown. You can
look at all of the original nets that have been affected by tiedown and
the net delays before and after tiedown.

Like unused internal interconnect, unused external I/O pins on the
chip must also have defined signal levels, that is, they must not be in
a floating condition. In XC4000E/EX FPGAs, unused IOBs are
automatically pulled HIGH with pull-up resistors.

BitGen

Development System Reference Guide 13-39

Partial tiedown is the new default. Tiedown will print the number of
untied nodes and then continue. See the -a option also. Partial
tiedown never ties to user signals.

This option is not supported for Virtex.

–u (Use Critical Nets Last)
Because of possible added delay, tiedown does not add interconnect
to any net that has been assigned a priority greater than 3. This option
allows interconnect to be added to critical nets as a “last resort.”

This option is not supported for Virtex.

–w (Overwrite Existing Output File)
Enables you to overwrite an existing BIT, LL, MSK, or RBT output
file.

Development System Reference Guide

13-40 Xilinx Development System

Development System Reference Guide—October 1998 14-1

Chapter 14

PROMGen

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

This chapter describes PROMGen. The chapter contains the
following.

• “PROMGen”

• “PROMGen Syntax”

• “PROMGen Files”

• “PROMGen Options”

PROMGen
PROMGen formats a BitGen-generated configuration bitstream (BIT)
file into a PROM format file. The PROM file contains configuration
data for the FPGA device. PROMGen converts a BIT file into one of
three PROM formats: MCS-86 (Intel), EXORMAX (Motorola), or
TEKHEX (Tektronix). It can also generate a Hex file format.

Development System Reference Guide

14-2 Xilinx Development System

Figure 14-1 PROMGen

There are two functionally equivalent versions of PROMGen. There is
a stand-alone version you can access from an operating system
prompt. There is also an interactive version, called the PROM File
Formatter, that you can access from inside the Design Manager. This
chapter first describes the stand-alone version; the interactive version
is described in the PROM File Formatter Reference/User Guide.

You can also use PROMGen to concatenate bitstream files to daisy-
chain FPGAs.

Note: If the destination PROM is one of the Xilinx Serial PROMs, you
are using a Xilinx PROM Programmer, and the FPGAs are not being
daisy-chained, it is not necessary to make a PROM file. See the
Hardware User Guide for more information about daisy-chained
designs.

PROMGen Syntax
To start PROMGen from the operating system prompt, use the
following syntax.

 promgen [options]

Options can be any number of the options listed in the “PROMGen
Options” section. Separate multiple options with spaces.

X7211

BIT

MCS

PROM File

PROMGen

Device Configuration

TEK

PROM File HEXEXO

PROM File

PRM

Memory Map

PROMGen

Development System Reference Guide 14-3

PROMGen Files
This section describes the PROMGen input and output files.

Input Files
The input to PROMGEN consists of BIT files— one or more bitstream
files. BIT files contain configuration data for an FPGA design.

Output Files
Output from PROMGEN consists of the following files.

• PROM files—The file or files containing the PROM configuration
information. Depending on the PROM file format your PROM
programmer uses, you can output a TEK, MCS, or EXO file. If
you are using a microprocessor to configure your devices, you
can output a HEX file, which contains a hexadecimal
representation of the bitstream.

• PRM file—The PRM file is a PROM image file. It contains a
memory map of the output PROM file. The file has a .prm exten-
sion.

Bit Swapping in PROM Files
PROMGen produces a PROM file in which the bits within a byte are
swapped compared to the bits in the input BIT file. Bit swapping
(also called “bit mirroring”) reverses the bits within each byte, as
shown in the following figure.

Development System Reference Guide

14-4 Xilinx Development System

Figure 14-2 Bit Swapping

In a bitstream contained in a BIT file, the Least Significant Bit (LSB) is
always on the left side of a byte. But when a PROM programmer or a
microprocessor reads a data byte, it identifies the LSB on the right
side of the byte. In order for the PROM programmer or
microprocessor to read the bitstream correctly, the bits in each byte
must first be swapped so they are read in the correct order.

In this release of the Xilinx Development System, the bits are
swapped for all of the PROM formats: MCS, EXO, and TEK. For a
HEX file output, bit swapping is on by default, but it can be turned
off by entering a –b PROMGen option that is available only for HEX
file format.

X8074

Original Data 1 0 0 0 1 0 1 0
8 A

5 1
Data in PROM File or HEX File 0 1 0 1 0 0 0 1

PROMGen

Development System Reference Guide 14-5

PROMGen Options
This section describes the options that are available for the
PROMGen command.

–b (Disable Bit Swapping—HEX Format Only)
This option only applies if the –p option specifies a HEX file for
the output of PROMGen. By default (no –b option), bits in the
HEX file are swapped compared to bits in the input BIT files. If
you enter a –b option, the bits are not swapped. Bit swapping is
described in the “Bit Swapping in PROM Files” section.

–d (Load Downward)
promgen –d hexaddress0 filename filename...

This option loads one or more BIT files from the starting address in a
downward direction. Specifying several files after this option causes
the files to be concatenated in a daisy chain. You can specify multiple
–d options to load files at different addresses. You must specify this
option immediately before the input bitstream file.

Here is the multiple file syntax.

promgen –d hexaddress0 filename filename...

Here is the multiple –d options syntax.

promgen –d hexaddress1 filename –d hexaddress2 filename...

 –f (Execute Commands File)
 –f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

 –help (Command Help)
This option displays help that describes the PROMGen options.

Development System Reference Guide

14-6 Xilinx Development System

 –n (Add BIT FIles)
–n file1[.bit] file2[.bit]...

This option loads one or more BIT files up or down from the next
available address following the previous load. The first –n option
must follow a –u or –d option because -n does not establish a
direction. Files specified with this option are not daisy-chained to
previous files. Files are loaded in the direction established by the
nearest prior –u, –d, or –n option.

The following syntax shows how to specify multiple files. When you
specify multiple files, PROMGen daisy-chains the files.

promgen –d hexaddress file0 –n file1 file2...

The syntax for using multiple –n options follows. Using this method
prevents the files from being daisy-chained.

promgen –d hexaddress file0 –n file1 –n file2...

 –o (Output File Name)
–o file1[. ext] file2[. ext]...

This option specifies the output file name of a PROM if it is different
from the default. If you do not specify an output file name, the PROM
file has the same name as the first BIT file loaded.

ext is the extension for the applicable PROM format.

Multiple file names may be specified to split the information into
multiple files. If only one name is supplied for split PROM files (by
you or by default), the output PROM files are named file_#.ext, where
file is the base name, # is 0, 1, etc., and ext is the extension for the
applicable PROM format.

promgen –d hexaddress file0 –o filename

PROMGen

Development System Reference Guide 14-7

 –p (PROM Format)
–p {mcs | exo | tek | hex }

This option sets the PROM format to one of the following: MCS (Intel
MCS86), EXO (Motorola EXORMAX), TEK (Tektronix TEKHEX). The
option may also produce a HEX file, which is a hexadecimal
representation of the configuration bitstream used for microprocessor
downloads. If specified, the –p option must precede any –u, –d, or –n
options. The default format is MCS.

–r (Load PROM File)
–r promfile

This option reads an existing PROM file as input instead of a BIT file.
All of the PROMGen output options may be used, so the –r option
can be used for splitting an existing PROM file into multiple PROM
files or for converting an existing PROM file to another format.

 –s (PROM Size)
–s promsize1 promsize2...

This option sets the PROM size in kilobytes. The PROM size must be
a power of 2. The default value is 64 kilobytes. The –s option must
precede any –u, –d, or –n options.

Multiple promsize entries for the –s option indicates the PROM will be
split into multiple PROM files.

Note: PROMGen PROM sizes are specified in bytes. The
Programmable Logic Data Book specifies PROM sizes in bits for Xilinx
serial PROMs (see –x option).

 –u (Load Upward)
–u hexaddress0 filename1 filename2...

This option loads one or more BIT files from the starting address in an
upward direction. When you specify several files after this option,
PROMGen concatenates the files in a daisy chain. You can load files at
different addresses by specifying multiple –u options.

This option must be specified immediately before the input bitstream
file.

Development System Reference Guide

14-8 Xilinx Development System

 –x (Specify Xilinx PROM)
–x xilinx_prom1 xilinx_prom2...

The –x option specifies one or more Xilinx serial PROMs for which
the PROM files are targeted. Use this option instead of the –s option if
you know the Xilinx PROMs to use.

Multiple xilinx_prom entries for the –x option indicates the PROM
will be split into multiple PROM files.

Examples
To load the file test.bit up from address 0x0000 in MCS format, enter
the following information at the command line.

promgen –u 0 test

To daisy-chain the files test1.bit and test2.bit up from address 0x0000
and the files test3.bit and test4.bit from address 0x4000 while using a
32K PROM and the Motorola EXORmax format, enter the following
information at the command line.

promgen –s 32 –p exo –u 00 test1 test2 –u 4000
test3 test4

To load the file test.bit into the PROM programmer in a downward
direction starting at address 0x400, using a Xilinx XC1718D PROM,
enter the following information at the command line.

promgen –x xc1718d –d 0x400 test

To specify a PROM file name that is different from the default file
name enter the following information at the command line.

promgen options filename –o newfilename

Development System Reference Guide — October 1998 15-1

Chapter 15

NGDAnno

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

This chapter describes the NGDAnno program. The chapter contains
the following sections.

• “Back-Annotation”

• “NGDAnno”

• “NGDAnno Syntax”

• “NGDAnno Files”

• “NGDAnno Options”

• “Dedicated Global Signals in Back-Annotation Simulation”

• “Hierarchy Changes in Annotated Designs”

Development System Reference Guide

15-2 Xilinx Development System

Back-Annotation
In the back-annotation process, physical design information,
including timing values, is distributed back to the logical design for
back-end simulation.

In the Xilinx Development System, back-annotation for FPGA
designs operates as follows.

• NGDAnno distributes delays, setup and hold times, and pulse
widths in the physical NCD design file onto the logical design
view represented in the NGD file. Physical component locations
for PADs are also combined with the information in the NGD file.

NGDAnno output is an NGA (Generic Annotated) file containing
the logical design with annotations.

• The annotated design NGA file is input to one of the netlist
writers (NGD2EDIF, NGD2VER, or NGD2VHDL), which
translates the back-annotated information into netlist format for
simulation.

In addition to back-annotating a fully routed design, the Xilinx
Development System lets you back-annotate an unrouted design or
create an output netlist to allow simulation of the design at different
stages. For example, if you want to verify that the circuit logic is
correct before you place and route your design with the Xilinx
Development System tools, you can use the data in an unmapped
NGD (Generic Description) design as input to the NGD2EDIF,
NGD2VER, or NGD2VHDL program and run a simulation program
on the resulting netlist. To simulate with component, and not route
delays, you can run back-annotation on the unrouted NCD file from
the MAP program.

The back-annotation flow is shown in the following figure.

NGDAnno

Development System Reference Guide 15-3

Figure 15-1 Back-Annotation

You can run back-annotation by invoking NGDAnno and netlist
reader programs from the UNIX or DOS command line or from the
Design Manager/Flow Engine. Command line usage is explained in
this chapter and in the netlist reader chapters. To use the Design
Manager/Flow Engine for any of the programs, see the Design
Manager/Flow Engine Reference/User Guide.

NGDAnno
NGDAnno distributes delays, setup and hold times, and pulse
widths in the physical NCD design file onto the logical design view
represented in the NGD.

NGDAnno merges mapping information from the NGM file and
placement, routing, and timing information from the NCD file and
puts this data in an NGA (Generic Annotated) file (see the “Back-
Annotation” figure).

PAR

X7222

NGDAnno

NGD2EDIF

MAP

NGD

Logical Design

NCD

Physical Design

(Mapped)

NCD

Physical Design

(Placed and Routed)

NGM

NGD2VER

NGD2VHDL

NGA

EDIF

VHD

SDF

SDF

V

PCF

*

*

*Command line only

Development System Reference Guide

15-4 Xilinx Development System

The NGA file is input to the appropriate translation program
(NGD2EDIF, NGD2VHDL, or NGDVER) used to convert the Xilinx
format back to a netlist.

Note: If you make logical changes to an NCD design in EPIC, and
change the functional behavior of your design, NGDAnno cannot
correlate the changed objects in the physical design with the objects
in the logical design. It recreates the entire NGA design from the
NCD file. You get a warning indicating that the NCD file is no longer
synchronized with the NGM file, and that a new NGA file has been
created from the NCD file.

NGDAnno Syntax
To perform back-annotation from the UNIX or DOS command line,
enter the following.

ngdanno [options] ncd_file[.ncd] [ngm_file[.ngm]]

Ncd_file is the input NCD (physical design file). If you specify an
NCD file on the command line without specifying an NGM file, an
NGA file is generated from the NCD only. The NGA file contains
annotated information about the physical implementation, but there
is no logical view of the design. If you specify both an NCD and an
NGM file, the resulting NGA file contains both logical and physical
information for the annotated design

Ngm_file is an optional NGM file—a mapped design file containing
information about the physical design and information about how
the physical design corresponds to the logical design. You must
specify the NGM file for NGDAnno to use the file as input. In
general, the NGM file should be used, especially with HDL synthesis-
based designs. In the HDL design flow, the NGM file can help to
regroup logic based on the original design hierarchy.

If you do not specify an NGA file with the –o option (described in the
“NGDAnno Options” section), an NGA file is generated in the same
directory as the NCD. The NGA file has the same root name as the
NCD file.

NGDAnno

Development System Reference Guide 15-5

NGDAnno Files
This section describes the NGDAnno input and output files.

Input Files
Input to the NGDAnno program is the following.

• NCD file—Physical design file. The design may be mapped only,
partially or fully placed, and partially or fully routed.

• NGM file (optional but recommended)—Mapped NGD file
created by the MAP program.

• PCF file (optional)—Physical constraints file.

Output Files
Output from the NGDAnno program is the following.

• NGA file—A back-annotated NGD file.

• ALF file—An annotation report file containing information about
the NGDAnno run. The ALF file has the same root name as the
output NGA file and an .alf extension. The file is written into the
same directory as the output NGA file.

The following warning appears on your screen and in the ALF report
file if a logical annotation failure occurs.

WARNING:basna:22 - NGDANNO found physical components
for which 100 percent back-annotation is not possible.
(These components are listed below.) Some reasons
these components may not be fully back-annotatable
include:

1. The logic was replicated during physical mapping.

2. MAP was directed to optimize the logic through use
of the -oe or -os option, or the OPTIMIZE or
OPT_EFFORT design attribute.

3. The component's configuration implies a more
complex delay model than can be accurately represented
in the original design logic. An example of such a
configuration is an XC4000-family CLB containing both
carry logic and multiple flip-flops.

Development System Reference Guide

15-6 Xilinx Development System

Simulation models for the following components will be
constructed from the NCD netlist. Signal names buried
within these components will be lost.

When using minimum or prorated delays rather than standard
delays (for example, when using the -s min option or when you have
included prorating constraints in your PCF file), one of the following
warnings appears on your screen and in the ALF report file.

WARNING – the delay calculations are different from
the standard delays. These are MINIMUM delays and
therefore represent timing delays which may not
accurately reflect the typical process delays.

or

WARNING – the delay calculations are different from
the standard delays. These are PRORATED delays and
therefore represent timing delays which may not
accurately reflect the typical process delays.These
delays were calculated at 50C and 3.3V.

At the end of the operation, the following summary appears listing
the number of annotated logical models, annotated physical models,
and annotated physical macros.

119 logical models annotated

4 physical models annotated

6 macros annotated

In this case, the netlist writer looks at each physical block in the NGA
file. If its logical model was annotated, the logic model (including all
user signals and primitives it contains) is used in the simulation
netlist. If the physical model was annotated, the physical view of the
block (containing Xilinx-generated signals and primitives) is used in
the simulation netlist.

NGDAnno

Development System Reference Guide 15-7

NGDAnno Options
This section contains descriptions of NGDAnno command line
options.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–o (Output File Name)
–o out_file[.nga]

The -o option specifies the output design file in NGA format. The
.nga extension is optional. The output file name and its location are
determined in this way.

• If you do not specify an output file name with the –o option, the
output file has the same name as the input NCD file, with an .nga
extension. The file is placed in the input NCD file’s directory.

• If you specify an output file name with no path specifier (for
example, cpu_dec.nga instead of /home/designs/
cpu_dec.nga), the NGA file is placed in the current working
directory.

• If you specify an output file name with a full path specifier (for
example, /home/designs/cpu_dec.nga), the output file is
placed in the specified directory.

If the output file already exists, it is overwritten with the new NGA
file.

–p (PCF File)
-p pcf_file.pcf

The –p option allows you to specify a PCF (Physical Constraints) file
as input to NGDAnno. You only need to specify a constraints file if it
contains the following.

Development System Reference Guide

15-8 Xilinx Development System

• Level information (CMOS or TTL) for IOBs in a 4000E or 4000EX
design

• Prorating constraints

Prorating constraints and prorated delays are described in the
“OFFSET Timing Specifications” section of the “Using Timing
Constraints” chapter.

-s (Change Speed)
-s [speed]

The -s option instructs NGDAnno to annotate the device speed you
specify to the NGA file.

The device speed can be entered with or without the leading dash. For
example, both –s 3 and –s –3 are allowable entries.

Some architectures support the -s min option. This option instructs
NGDAnno to annotate a minimum delay, rather than a maximum
worst-case delay, to the NGA file. The command line syntax is the
following.

-s min

-s -min is not an allowable entry.

Note: Settings made with the -s min option override any prorated
timing analysis.

Dedicated Global Signals in Back-Annotation
Simulation

This section presents information on how global signals are treated in
back-annotation simulation.

XC3000A/L and 3100A/L
In XC3000 devices, the global reset signal (whose name varies
depending on the CAE vendor) is assigned a pin on the device. You
must include this pin in your call to the top level module and
stimulate the pin. The global reset signal should be pulsed low to
reset all flip-flops in the design, then held high for normal operation.

NGDAnno

Development System Reference Guide 15-9

XC4000E/L, XC4000EX/XL/XV/XLA, and Spartan
For XC4000 and Spartan devices, a high signal on the GSR (Global
Set/Reset) net initializes each flip-flop and latch to the state (0 or 1)
specified by its INIT property (default is 0). A high signal on GTS
(Global Tri-State) sets all outputs to a tristate condition. If you have
not used the STARTUP component in your original design, these
signals are initialized to their inactive states. Otherwise, you must
stimulate the input GSR and GTS pins of the STARTUP device either
directly or via logic from explicit pins on the device. For a description
of the STARTUP component, see the “Design Elements (SOP3 to
XORCY_L)” chapter of the Libraries Guide.

XC5200
In XC5200 devices, GR (Global Reset) is assigned a pin on the device.
You must include this pin in your call to the top level module and
stimulate the pin. The global reset signal is active-High. A high signal
on GTS (Global Tri-State) sets all outputs to a tristate condition. If you
have not used the STARTUP component in your original design,
these signals are initialized to their inactive states. Otherwise, you
must stimulate the input GR and GTS pins of the STARTUP device
either directly or via logic from explicit pins on the device. For a
description of the STARTUP component, see the “Design Elements
(SOP3 to XORCY_L)” chapter of the Libraries Guide.

Virtex
For Xilinx Virtex devices, a high signal on the GSR (Global Set/Reset)
net initializes each flip-flop and latch to the state (0 or 1) specified by
its INIT property (default is 0) and Block RAM data outputs to 0. LUT
RAM, Block RAM content, DLL, and SRL are not affected by GSR. A
high signal on GTS (Global Tri-State) sets all outputs to a tristate
condition. If you have not used the STARTUP_VIRTEX component in
your original design, these signals are initialized to their inactive
states. Otherwise, you must stimulate the input GSR and GTS pins of
the STARTUP_VIRTEX device either directly or via logic from explicit
pins on the device. For a description of the STARTUP_VIRTEX
component, see the “Design Elements (SOP3 to XORCY_L)” chapter
of the Libraries Guide.

Development System Reference Guide

15-10 Xilinx Development System

Hierarchy Changes in Annotated Designs
NGDAnno may flatten part of your original design hierarchy when
generating a simulation netlist under the following conditions.

• Logical correlation loss on a CLB due to logic optimization and
logic replication during mapping

• Logic mapped in this way is located in different parts of the
design hierarchy

For example, if a flip-flop with the hierarchical name A/B/X is
merged with a flip-flop named A/C/Y, and the resulting CLB is
affected by optimization or logic replication, hierarchical blocks A/B
and A/C are flattened out of the netlist. The two flip-flops now lie at
the same level of hierarchy (the A level) and are replaced by the CLB
physical model.

The netlist readers NGD2EDIF, NGD2VER, and NGD2VHDL
generate a warning for each hierarchical block that is flattened.

Development System Reference Guide — October 1998 16-1

Chapter 16

NGD2EDIF

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

• XC9500

• XC9500XL

This chapter describes the NGD2EDIF program. The chapter contains
the following sections.

• “NGD2EDIF”

• “NGD2EDIF Syntax”

• “NGD2EDIF Files”

• “NGD2EDIF Options”

• “XMM (RAM Initialization) File”

Development System Reference Guide

16-2 Xilinx Development System

NGD2EDIF
NGD2EDIF produces an EDIF 2 0 0 netlist in terms of the Xilinx
primitive set, allowing you to simulate pre- and post-route designs.

NGD2EDIF can produce an EDIF file representing a design in any of
these stages.

• An unmapped design—To translate an unmapped design, the
input to NGD2EDIF is an NGD file—a logical description of your
design. The output from NGD2EDIF is an EDIF file containing a
functional description of the design without timing information.

• A mapped, unrouted design—To translate a mapped design that
has not been placed and routed, the input to NGD2EDIF is an
NGA file— an annotated logical description of your design—
generated from a mapped physical design. The output from
NGD2EDIF is an EDIF file containing a functional description of
the design and timing information containing component delays
but without routing delays.

• A routed design—To translate a design which has been placed
and routed, the input to NGD2EDIF is an NGA file generated
from a routed physical design. The output from NGD2EDIF is an
EDIF file containing a functional description of the design and
timing information containing both component and routing
delays.

The design flow for NGD2EDIF is shown in the following figure.

NGD2EDIF

Development System Reference Guide 16-3

Figure 16-1 NGD2EDIF Design Flow

NGD2EDIF Syntax
To invoke the NGD2EDIF translation program from the UNIX or
DOS command line, enter the following.

ngd2edif [options] infile[.ngd |.nga] [outfile[.edn]]

Options can be any number of the NGD2EDIF options listed in the
“NGD2EDIF Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

Infile[.ngd |.nga] indicates the input file. If you enter a file name
without an extension, NGD2EDIF looks for a file with an .nga
extension and the name you specified. If you want to translate an
NGD file, you must enter the .ngd extension. Without the .ngd
extension NGD2EDIF does not use the NGD file as input, even if an
NGA file is not present.

Outfile[.edn] is the name of the NGD2EDIF output file if you want to
name it other than the root NGD design name. If you do not give an
extension, .edn is added.

NGD2EDIF

NGA (Annotated Design)

or

NGD (Logical Design)

XMM

RAM Initialization

(Optional)

EDIF 2 0 0 Netlist

(for Simulation)

X7227

Development System Reference Guide

16-4 Xilinx Development System

Note: If you are using the Viewlogic design entry tools, the outfile
name must be different from the original design name, to avoid
conflict with the original WIR and EDIF files. See the “Timing
Simulation” chapter in the Viewlogic Interface/Tutorial Guide for details.

NGD2EDIF Files
This section describes the NGD2EDIF input and output files.

Input Files
Input to the NGD2EDIF program can be either of the following files.

• NGA file—a back-annotated logical design file containing Xilinx
primitive components

• NGD file—a logical design file containing Xilinx primitive
components

Output Files
Output from NGD2EDIF consists of the following files.

• EDN file—a netlist in EDIF format. The default EDN file
produced by NGD2EDIF is generic. If you want to produce EDIF
targeted to Mentor Graphics or Viewlogic, you must include the
–v option (described in the “–v (Vendor)” section) on the
command line.

• XMM file— an optional RAM initialization file, which defines the
initial contents of the RAMs in the design for the simulator. The
file is described in the “XMM (RAM Initialization) File” section.

If an XMM file is generated, it has the same base name and is
written into the same directory as the output EDIF netlist.

NGD2EDIF

Development System Reference Guide 16-5

NGD2EDIF Options
This section describes the options to the NGD2EDIF command.

–a (Write All Properties)
The –a option causes NGD2EDIF to write all properties into the
output EDIF netlist. The default is to write only timing delay
properties and certain other properties that define the behavior of the
design logic (for example, RAM INIT properties). In most cases the –a
option is not necessary. Check with your simulation vendor on
whether this option is a requirement for their tools.

–b (Use Buffers to Model Delays)
The –b option causes NGD2EDIF to model certain delays using
buffers. The proper setting for the –b and –i options is chosen
automatically if you entered a –v option. If your SIMPRIMs library
vendor is not one of the supported values for the –v option, consult
the vendor for the proper –b and –i option settings.

–c (Reference Design Name as Specified—Mentor)
The –c option applies to the Mentor Graphics design flow. The option
ensures that the output of Mentor’s ENRead (EDIF reader) program
is an EDDM Single Object simulation model registered to the design
component located in the current directory.

If the –c option is not specified, a library entry in the EDIF file
instructs ENRead to place the simulation model in a subdirectory
named design_lib. For example, if your design name is adder4,
ENRead places the simulation model in the subdirectory adder4_lib/
adder4.

If the –c option is specified, the library entry in the EDIF file instructs
ENRead to place the simulation model directly in the design
directory. For example, the simulation model for the design adder4 is
placed in the current directory right under adder4 (as opposed to
being placed in adder4_lib/adder4). In this directory, the Mentor
simulator finds the simulation model.

If you specify the –c option, you must also specify both the –n
(Generate Flattened Netlist) option and the –v (Vendor) option, with
the –v option specifying -v mentor .

Development System Reference Guide

16-6 Xilinx Development System

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–i (Annotate Timing Properties to Instances)
The –i option causes NGD2EDIF to annotate all timing properties to
instances. The proper setting for the –i and –b options are chosen
automatically if you entered a –v option. If your SIMPRIMs library
vendor is not one of the supported values for the –v option, consult
the vendor for the proper –i and –b option settings.

–l (Local Scope)
The –l option gives dedicated signals (such as the global SET/RESET
signal) local (non-global) scope. If your simulation vendor is
Foundation, Mentor Graphics, or Viewlogic, the default NGD2EDIF
action is to give dedicated signals global scope. If you are simulating
a board-level schematic which references more than one Xilinx
device, the global dedicated signals from each netlist are implicitly
connected by the simulator. If this is not what you want, use the –l
option to make the signals local to each device. You then need to
reference each dedicated signal by the appropriate hierarchically-
qualified signal name.

If your simulation vendor is not Foundation, Mentor Graphics, or
Viewlogic, the –l option is enabled by default.

–n (Generate Flattened Netlist)
The –n option writes out a flattened netlist.

–v (Vendor)
–v vendor

The –v option specifies the CAE vendor toolset that uses the resulting
EDIF file. Allowable entries are viewlog (for Viewlogic), mentor ,
and fndtn (for Foundation).

NGD2EDIF

Development System Reference Guide 16-7

The –v option customizes the output EDIF file for the specified
vendor’s simulator. The option also determines whether an XMM
(RAM initialization) file is produced and the format of the file (if one
is produced). The XMM file is described in the next section.

–vpt (Mentor Viewpoint)
–vpt viewpoint_name

The –vpt option specifies the desired viewpoint for a Mentor EDIF
output.

–w (Overwrite Output)
The –w option specifies to overwrite the output file.

XMM (RAM Initialization) File
The XMM file defines the initial contents of the RAMs in the design
for the simulator. An XMM file is only created if the design contains
RAMs. Some simulators require an XMM file; other simulators can
read the RAM initialization directly from the output EDIF file and do
not need a separate XMM file. The way you use the file depends on
the simulator vendor you specify with the –v option to NGD2EDIF.

• If you are using a Viewlogic simulator (–v viewlog), an XMM file
is created in LOADM format for use by ViewSim. See the “Timing
Simulation” chapter in the Viewlogic Interface/Tutorial Guide for
information on loading the XMM file into ViewSim.

• If you are using a Mentor Graphics simulator (–v mentor), no
XMM file is created. QuickSim takes the RAM initialization
information directly from the EDIF netlist.

• If you are using another simulator (no –v option), an XMM file is
generated in a generic format, which is described in the next
section. Your simulator may or may not need this separate file;
consult your vendor’s documentation for details.

Note: RAM initialization data is not created for the Virtex Block
RAM.

Development System Reference Guide

16-8 Xilinx Development System

Generic File Format for XMM File
This section describes the format of the generic XMM file, which is
created when the vendor (–v) option is not specified for NGD2EDIF.
Consult you simulator vendor’s documentation to determine how to
use this generic XMM file.

In most cases you do not need to understand the format of the
generic XMM file. The following information is provided for
reference.

For ease of processing by scripting languages, the generic
initialization file consists of newline-separated records. Each record
has the following three tokens, separated by white space, with the
position of each token denoting its meaning.

primitive_type instance_name init_value

The tokens are defined as follows.

Primitive_type is the name of a RAM primitive in the SIMPRIMs
library. It is a string value.

Instance_name is a hierarchically-qualified instance name for a
particular RAM SIMPRIM in the design. It is a string value.
Hierarchical names are separated by the forward slash (/) character.

The instance_name is expressed in terms of the names in the original
design, not in terms of the EDIF identifiers. The original names are
more likely to correlate to the original design, but are not checked for
uniqueness and may not be legal for the simulation interface. The
simulation interface must read the generic initialization file to resolve
these problems.

Init_value represents the contents of the specified RAM instance. The
init_value is a hexadecimal number with a 0x prefix. The most
significant bit of this number should be loaded into the highest
address of the RAM, continuing so that the least-significant bit is
loaded into the lowest address of the RAM. As with the INIT
property value, a one-bit-wide RAM is assumed. The number is
padded with zeroes so that the number of bits exactly matches the
number of addressable locations in the RAM primitive.

NGD2EDIF

Development System Reference Guide 16-9

Example

An example generic initialization file is shown following.

X_RAMS16 $1I32/$1I47/FIFO/BANK03 0x6A47
X_RAM32 TOP/IFC/DATA/O7 0x003F097D
X_RAMD16 TOP/$3I107/$7I100 0x0000

The generic initialization file also contains several comment lines that
document when and how the file was made and describe the file
format. Each comment line begins with a pound (#) character; these
lines can be ignored by programs using the initialization file.

Development System Reference Guide

16-10 Xilinx Development System

Development System Reference Guide — October 1998 17-1

Chapter 17

NGD2VER

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

• XC9500

• XC9500XL

The chapter contains the following sections.

• “NGD2VER”

• “NGD2VER Syntax”

• “NGD2VER Files”

• “NGD2VER Options”

• “Setting Global Set/Reset (FPGAs)”

• “Setting Global Tristate (FPGAs)”

• “Setting Global PRLD (CPLDs)”

• “Oscillator Functions (OSC, OSC4, OSC5)”

• “NGD2VER Notes”

Development System Reference Guide

17-2 Xilinx Development System

NGD2VER
NGD2VER translates your design into a Verilog HDL file containing
a netlist description of your design in terms of Xilinx simulation
primitives. You can use the Verilog file to perform a back-end
simulation with a Verilog simulator.

Simulation is based on SIMPRIMs, which create simulation models
using basic simulation primitives. For example, a primitive for the
XC4000 dual-port RAM does not exist in the Verilog SIMPRIM library
files. Instead, if a dual-port RAM is needed, NGD2VER builds a
simulation model for the dual-port RAM out of two 16x1 RAM
SIMPRIM primitives.

NGD2VER can produce a Verilog file representing a design at any of
the following stages.

• An unmapped design—To translate an unmapped design, the
input to NGD2VER is an NGD file—a logical description of your
design. The output from NGD2VER is a Verilog file containing a
functional description of the design without timing information.

• A mapped, unrouted design—To translate a mapped design
which has not been placed and routed, the input to NGD2VER is
an NGA file— an annotated logical description of your design—
generated from a mapped physical design. The output from
NGD2VER is a Verilog file containing a functional description of
the design, and an additional SDF (Standard Delay Format) file
containing timing information. The SDF file contains component
delays without routing delays.

• A routed design—To translate a design that has been placed and
routed, the input to NGD2VER is an NGA file generated from a
routed physical design. The output from NGD2VER is a Verilog
file containing a functional description of the design and an SDF
file containing both component and routing delays.

The design flow for NGD2VER is shown in the following figure.

NGD2VER

Development System Reference Guide 17-3

Figure 17-1 NGD2VER Design Flow

NGD2VER Syntax
The following command translates your design to a Verilog file.

ngd2ver [options] infile[.ngd |.nga] [outfile[.v]]

Options can be any number of the NGD2VER options listed in the
“NGD2VER Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

Infile [.ngd |.nga] is the input NGD or NGA file. If you enter a file
name with no extension, NGD2VER looks for a file with an .nga
extension and the name you specified. If you want to translate an
NGD file, you must enter the .ngd extension. Without the .ngd
extension NGD2VER does not use the NGD file as input, even if an
NGA file is not present.

Outfile[.v] indicates the file to which the Verilog output of NGD2VER
is written. Default is infile.v (infile is the same root name as the input
file). The SDF file has the same root name as the Verilog file.

NGD2VER

V

Verilog Netlist

(for Simulation)

X7228

NGA

(Annotated Design)

or

NGD

(Logical Design)

SDF

Standard Delay Format

PIN

Signal-to-Pin Mapping

(Optional)

TV

Test Fixture

(Optional)

ngd2ver.log

Log File

Development System Reference Guide

17-4 Xilinx Development System

NGD2VER Files
This section describes the NGD2VER input and output files.

Input Files
Input to NGD2VER can be either of the following files.

• NGA—a back-annotated logical design file produced by
NGDAnno, containing Xilinx primitives.

• NGD—a logical design file produced by NGDBuild, containing
Xilinx simulation primitives.

Output Files
Output from NGD2VER consists of the following files.

• V file—a Verilog HDL file containing the netlist information
obtained from the input NGD or NGA file. This file is a
simulation model and cannot be synthesized or used in any other
manner than simulation. This netlist uses simulation primitives
which may not represent the true implementation of the device;
however, the netlist represents a functional model of the
implemented design. Do not modify this file.

• SDF file—an SDF (Standard Delay Format) file containing delays
obtained from the input file. NGD2VER only generates an SDF
file if the input is an NGA file, which contains timing informa-
tion. The SDF file generated by NGD2VER is based on SDF
version 2.1.

Note: The SDF file should only be used with the Verilog file. Do not
use the SDF file with the original design or with the product of
another netlist writer.

• LOG file—an optional log file created if you enter the -log option
on the NGD2VER command line. It contains all the messages
generated during the execution of NGD2VER.

• TV file—an optional test fixture file created if you enter the –tf
option on the NGD2VER command line.

• PIN file—an optional Cadence signal-to-pin mapping file.
NGD2VER generates a PIN file if the input file contains routed
external pins and you have specified a –pf command line option.

NGD2VER

Development System Reference Guide 17-5

The files have the same root name as the NGD or NGA file unless you
specify otherwise.

NGD2VER Options
This section describes NGD2VER command options.

-aka (Write Also-Known-As Names as Comments)
The -aka option includes user-defined identifiers as comments in the
Verilog netlist. This option is used if user-defined identifiers are
changed because of name legalization processes in NGD2VER.

–cd (Include `celldefine\`endcelldefine in Verilog File)
The –cd option applies to a Verilog file that will be used with the
Cadence Synergy synthesis tool. The –cd option encloses every
module definition in `celldefine and `endcelldefine constructs, as
shown below.

`celldefine
 module <module_name>
 .
 .
 .
 endmodule
`endcelldefine

The `celldefine and `endcelldefine constructs tell the Cadence
Synergy software to treat an enclosed module as a black box (that is,
do not try to synthesize the enclosed module).

This option is used if a Cadence Synergy user instantiates a
LogiBLOX module into the HDL source code.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

Development System Reference Guide

17-6 Xilinx Development System

–gp (Bring Out Global Reset Net as Port)
-gp port_name

The –gp option causes NGD2VER to bring out the global reset signal
(which is connected to all flip-flops and latches in the physical
design) as a port on the top-level module in the output Verilog file.
Specifying the port name allows you to match the port name you
used in the front-end. The global reset signal is discussed in the
“Dedicated Global Signals in Back-Annotation Simulation” section of
the “NGDAnno” chapter.

This option is only used if the global reset net is not driven. For
example, if you include a STARTUP component in an XC4000 design,
you do not have to enter a –gp option, because the STARTUP
component drives the global reset net.

Note: Do not use GR, GSR, PRELOAD, or RESET as port names,
because these are reserved names in the Xilinx software.

-log (Specify the Log File)
-log log_file

The -log option generates a log file that contains all of the messages
displayed during the execution of NGD2VER. Specify the name of
the log file. By default, the name is ngd2ver.log.

–ne (Replace Invalid Characters with Underscore)
The –ne option overrides the default NGD2VER method of writing
out identifiers with invalid characters.

In a Verilog file, identifiers (names) must conform to the following
rules.

• Must begin with alphabetic or underscore characters (a–z, A–Z,
or _)

• May contain the characters a–z, A–Z, 0-9, or _

• May use any character by escaping with a backslash(\) at the
beginning of the identifier, and terminating with a white space (a
blank, tab, newline, or formfeed). For example, the identifier
reset* is not acceptable but the identifier \reset* is acceptable.

NGD2VER

Development System Reference Guide 17-7

By default (with no –ne option), NGD2VER writes identifiers with
invalid characters in accordance with the preceding rules (that is,
with a leading backslash and a following white space).

If you enter a –ne option, invalid characters are replaced with an
underscore character (_), and the leading backslash does not appear
as part of the identifier. The resulting Verilog file can be used if a
vendor’s Verilog software cannot interpret escaped identifiers
correctly.

-op (Specify the Period for Oscillator)
-op oscillator_period

The -op option specifies the period, in nanoseconds, for the oscillator.
You must specify a positive integer to stimulate the component
properly. If you do not enter a value for the -op option, the default is
100 ns.

–pf (Generate Pin File)
The –pf option writes out a pin file—a Cadence signal-to-pin
mapping file with a .pin extension.

-pms (Port Names Match Child Signal Names)
The -pms option forces the port names and child signal names to
match.

–r (Retain Hierarchy)
The –r option writes out a Verilog HDL file that retains the hierarchy
in the original design. The default setting (with no –r option)
produces a flattened Verilog HDL file.

The option groups logic based on the original design hierarchy. To
run NGD2VER with the –r option, you must have supplied an NGM
file as input when you ran NGDANNO (see the “Input Files” section
of the “NGDAnno” chapter).

Development System Reference Guide

17-8 Xilinx Development System

-sdf_path (Full Path to SDF File)
-sdf_path [path_name]

The -sdf option outputs the SDF file to the specified full path. This
option writes the full path and the SDF file name to the $sdf_annotate
statement. If a full path is not specified, it writes the full path of the
current work directory and the SDF file name to the $sdf_annotate
file.

-shm (Write $shm Statements in Test Fixture File)
The -shm option places $shm statements in the structural Verilog file
created by NGD2VER. These $shm statements allow VerilogXL to
display simulation data as waveforms.

–tf (Generate Test Fixture File)
The –tf option generates a test fixture file. The file has a .tv extension,
and it is a ready-to-use template test fixture Verilog file based on the
input NGD or NGA file.

If you are using a Cadence Verilog simulator, you can run the
simulator by entering verilog design.tv design.v , using the
output V and TV files from NGD2VER. You can then add more
design-specific stimuli to this file to fit your needs.

–ti (Top Instance Name)
–ti top_instance_name

The –ti option specifies a user instance name for the design under test
in the test fixture file created with the -tf option.

–tm (Top Module Name)
–tm top_module_name

The –tm option changes the name of the top-level module name
appearing within the NGD2VER output files. If you do not enter a –
tm option, the output files inherit the top module name from the
input NGD or NGA file.

NGD2VER

Development System Reference Guide 17-9

–tp (Bring Out Global Tristate Net as Port)
-tp port_name

The –tp option causes NGD2VER to bring out the global tristate
signal (which forces all FPGA outputs to the high-impedance state) as
a port on the top-level entity in the output Verilog file. Specifying the
port name allows you to match the port name you used in the front-
end.

This option is only used if the global tristate net is not driven. For
example, if you include a STARTUP component in an XC4000 design,
you do not have to enter a –tp option, because the STARTUP
component drives the global tristate net.

–u (Use '_' as Path Delimiter)
The –u option produces an output Verilog file compatible with an
AT&T Verilog simulator. This file contains an underbar (_) as a path
delimiter, instead of the default forward slash (/) that is compatible
with a Cadence Verilog simulator.

–ul (Write ‘uselib Directive)
The –ul option causes NGD2VER to write a library path pointing to
the SIMPRIM library into the output Verilog (.v) file. The path is
written as shown following.

`uselib dir=$XILINX/verilog/data libext=.vmd

$XILINX is the location of the Xilinx software.

This line is necessary for a Cadence Verilog simulator, but may
confuse a simulator from another vendor. If you do not enter a –ul
option, the ‘uselib line is not written into the Verilog file.

-verbose (Display Processing Messages in Verbose
Mode)

The -verbose option displays detailed Verilog processing messages
during the execution of NGD2VER.

Development System Reference Guide

17-10 Xilinx Development System

–w (Overwrite Existing Files)
The –w option causes NGD2VER to overwrite the output files if they
already exist. By default (no –w specified) NGD2VER does not
overwrite existing files.

Setting Global Set/Reset (FPGAs)
At the beginning of an FPGA design simulation, you must toggle the
global set/reset signal (GSR in XC4000E/L/EX/XL/XV/XLA,
Spartan, SpartanXL, or Virtex designs) or the global reset signal (GR
in XC5200, XC3000A/L, or XC3100A/L designs). Toggling the global
set/reset emulates the power-on reset of the FPGA. If you do not do
this, the flip-flops and latches in your simulation may not function
correctly.

The global set/reset net is present in your implemented design even
if you do not instantiate the STARTUP block in your design. The
function of STARTUP is to give you the option to control the global
reset net from an external pin.

Note: The term “STARTUP” refers to the STARTUP block for all
device families, including the Virtex STARTUP block,
STARTUP_VIRTEX. STARTUP_VIRTEX is a subset of the XC4000
STARTUP block. It differs from the XC4000 STARTUP block in that is
has no outputs, as shown in the following figure.

Figure 17-2 STARTUP and STARTUP_VIRTEX Blocks

X8760

CLK

GTS

GSR

DONEIN

STARTUP

Q1Q4

Q3

Q2

STARTUP_VIRTEX

GTS

GSR

CLK

NGD2VER

Development System Reference Guide 17-11

If you want to select the global set/reset pulse width so that it reflects
the actual amount of time it takes for the chip to go through the reset
process when power is supplied to it, refer to The Programmable Logic
Data Book for the device you are simulating.

The general procedure for specifyin global set/reset or global reset
during a pre-NGDBuild Verilog UNISIM simulation involves
defining the global reset signals with one of the following Verilog
macros: GSR_SIGNAL or GR_SIGNAL. This is necessary because
these global nets do not exist in the UNISIM libraries, and as a result,
the reset of the UNISIM components is controlled by the detection of
the GSR_SIGNAL or GR_SIGNAL macros. In addition, you must
declare the global set/reset signal either as a Verilog wire or reg. Your
choice of wire or reg depends on if your design contains a STARTUP
component.

Note: In the Xilinx software, the Verilog UNISIM library is only used
in RTL simulations of your designs. Simulation at other points in the
flow use the Verilog SIMPRIM Libraries. This occurs because the
FPGA Compiler writes out unexpanded LogiBLOX type modules
that do not have corresponding models. However, there are models
for VHDL that VSS can use.

For pre-NGDBuild UNISIM functional simulation, you must set the
value of the appropriate Verilog macro (GSR_SIGNAL or
GR_SIGNAL) to the name of the GSR or GR net, qualified by the
appropriate scope identifiers.

Note: GSR_SIGNAL and GR_SIGNAL are used in the Verilog
UNISIM to emulate the global reset signals.

The scope identifiers are a combination of the test module scope and
the design instance scope. The scope qualifiers are required because
the scope information is needed when the GSR_SIGNAL and
GR_SIGNAL macros are interpreted by the Verilog UNISIM
simulation models to emulate a global reset signal.

The net name you specify, and whether you specify the net as a
Verilog reg or a wire, depends on if your design includes an
instantiated STARTBUF.

Note: The term “STARTBUF” refers to the STARTBUF cell for all
device families, including the Virtex STARTBUF cell,
STARTBUF_VIRTEX. STARTBUF_VIRTEX is similar to the
STARTBUF, but GSROUT is not available.

Development System Reference Guide

17-12 Xilinx Development System

Defining GSR in a Test Fixture
Use the following steps to define the global set/reset signals in a test
fixture file for your design.

Note: Use the first step if you do not have a STARTBUF in your
design, otherwise proceed to the second step.

1. If you do not have a STARTBUF in your design, name the global
set/reset net test.design_instance.GSR or test.design_instance.GR
(Verilog is case-sensitive), and declare the signal as a Verilog reg
data type.

Note: Test refers to the test fixture module name and design_instance
refers to the designated instance name for the instantiated design
netlist within the test fixture file.

2. If there is a STARTBUF block in your design, and the GSR pin is
connected to a net, set the value of GSR_SIGNAL to the net
connected to the GSR pin on the STARTUP symbol.

The signal you toggle at the beginning of the simulation is the
port or signal in your design that is used to control global set/
reset. This is usually an external input port in the Verilog netlist,
but it may also be a wire if global reset is controlled by logic
internal to your design.

3. When invoking Verilog-XL or Modelsim to run the simulation,
specify the test fixture file before the Verilog netlist for your
design for the simulation to work properly, as in the following
examples.

• Cadence Verilog-XL

For RTL simulation, enter the following.

verilog –y $XILINX/verilog/src/UNI4000X
design.stim design.v

The path specified with the –y switch points the simulator to
the UNISIM models and is only necessary if Xilinx primitives
are instantiated in your code. When targeting a device other
than XC4000EX/XL/XV/XLA, change the UNI4000X
reference in the path to the targeted device family.

For post-implementation simulation, enter the following.

verilog design.stim time_sim.v

NGD2VER

Development System Reference Guide 17-13

In this example, the same test fixture file is declared first,
followed by the simulation netlist created by the Xilinx tools.
The name of the Xilinx simulation netlist may change
depending on how the file was created. It is also assumed
that the –ul switch was specified during NGD2VER to
specify the location of the SIMPRIM libraries.

• Model Technology Modelsim

Because Modelsim is a compiled Verilog simulator, modules
must be compiled from the bottom up. This is the opposite of
the Verilog-XL recommendation.

For RTL simulation, enter the following.

vlog design.v

vlog design.stim

vsim –L uni4000x test_fixture_module_name

This example is based on targeting a XC4000EX/XL/XV/
XLA device and on properly compiled UNI4000X libraries
that are named uni4000x. For more information on the
compilation of the Modelsim libraries, refer to http://
www.xilinx.com/techdocs/1923.htm

For post-implementation simulation, enter the following.

vlog time_sim.v

vlog design.stim

vsim –L simprim test_fixture_module_name

This example is based on targeting the SIMPRIM libraries,
which have been properly compiled and named simprim.
Also, the name of the simulation netlist may change
depending on how the file is created.

4. Xilinx recommends giving the name test to the main module in
the test fixture file. This name is consistent with the name of the
test fixture module that is written downstream in the design flow
by NGD2VER during post-NGDBuild, post-MAP, or post-route
simulation. If this naming consistency is maintained, you can use
the same test fixture file for simulation at all stages of the design
flow with minimal modification.

Development System Reference Guide

17-14 Xilinx Development System

For Unified Library functional simulation, you must always define
the appropriate Verilog macro (GSR_SIGNAL or GR_SIGNAL) for
the global set/reset signal. (This macro is not used in timing
simulation when there is a STARTUP block in your design.)

The GSR signal in XC4000E/L/EX/XL/XV/XLA, Spartan,
SpartanXL, and Virtex devices and the GR signal in XC5200 devices is
active-High, and the GR signal in XC3000A/L and XC3100A/L
devices is active-Low.

For post-NGDBuild and post-route timing simulation, the test fixture
template (TV file) produced by running NGD2VER with the –tf
option contains most of the code previously described for defining
and toggling GSR or GR. However, if you use a signal to control the
STARTUP block, you must manually edit the test fixture template file
(generated by NGD2VER) to specify the signal connected to the GSR
or GR pin on the STARTUP block symbol as GSR_SIGNAL (XC4000,
Spartan, Virtex families) or GR_SIGNAL (XC5200).

Designs without a STARTUP Block
If you do not have a STARTUP block in your design, you can use the
same test fixture file with little or no modification at all stages of the
design flow, as described in the following examples.

Example 1: XC4000E/L/EX/XL/XV/XLA, Spartan,
SpartanXL, and Virtex RTL Functional Simulation (No
STARTUP Block)

The following design shows how to drive the GSR signal in a Verilog-
XL test fixture file at the beginning of a pre-NGDBuild Unified
Library functional simulation.

Reference the global set/reset net as GSR in XC4000E/L/EX/XL/
XV/XLA, Spartan, SpartanXL, or Virtex designs without a STARTUP
block. The Verilog macro defining the global net must be referenced
as GSR_SIGNAL because this is how it is modeled in the Verilog
UNISIM library.

In the design code, declare GSR as a Verilog wire; however, it is not
specified in the port list for the module.

NGD2VER

Development System Reference Guide 17-15

Describe GSR to reset or preset every inferred register or latch in your
design. GSR does not need to be connected to any instantiated regis-
ters or latches, as shown in the following example.

module my_counter (CLOCK, COUT, Q, D);

input CLOCK, D;

output Q;
 output [3:0] COUT;

wire GSR;

always @(posedge GSR or posedge CLOCK)
 begin
 if (GSR == 1’b1)
 COUT = 4’h0;
 else
 COUT = COUT + 1’b1;
 end

// Example of an instantiated FDCE
 //
 // If a macro name GSR_SIGNAL is defined in the
 // testbench, CLR does not need to be connected
 // to GSR and flop will still be reset with GSR.

FDCE test_flop (.Q(Q), .D (D), .C(CLOCK),
 .CE (open), .CLR (open));
endmodule

Because GSR is declared as a floating wire and is not in the port list,
the synthesis tool optimizes the GSR signal out of the design. GSR is
replaced later by the implementation software for all post-
implementation simulation netlists.

In the test fixture file, set a GSR_SIGNAL macro to
test.my_counter.GSR (the name of the global set/reset signal,
qualified by the name of the design instantiation instance name and
the test fixture module name) using the ‘define compiler directive, as
follows.

‘define GSR_SIGNAL test.my_counter.GSR

Development System Reference Guide

17-16 Xilinx Development System

GSR_SIGNAL should be toggled High, then Low at the beginning of
an initial block using the force command.

module test;

 ‘define GSR_SIGNAL test.my_counter.GSR

 count4 my_counter (.CLOCK (CLOCK), .COUT(COUT), .Q(Q), .D(D));

 reg CLOCK, D;

 initial
 begin

 CLOCK = 0;
 D = 0;

 force ‘GSR_SIGNAL = 1; //Here is the Global Reset
 #100 force ‘GSR_SIGNAL = 0; //End of Global Reset

 //rest of simulation stimuli

 end
endmodule

In this example, the active-High GSR signal in the XC4000 family
device is activated by driving it High. 100ns later, it is deactivated by
driving it Low. (100ns is an arbitrarily chosen value.)

You can use the same test fixture for simulating at other stages in the
design flow if this methodology is used.

Example 2: XC5200 RTL Functional Simulation (No
STARTUP Block)

For pre-NGDBuild functional simulation, the active-High GR net in
XC5200 devices should be simulated in the same manner as GSR for
XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL, and Virtex.

In the design code, GR should be declared as a Verilog wire and not
specified in the port list for the module. GR should be described to
reset every inferred register or latch in the design. GR does not need
to be connected to any instantiated registers or latches.

NGD2VER

Development System Reference Guide 17-17

module my_counter (CLOCK, COUT, Q, D);

 input CLOCK, D;

 output Q;
 output [3:0] COUT;

 wire GR;

 always @(posedge GR or posedge CLOCK)
 begin
 if (GR == 1’b1)
 COUT = 4’h0;
 else
 COUT = COUT + 1’b1;
 end

 // Example of an instantiated FDCE
 //
 // If a macro name GR_SIGNAL is defined in the
 // testbench, CLR does not need to be connected
 // to GR and flop will still be reset with GR.

 FDCE test_flop (.Q(Q), .D (D), .C(CLOCK),
 .CE (open), .CLR (open));
endmodule

In the test fixture file, set a macro called GR_SIGNAL to
test.my_counter.GR (the name of the global set/reset signal, qualified
by the name of the design instantiation instance name and the test
fixture module name) using the ‘define compiler directive, as follows.

‘define GR_SIGNAL test.my_counter.GR

GR_SIGNAL should be toggled High, then Low at the beginning of
an initial block using the force command.

module test;

 ‘define GR_SIGNAL test.my_counter.GR

 count4 my_counter (.CLOCK (CLOCK), .COUT(COUT), .Q(Q), .D(D));

 reg CLOCK, D;

 initial
 begin

Development System Reference Guide

17-18 Xilinx Development System

 CLOCK = 0;
 D = 0;

 force ‘GR_SIGNAL = 1; //Here is the Global Reset

 #100 force ‘GR_SIGNAL = 0; //End of Global Reset

 //rest of simulation stimuli

 end

endmodule

In this example, the active-High GR signal in the XC5200 family
device is activated by driving it High. 100ns later, it is deactivated by
driving it Low. (100ns is an arbitrarily chosen value.)

You can use the same test fixture for simulating at other stages of the
design if this methodology is used.

Example 3: XC3000A/L and XC3100A/L RTL and Post-
synthesis Functional Simulation (No STARTUP Block)

Asserting global reset in XC3000A/L and XC3100A/L designs is
almost identical to the procedure for asserting global reset in XC5200
designs, except that GR in XC3000A/L and XC3100A/L devices is
active-Low. (Also note that the STARTUP block is not supported on
XC3000A/L and XC3100A/L devices).

module test;
reg GR;
`define GR_SIGNAL test.GR;
initial
 begin
 `GR_SIGNAL = 0; // reset the device
 #100 `GR_SIGNAL = 1;

Note: The Global Reset (GR) signal in the XC3000A/L architecture is
modeled differently in functional simulation netlists and SIMPRIM
library-based netlists generated by NGD2VER. In the Verilog Unified
Library, GR is modeled as a wire within a global module, while in a
SIMPRIM-based netlist, it is always modeled as an external port. As a
result, you cannot use the same test fixture file for both Unified
library simulation and SIMPRIM-based simulation.

NGD2VER

Development System Reference Guide 17-19

Designs with a STARTUP block (XC4000E/L/EX/XL/
XV/XLA, Spartan, SpartanXL, Virtex, and XC5200
Devices Only)

Asserting global set/reset when the STARTUP block is specified in
your design is similar to asserting global set/reset without a
STARTUP block in your design. However, there are the following two
differences.

• The `define statement must now specify the name of the net
attached to the GSR pin (XC4000E/L/EX/XL/XV/XLA, Spartan,
SpartanXL, and Virtex devices) or GR pin (XC5200 devices) on
the STARTUP block.

`define GSR_SIGNAL net_connected_to_GSR_pin

• The signal you toggle is now the external input port that controls
the “net_connected_to_GSR_pin” (or
“net_connected_to_GR_pin”) on the STARTUP block. If the
global reset signal is inverted, as shown in the following figure, it
appears in your Verilog netlist as an input port, and can be driven
as follows.

initial
begin
 GSR_user_control_signal = 0;
 #100 GSR_user_control_signal = 1;

Figure 17-3 Verilog User-Controlled Inverted GSR

Note: The STARTUP_VIRTEX block differs slightly in that is has no
outputs.

X8353

IB UF

Q2

I4

12

INV

1311

Q3

Q1Q4

DONEINCLK

GSR

GTS

GSRIN_NOTGLOBAL_RESET

GSR_user_control_signal net_connected_to_GSR_pin

STARTUP

IPAD

Development System Reference Guide

17-20 Xilinx Development System

Example 1a: XC4000E/L/EX/XL/XV/XLA, Spartan,
SpartanXL, and Virtex RTL and Post-synthesis
Simulation (With STARTUP)

The following is an example of driving the global set/reset signal
in a test fixture file at the beginning of an RTL or post-synthesis
functional simulation when there is a STARTUP block in an
XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL, or Virtex
design.

In the following figure, the mygsr signal is the
GSR_user_control_signal. In this case, mygsr is an external user
signal that controls GSR. Mygsr sources an IBUF, which in turn
sources the gsrin signal. Gsrin represents the
net_connected_to_GSR_pin pin that directly sources the GSR pin
of the STARTUP block.

Figure 17-4 Verilog User-Controlled GSR

Note: The STARTUP_VIRTEX block differs slightly in that is has no
outputs.

This design allows you to control global set/reset in the device by
driving the external mygsr input port. In the test fixture file, mygsr is
a Verilog reg in the test module.

module test;
 reg mygsr;

X8354

IB UF

Q2

IQ

1917

Q3

Q1Q4

DONEINCLK

GSR

GTS

GSR_INMYGSR

STARTUP

IPAD

NGD2VER

Development System Reference Guide 17-21

In addition, for XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL,
and Virtex designs, a Verilog macro called GSR_SIGNAL must be
declared to make the connection between the user logic and the
global GSR net embedded in the Unified Library models. This is done
by using a `define directive to set GSR_SIGNAL to the following.

test_module_name.design_instance_name.gsr_pin_signal

Gsr_pin_signal corresponds to the name of the signal connected to
the GSR pin on the STARTUP block (in this case, gsrin). The scope
qualifier in this case also includes the name of the design instance
(uut) in anticipation that the net appears as an internal net of the
design in the post-NGDBuild, post-Map, and post-route simulations
further in the design flow.

The global set/reset control signal should be toggled High, then Low
in an initial block.

module test;
 reg mygsr;
 `define GSR_SIGNAL test.uut.gsrin;

initial
 begin
 mygsr = 1; // reset the device
 #100 mygsr = 0;

Example 1b: Post-NGDBuild Functional, Post-Map
Timing, and Post-Route Timing Simulation (With
STARTUP)

For post-NGDBuild functional simulation, post-Map timing
simulation, and post-route timing simulation, the procedure is
identical to Unified Library functional simulation, except that
you must omit the `define statement for GSR_SIGNAL. This is
done because the net connections exist in the post-NGDBuild
design, and retaining the macro definition causes a possible
conflict with these connections. In the following example, the
macro definition is commented out to avoid a possible conflict.

module test;
 reg mygsr;
 // `define GSR_SIGNAL test.uut.gsrin;
initial
 begin

Development System Reference Guide

17-22 Xilinx Development System

 mygsr = 1; // reset the device
 #100 mygsr = 0;

Example 2a: XC5200: RTL or Post-synthesis
Functional Simulation Designs with STARTUP Block

For a XC5200 design with a STARTUP block, the net controlling
GR should be stimulated in the same manner as for the
XC4000E/L/EX/XL/XV/XLA.

Substitute GR_SIGNAL for GSR_SIGNAL, mygr for mygsr, and
gr_in for gsr_in in “Example 1a: XC4000E/L/EX/XL/XV/XLA,
Spartan, SpartanXL, and Virtex RTL and Post-synthesis
Simulation (With STARTUP)” to obtain the test fixture fragment
for stimulating GR in a Verilog RTL or post-synthesis simulation.

Figure 17-5 Verilog User-Controlled Inverted GR

module test;
 reg mygr;
 `define GR_SIGNAL test.uut.gr_in;
initial
 begin
 mygr = 1; // reset the device
 #100 mygr = 0;

X8355

IB UF

Q2

I3

1211

Q3

Q1Q4

DONEINCLK

GR

GTS

GR_INMYGR

STARTUP

IPAD

NGD2VER

Development System Reference Guide 17-23

Example 2b: Post-NGDBuild Functional, Post-Map
Timing, and Post-Route Timing Simulation (With
STARTUP Block)

For post-NGDBuild functional simulation, post-Map timing
simulation, and post-route timing simulation, the procedure is
identical to Unified Library functional simulation, except that
you must omit the `define statement for GR_SIGNAL. This is
done because the net connections exist in the post-NGDBuild
design, and retaining the macro definition may cause a conflict
with these connections. In the following example the Verilog
macro definition is commented out to avoid a possible conflict.

module test;
reg mygr;

// `define GR_SIGNAL test.uut.gr_in;
initial

begin
mygr = 1; // reset the device
#100 mygr = 0;

Example 3: XC3000A/L and XC3100A/L designs

STARTUP is not supported or required in XC3000A/L and
XC3100A/L designs. Follow the procedure for XC3000A/L and
XC3100A/L designs without STARTUP blocks.

Setting Global Tristate (FPGAs)
XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL, Virtex, and
XC5200 devices also have a global control signal (GTS) that tristates
all output pins. This allows you to isolate the actual device part
during board level testing. You can also tristate the FPGA device
outputs during board level simulation to assist in debugging
simulation. In most cases, GTS is deactivated so that the outputs are
active.

Although the STARTUP component also gives you the option of
controlling the global tristate net from an external pin, usually it is
used for controlling global reset. In this case, the GTS pin can be left
unconnected in the design entry phase, and it will float to its inactive
state level. The global tristate net, GTS, is in implemented designs
even if a STARTUP block is not instantiated.

Development System Reference Guide

17-24 Xilinx Development System

You can deactivate GTS by driving it Low in your test fixture file, or
by connecting the GTS pin to GND in your input design.

Specifying GTS
The general procedure for specifying GTS is similar to that used for
specifying the global set/reset signals, GSR and GR. You define the
global tristate signal with the Verilog macro, GTS_SIGNAL. You must
declare the global tristate signal either as a Verilog wire or reg. If you
do not want to specify GTS for simulation, you do not need to change
anything in your design or test fixture.

The net name you select, and whether you specify the net as a Verilog
reg or a wire, depends on if you have a STARTUP block instantiated
in your design, and if you have a signal connected to the STARTUP
GTS pin.

If a STARTUP block is not in your design, name the global tristate
wire test_fixture_module.design_instance.GTS, and declare the signal
as a Verilog wire data type in your design netlist.

If there is a STARTUP block in your design and the GTS pin is
connected to a net, the value of GTS_SIGNAL should be set to the
name of the net connected to the GTS pin on the STARTUP symbol.
The signal you toggle at the beginning of simulation is the port or
signal in your design that is used to control global tristate. This is
usually an external input port in the Verilog netlist, but can be a wire
if global tristate is controlled by internal logic in your design.

Xilinx recommends that you name the main module in your test
fixture file test to be consistent with the name of the test fixture
module that is written further in the design flow by NGD2VER. If
this naming consistency is maintained, you can use the same test
fixture file for simulation at all stages in the design flow with minimal
modification.

The GTS signal in XC4000E/L/EX/XL/XV/XLA, Spartan, Spar-
tanXL, Virtex, and XC5200 devices is active-High. This macro is not
used in timing simulation when there is a STARTUP block in your
design and the GTS pin is connected.

For post-NGDBuild and post-route timing simulation, the test fixture
template (TV file) produced by NGD2VER with the –tf option
contains most of the code described previously for defining and
driving GTS.

NGD2VER

Development System Reference Guide 17-25

However, in cases where you have a signal controlling the STARTUP
block, you must manually edit the test fixture template file generated
by NGD2VER to specify the control signal for GTS.

Designs without a STARTUP Block
When you do not have a STARTUP block in your design, you can use
the same test fixture file with little or no modification if you use the
guidelines in the following example.

XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL,
Virtex, and XC5200 RTL Functional Simulation (No
STARTUP Block)

The following is an example of how you can drive the GTS signal in a
test fixture file at the beginning of a pre-NGDBuild RTL or post-
synthesis functional simulation. The global tristate net is named GTS
in XC4000E/L/EX/XL/XV/XLA, Spartan, SpartanXL, Virtex or
XC5200 designs when there is not a STARTUP block. The Verilog
macro defining the global net must be named GTS_SIGNAL because
this is the name of the predefined macro used to model the global
tristate signal in the Xilinx Verilog UNISIM simulation models. Use
the following guidelines.

• In your design, declare GTS as a Verilog wire, as follows.

module my_design;
wire GTS;

• Set a macro named GTS_SIGNAL to
test_fixture_module.design_instance.GTS (the name of the global
tristate signal, qualified by the name of the instantiated design
instance name and test fixture module), using the `define
compiler directive, as follows.

`define GTS_SIGNAL test.GTS;

GTS should be driven Low in an initial block, as follows.

module test;
`define GTS_SIGNAL test.uut.GTS;
initial
 begin
 `GTS_SIGNAL = 0;

Development System Reference Guide

17-26 Xilinx Development System

In this example, the active-High GTS signal is deactivated by
driving it Low to activate the outputs of the design.

Designs with a STARTUP block (XC4000E/L/EX/XL/
XV/XLA, Spartan, SpartanXL, Virtex, and XC5200
Devices Only)

Asserting global tristate when the STARTUP block is specified in
your design is similar to asserting global tristate without a STARTUP
block. There are two primary differences, as follows.

• If the GTS pin on the STARTUP block is connected, the `define
statement must now set GTS_SIGNAL to the name of the net
attached to the GTS pin on the STARTUP block, as follows.

`define GTS_SIGNAL net_connected_to_GTS_pin

• If the GTS pin on the STARTUP block is connected, the signal you
drive is now either the external input port or internal signal that
controls the net_connected_to_GTS_pin on the STARTUP block.
If it is an external input, it is in your Verilog netlist as an input
port. To tristate your outputs, drive this signal High, and to
activate your outputs, drive it Low, as shown here.

initial
 begin
 GTS_user_control_signal = 1;
 #100 GTS_user_control_signal = 0;

Example 1a: XC4000E/L/EX/XL/XV/XLA, Spartan,
SpartanXL, Virtex, and XC5200: RTL or Post-
Synthesis Functional Simulation (With STARTUP, GTS
Pin Connected)

In the following figure, the design contains a STARTUP block,
and the GTS pin on STARTUP is connected to an external input
named mygts.

NGD2VER

Development System Reference Guide 17-27

Figure 17-6 Verilog User-Controlled Inverted GTS

Note: The STARTUP_VIRTEX block differs slightly in that is has no
outputs.

The external input, mygts, is declared as a Verilog register. A
`define directive setting GTS_SIGNAL to the name of the net
connected to the GTS pin is required to connect the user logic to
the global GTS model in the UNISIM simulation models for
output buffers (OBUF, OBUFT, and so on). The following is an
example of a test fixture.

module test;
 reg mygts;
 `define GTS_SIGNAL test.uut.gts_in;
.
.
.
initial
 begin
 mygts = 1; // if you wish to tristate the
 // device;
 #100 mygts = 0; // deactivate GTS

Example 1b: Post-NGDBuild Simulation of GTS (With
STARTUP, GTS Pin connected)

For post-route timing simulation, the procedure is similar, except you
must omit the define statement for GTS_SIGNAL because it conflicts
with the GTS net driver.

module test;
 reg mygts;

X8356

IB UF

Q2

I9

1817
Q3

Q1Q4

DONEINCLK

GR

GTS
GTS_INMYGTS

STARTUP

IPAD

Development System Reference Guide

17-28 Xilinx Development System

 // `define GTS_SIGNAL test.uut.gtsin
initial
 begin
 mygts = 1; // if you wish to tristate the
 // device;
 #100 mygts = 0; // deactivate GTS

Example 2a: XC4000E/L/EX/XL/XV/XLA, Spartan,
SpartanXL, Virtex, and XC5200: Unified Library
Simulation (With STARTUP, GTS Pin not connected)

For Unified Library functional simulation, define a wire named
GTS, and set the GTS_SIGNAL macro to test.GTS. Toggle
GTS_SIGNAL as shown in the following example.

module test;
 wire GTS;
 `define GTS_SIGNAL test.GTS
initial
 begin
 force `GTS_SIGNAL = 1; // if you wish to
 // tristate the
 // device;
 #100 force `GTS_SIGNAL = 0; // deactivate GTS

Example 2b: Post-NGDBuild Simulation of GTS (With
STARTUP, GTS Pin not connected)

For post-NGDBuild functional simulation, the actual net exists
and must be further qualified by the design instance scope, uut,
as shown here.

module test;
 // wire GTS;
 // `define GTS_SIGNAL test.GTS
 `define GTS_SIGNAL test.uut.GTS
initial
 begin
 force `GTS_SIGNAL = 1; // if you wish to
 // tristate the
 // device;
 #100 force `GTS_SIGNAL = 0; // deactivate GTS

Note: For post-route timing simulation, you can use the same test
fixture.

NGD2VER

Development System Reference Guide 17-29

Setting Global PRLD (CPLDs)
Refer to the “Simulating Your Design” chapter of the CPLD Synthesis
Design Guide for information on setting PRLD.

Oscillator Functions (OSC, OSC4, OSC5)
The OSC (X3000A/L), OSC4 (XC4000E/L/EX/XL/XV/XLA,
Spartan, and SpartanXL) and OSC5 (XC5200) oscillator components
do not have Verilog simulation models associated with them. For
OSC, the clock signal frequency is derived from an external crystal-
controlled oscillator. The OSC4 and OSC5 are internal oscillators, and
are useful in applications in which timing is not critical.

To simulate these oscillators, you must reference the net attached to
the output of the oscillator component. For example, for an oscillator
output net named osclk attached to an oscillator symbol (OSC, OSC4,
or OSC5) with a timescale unit of 1ns, use the Always block to
emulate an oscillator with a 10 Mhz clock frequency. Toggle this net at
the desired frequency in your Verilog test fixture using the Force
command, as shown in the following example.

force osclk = 1`b0;
always #100 force osclk = ~osclk;

NGD2VER Notes
Following are some notes about NGD2VER.

• The end of the test fixture (TV) file produced by NGD2VER
contains the following commands.

#1000 $stop
// #1000 $finish

The $stop command terminates simulation from the test fixture
and places the simulator in “interactive mode”. This mode allows
you to view the waveforms produced or allows interaction with
other programs that need the simulator open.

You can terminate the Verilog simulator as follows.

• In interactive mode, enter finish .

Development System Reference Guide

17-30 Xilinx Development System

• To exit automatically instead of entering interactive mode,
edit the test fixture file to remove or comment out the $stop
line and uncomment the $finish line.

• When you compile your unit-under-test design from NGD2VER
along with your test fixture, there may be mismatches on bused
ports.

This problem occurs when your unit under test has top-level
ports that are defined as LSB-to-MSB, as shown in the following
example.

input [0:7] A;

As a result of the way your input design was converted to a
netlist before it was read into the Xilinx implementation software,
the Xilinx design database does not include information on how
bus direction was defined in the original design. When
NGD2VER writes out a structural timing Verilog description, all
buses are written as MSB-to-LSB, as shown in the following
example.

input [7:0] A;

If your ports are defined as LSB-to-MSB in your original input
design and test fixture, there is a port mismatch when the test
fixture is compiled for timing simulation. Use one of the
following methods to solve this problem.

• In the test fixture, modify the instantiation of the unit under
test so that all ports are defined as MSB-to-LSB for timing
simulation

• Define all ports as MSB-to-LSB in your original design and
test fixture. For example, enter [7:0] instead of [0:7] .

Development System Reference Guide — October 1998 18-1

Chapter 18

NGD2VHDL

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

• XC9500

• XC9500XL

This chapter describes the NGD2VHDL program. The chapter
contains the following sections.

• “NGD2VHDL”

• “NGD2VHDL Syntax”

• “NGD2VHDL Files”

• “NGD2VHDL Options”

• “VHDL Global Set/Reset Emulation”

• “Bus Order in VHDL Files”

Development System Reference Guide

18-2 Xilinx Development System

NGD2VHDL
The NGD2VHDL program translates your design into a VITAL 95
IEEE compliant VHDL file containing a netlist description of the
design in terms of Xilinx simulation primitives. You can use the
VHDL file to perform a back-end simulation by a VHDL simulator.

Simulation is based on SIMPRIMs, which create simulation models
using basic simulation primitives. For example, a primitive for the
XC4000 dual-port RAM does not exist in the VITAL SIMPRIM library
files. Instead, if a dual-port RAM is needed, NGD2VHDL builds a
simulation model for the dual port ram out of two 16x1 RAM
SIMPRIM primitives.

NGD2VHDL produces a VHDL file representing a design in any of
the following stages.

• An unmapped design—To translate an unmapped design, the
input to NGD2VHDL is an NGD file—a logical description of
your design. The output from NGD2VHDL is a VHDL file
containing a functional description of the design without timing
information.

• A mapped, unrouted design—To translate a mapped design
which has not been placed and routed, the input to NGD2VHDL
is an NGA file— an annotated logical description of your
design—generated from a mapped physical design. The output
from NGD2VHDL is a VHDL file containing a functional
description of the design, and an additional SDF (Standard Delay
Format) file containing timing information. The SDF file contains
component delays without routing delays.

• A routed design—To translate a design which has been placed
and routed, the input to NGD2VHDL is an NGA file generated
from a routed physical design. The output from NGD2VHDL is a
VHDL file containing a functional description of the design and
an SDF file containing both component and routing delays.

The design flow for NGD2VHDL is shown in the following figure.

NGD2VHDL

Development System Reference Guide 18-3

Figure 18-1 NGD2VHDL Design Flow

NGD2VHDL Syntax
The following command translates your design to a VHDL file.

ngd2vhdl [options] infile[.ngd |.nga] [outfile[.vhd]]

Options can be any number of the NGD2VHDL options listed in the
“NGD2VHDL Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

Infile [.ngd |.nga] is the input NGD or NGA file. If you enter a file
name without an extension, NGD2VHDL looks for a file with an .nga
extension and the name you specified. If you want to translate an
NGD file, you must enter the .ngd extension. Without the .ngd
extension NGD2VHDL does not use the NGD file as input, even if an
NGA file is not present.

Outfile[.vhd] indicates the file to which the VHDL output of
NGD2VHDL is written. Default is infile.vhd (infile is the same root
name as the input file). The SDF file has the same root name as the
VHDL file.

NGD2VHDL Files
This section describes the NGD2VHDL input and output files.

Input Files
Input to NGD2VHDL can be any of the following files.

NGD2VHDL

VHD

VHDL Netlist

(for Simulation)

X7229

NGA

(Annotated Design)

or

NGD

(Logical Design)

SDF

Standard Delay Format

PIN

Signal-to-Pin Mapping

(Optional)

TVHD

Testbench

(Optional)

ngd2vhdl.log

Log File

Development System Reference Guide

18-4 Xilinx Development System

• NGA—a back-annotated logical design file containing Xilinx
primitive components.

• NGD—a logical design file containing Xilinx primitive compo-
nents.

Output Files
Output from NGD2VHDL consists of the following files.

• VHD file—a VITAL 95 IEEE compliant VHDL file containing the
netlist information obtained from the input NGD or NGA file.
This file is a simulation model and cannot be synthesized or used
in any other manner than simulation. This netlist uses simulation
primitives which may not represent the true implementation of
the device; however, the netlist represents a functional model of
the implemented design. Do not modify this file.

• SDF file—a Standard Delay Format file containing delays
obtained from the input file. NGD2VHDL only generates an SDF
file if the input is an NGA file, which contains timing
information. The SDF file generated by NGD2VHDL is based on
SDF version 2.1.

• LOG file—an optional log file created if you enter the -log option
on the NGD2VHDL command line. It contains all the messages
generated during the execution of NGD2VHDL.

• PIN file—an optional Cadence signal-to-pin mapping file.
NGD2VHDL generates a PIN file if the input file contains routed
external pins and you have specified a –pf command line option.

• Testbench file—an optional testbench file created if you enter the
–tb option on the NGD2VHDL command line. The file has a .tvhd
extension.

NGD2VHDL Options
This section describes the NGD2VHDL command options.

–a (Architecture Only)
By default, NGD2VHDL generates both entities and architectures for
the input design. If the –a option is specified, no entities are
generated and only architectures appear in the output.

NGD2VHDL

Development System Reference Guide 18-5

-aka (Write Also-Known-As Names as Comments)
The -aka option includes user-defined identifiers as comments in the
VHDL netlist. This option is used if user-defined identifiers are
changed because of name legalization processes in NGD2VHDL.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–gp (Bring Out Global Reset Net as Port)
-gp port_name

The –gp option causes NGD2VHDL to bring out the global reset
signal (which is connected to all flip-flops and latches in the physical
design) as a port on the top-level entity in the output VHDL file.
Specifying the port name allows you to match the port name you
used in the front-end. The global reset signal is discussed in the
“VHDL Global Set/Reset Emulation” section.

This option is only used if the global reset net is not driven. For
example, if you include a STARTUP component in an XC4000 design,
you do not have to enter a –gp option, because the STARTUP compo-
nent drives the global reset net.

Note: Do not use GR, GSR, PRELOAD, or RESET as port names,
because these are reserved names in the Xilinx software.

-log (Specify the Log File)
-log log_file

The -log option generates a log file that contains all of the messages
displayed during the execution of NGD2VHDL. Specify the name of
the log file. By default, the name is ngd2vhdl.log.

Development System Reference Guide

18-6 Xilinx Development System

-op (Specify the Period for Oscillator)
-op oscillator_period

The -op option specifies the period, in nanoseconds, for the oscillator.
You must specify a positive integer to stimulate the component
properly. If you do not enter a value for the -op option, the default is
100 ns.

–pf (Generate Pin File)
The –pf option writes out a pin file—a Cadence signal-to-pin
mapping file with a .pin extension.

-pms (Port Names Match Child Signal Names)
The -pms option forces the port names and child signal names to
match.

–r (Retain Hierarchy)
The –r option writes out a VHDL file that retains the hierarchy in the
original design. The default setting (with no –r option) produces a
flattened VHDL file.

The option groups logic based on the original design hierarchy. To
run NGD2VHDL with the –r option, you must have supplied an
NGM file as input when you ran NGDAnno (see the “Input Files”
section of the “NGDAnno” chapter).

-rpw (Specify the Pulse Width for ROC)
-rpw roc_pulse_width

The -rpw option specifies the pulse width, in nanoseconds, for the
ROC component. You must specify a positive integer to stimulate the
component properly. This option is not required. By default, the ROC
pulse width is set to 100ns.

NGD2VHDL

Development System Reference Guide 18-7

–tb (Generate Testbench File)
The –tb option writes out a testbench file with a .tvhd extension.

The default top-level instance name within the testbench file is UUT.
If you enter a –ti (Top Instance Name) option, the top-level instance
name is the name specified by the –ti option.

-te (Top Entity Name)
-te top_entity_name

The -te option specifies the name of the top-level entity in the
structural VHDL file produced by NGD2VHDL for timing
simulation.

–ti (Top Instance Name)
–ti top_instance_name

The –ti option specifies the name of the top-level instance name
appearing within the output SDF file and testbench file (if produced).

The option allows you to match the top-level instance name to the
name specified in your test driver VHDL file. Without this option, the
SDF file generated by NGD2VHDL cannot be processed properly by
VHDL simulators (for example, Model Technology vsim) for timing
simulation.

If you do not enter a –ti option, the output files contain a top-level
instance name of UUT.

–tp (Bring Out Global Tristate Net as Port)
-tp port_name

The –tp option causes NGD2VHDL to bring out the global tristate
signal (which forces all FPGA outputs to the high-impedance state) as
a port on the top-level entity in the output VHDL file. Specifying the
port name allows you to match the port name you used in the front-
end.

This option is only used if the global tristate net is not driven. For
example, if you include a STARTUP component in an XC4000 design,
you do not have to enter a –tp option, because the STARTUP compo-
nent drives the global tristate net.

Development System Reference Guide

18-8 Xilinx Development System

-tpw (Specify the Pulse Width for TOC)
-tpw toc_pulse_width

The -tpw option specifies the pulse width, in nanoseconds, for the
TOC component. You must specify a positive integer to stimulate the
component properly. This option is required when the TOC
component is instantiated by the user (for example, when the global
set/reset and tristate nets are sourceless in the design).

-verbose (Display Processing Messages in Verbose
Mode)

The -verbose option displays detailed VHDL processing messages
when NGD2VHDL is run.

–w (Overwrite Existing Files)
The –w option causes NGD2VHDL to overwrite the output files if
they exist. By default (no –w specified) NGD2VHDL does not
overwrite existing files.

VHDL Global Set/Reset Emulation
VHDL requires ports for all signals to be controlled by a testbench.
There are VHDL specific components that can be instantiated in the
RTL and post-synthesis VHDL description in order to enable the
simulation of the global signals for Global Set/Reset and Global Tri-
state. NGD2VHDL creates a port on the back-annotated design entity
for stimulating the global set/reset or tri-state enable signals. This
port does not actually exist on the configured part.

You do not need to use the –gp switch to create an external port if you
instantiated a STARTUP block in the implemented design. In this
case, the port is already identified and connected to the global set/
reset or tri-state enable signal. If you do not use the –gp option or a
STARTUP block, you will need to use a special cell. Detailed
directions for specific emulation cells and their uses follow.

NGD2VHDL

Development System Reference Guide 18-9

Note: The term “STARTUP” refers to the STARTUP block for all
device families, including the Virtex STARTUP block,
STARTUP_VIRTEX. The term “STARTBUF” refers to the STARTBUF
cell for all device families, including the Virtex STARTBUF cell,
STARTBUF_VIRTEX.

VHDL Only STARTUP Block
The STARTUP block is traditionally instantiated to identify the GR,
PRLD, or GSR signals for implementation. However, the only time
simulation is enabled in the traditional method is when the net
attached to the GSR or GTS also goes off chip, because the STARTUP
block does not have simulation models. You can use the following
new cells to simulate global set/reset or tri-state nets in all cases,
whether or not the signal goes off chip.

Note: The Virtex STARTUP block, STARTUP_VIRTEX, is a subset of
the XC4000 STARTUP block. It differs from the XC4000 STARTUP
block in that is has no outputs, as shown in the “STARTUP and
STARTUP_VIRTEX Blocks” figure of the “NGD2VER” chapter.

VHDL Only STARTBUF Cell
The STARTBUF cell passes a reset or tri-state signal in the same way
that a buffer allows simulation to proceed, and it also instantiates the
STARTUP block for implementation. STARTBUF is a more simulation
friendly version of a typical STARTUP block. There is one version
that works for all technologies, even though the XC5200 and the
XC4000 STARTUP blocks have different pin names. Implementation
with the correct STARTUP block is handled automatically. An
instantiation example for the STARTBUF cell follows.

U1: STARTBUF port map (GSRIN => DEV_GSR_PORT, GTSIN
=>DEV_GTS_PORT, CLKIN => ‘0’, GSROUT => GSR_NET,
GTSOUT => GTS_NET, Q2OUT => open, Q3OUT => open,
Q1Q4OUT => open, DONEINOUT => open):

One or both of the input ports GSRIN and GTSIN of the STARTBUF
component and the associated output ports GSROUT and GTSOUT
can be used. The pins that are left “open” can be used to pass
configuration instructions down to implementation, just as on a
traditional STARTUP block. You can do this by connecting the
appropriate signal to the port instead of leaving it in an “open”
condition.

Development System Reference Guide

18-10 Xilinx Development System

Note: The STARTBUF_VIRTEX cell is similar to the STARTBUF cell,
but GSROUT is not available.

VHDL Only STARTUP_VIRTEX Block and
STARTBUF_VIRTEX Cell

Global Set/Reset and Global Tristate for the Virtex STARTUP block,
STARTUP_VIRTEX, and STARTBUF cell, STARTBUF_VIRTEX,
operate as described in the preceding sections with the following
qualifications.

• Pre-NGDBuild UNISIM VHDL simulation of the GSR signal is
not supported.

The simulation libraries will start up in the correct state; however,
you cannot reset the design after simulation time ‘0.’

• During Pre-NGDBuild UNISIM VHDL simulation, designs are
properly initialized at simulation time ‘0.’

• Post-NGDBuild SIMPRIM VHDL simulation of GSR is
supported.

To correctly back-annotate a GSR signal, instantiate a
STARTUP_VIRTEX or STARTBUF_VIRTEX symbol and correctly
connect the GSR input signal of that component. When back-
annotated, your GSR signal is correctly connected to the
associated registers and RAM blocks.

• Pre-NGDBuild UNISIM VHDL simulation of the GTS signal is
supported.

Instantiate either a STARTBUF_VIRTEX, TOC, or TOCBUF for
this functionality.

VHDL Only RESET-ON-CONFIGURATION (ROC) Cell
This cell is created during back-annotation if you do not use the –gp
option or STARTUP block options. It can be instantiated in the front
end to match functionality with GSR, GR, or PRLD. (This is done in
both functional and timing simulation.) During back-annotation, the
entity and architecture for the ROC cell is placed in the design’s
output VHDL file. In the front end, the entity and architecture are in
the UNISIM Library, and require only a component instantiation.

NGD2VHDL

Development System Reference Guide 18-11

The ROC cell generates a one-time initial pulse to drive the GR, GSR,
or PRLD net starting at time ‘0’ for a user-defined pulse width. You
can set the pulse width with a generic in a configuration statement.
The default value of “width” is 0 ns, which disables the ROC cell and
results in the global set/reset being held Low. (Active-Low resets are
handled within the netlist itself and require you to invert this signal
before using it.)

The ROC cell allows you to simulate with the same testbench as in
the RTL simulation, and also allows you to control the width of the
global set/reset signal in the implemented design.

The ROC components require a value for the generic WIDTH, usually
specified with a configuration statement. Otherwise, a generic map is
required as part of the component instantiation.

You can set the generic with any generic mapping method you
choose. Set the “width” generic after consulting The Programmable
Logic Data Book for the particular part and mode you have
implemented.

For example, a XC4000E part can vary from 10 ms to 130 ms. The
value to look for is the TPOR (Power-ON Reset) parameter found in
the Configuration Switching Characteristics tables for master, slave,
and peripheral modes.

One of the easiest methods for mapping the generic is a configuration
for the user’s testbench. An example testbench configuration for
setting the generic is as follows.

 CONFIGURATION cfg_my_timing_testbench OF my_testbench IS

 FOR my_testbench_architecture

 FOR ALL:my_design USE ENTITY work.my_design(structure);

 FOR structure

 FOR ALL:roc ENTITY USE work.roc (roc_v)

 Generic MAP (width => 100 ms);

 END FOR;

 END FOR;

 END FOR;

 END FOR;

 END cfg_my_timing_testbench;

Development System Reference Guide

18-12 Xilinx Development System

The following is an instantiation example for the ROC cell.

U1: ROC port map (0 =>GSR_NET);

VHDL Only ROCBUF Cell
The ROCBUF allows you to provide stimulus for the Reset on
Configuration signal through a testbench but the port connected to it
is not implemented as a chip pin. The port can be brought back in the
timing simulation with the –gp switch on NGD2VHDL. An example
of instantiation of the ROCBUF cell follows.

U1: ROCBUF port map (I => SIM_GSR_PORT, O +> GSR_NET);

Note: This cell is not available for Virtex.

VHDL Only Tri-State-On-Configuration (TOC) Cell
This cell is created if you do not use the –tp or StartUp block options.
The entity and architecture for the TOC cell is placed in the design’s
output VHDL file. The TOC cell generates a one-time initial pulse to
drive the GR, GSR, or PRLD net starting at time ‘0’ for a user-defined
pulse width. The pulse width can be set with a generic. The default
value of “width” is 0 ns, which disables the TOC cell and results in
the tri-state enable being held Low. (Active-Low tri-state enables are
handled within the netlist itself and require you to invert this signal
before using it.)

The TOC cell allows you to simulate with the same testbench as in the
RTL simulation, and also allows you to control the width of the tri-
state enable signal in the implemented design.

The TOC components require a value for the generic WIDTH, usually
specified with a configuration statement. Otherwise, a generic map is
required as part of the component instantiation.

You may set the generic with any generic mapping method you
choose. Set the “width” generic after consulting The Programmable
Logic Data Book for the particular part and mode you have
implemented.

For example, a XC4000E part can vary from 10 ms to 130 ms. The
value to look for is the TPOR (Power-ON Reset) parameter found in
the Configuration Switching Characteristics tables for master, slave,
and peripheral modes.

NGD2VHDL

Development System Reference Guide 18-13

One of the easiest methods for mapping the generic is a configuration
for the user’s testbench. An example testbench configuration for
setting the generic is as follows.

 CONFIGURATION cfg_my_timing_testbench OF my_testbench IS

 FOR my_testbench_architecture

 FOR ALL:my_design USE ENTITY work.my_design(structrue);

 FOR structure

 FOR ALL:toc ENTITY USE work.toc (toc_v)

 Generic MAP (width => 100 ms);

 END FOR;

 END FOR;

 END FOR;

 END FOR;

 END cfg_my_timing_testbench;

An instantiation example of the TOC cell follows.

U2: TOC port map (O => GTS_NET);

VHDL Only TOCBUF
The TOCBUF allows you to provide stimulus for the global tri-state
signal (GTS) through a testbench but the port connected to it is not
implemented as a chip pin. The port can be brought back in the
timing simulation with the –tp switch on NGD2VHDL. An example
of the instantiation of the TOCBUF cell follows.

U2: TOCBUF port map (I =>SIM_GTS_PORT, O =>GTS_NET);

VHDL Only Oscillators
Oscillator output can vary within a fixed range. The cell is not
included in the SIMPRIM library, because you cannot drive global
signals in VHDL designs. Schematic simulators can define and drive
global nets so the cell is not required. Verilog has the ability to drive
nets within a lower level module as well. Therefore the oscillator cells
are only required in VHDL. After back-annotation, their entity and
architectures are contained in the design’s VHDL output.

Development System Reference Guide

18-14 Xilinx Development System

For functional simulation, they may be instantiated and simulated
with the UNISIM Library.

The period of the base frequency must be set in order for the
simulation to proceed, because the default period of 0 ns disables the
oscillator. The oscillator’s frequency can very significantly with
process and temperature.

Before you set the base period parameter, consult The Programmable
Logic Data Book for the particular part you are using. For example, the
section in The Programmable Logic Data Book for the XC4000 Series On-
Chip Oscillator states that the base frequency can vary from 4MHz to
10 MHz, and is nominally 8 MHz. This means the base period generic
“period_8m” in the XC4000E OSC4 VHDL model can range from 250
ns to 100ns. An example of this follows.

Note: This cell is not available for Virtex.

Oscillator VHDL Example

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

library UNISIM;

use UNISIM.all;

entity test1 is

port (DATAIN: in STD_LOGIC;

DATAOUT: out STD_LOGIC);

end test1;

architecture inside of test1 is

signal RST: STD_LOGIC;

component ROC

NGD2VHDL

Development System Reference Guide 18-15

port(O: out STD_LOGIC);

end component;

component OSC4

port(F8M: out STD_LOGIC);

end component;

signal internalclock: STD_LOGIC;

begin

U0: ROC port map (RST);

U1: OSC4 port map (F8M=>internalclock);

process(internalclock)

begin

if (RST='1') then

DATAOUT <= '0';

elsif(internalclock'event and internalclock='1') then

DATAOUT <= DATAIN;

end if;

end process;

end inside;

Development System Reference Guide

18-16 Xilinx Development System

Oscillator Test Bench

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

library UNISIM;

use UNISIM.all;

entity test_oftest1 is end test_oftest1;

architecture inside of test_oftest1 is

component test1

port(DATAIN: in STD_LOGIC;

DATAOUT: out STD_LOGIC);

end component;

signal userdata, userout: STD_LOGIC;

begin

UUT: test1 port map(DATAIN=>userdata,DATAOUT=>userout);

myinput: process

begin

userdata <= '1';

wait for 299 ns;

userdata <= '0';

wait for 501 ns;

NGD2VHDL

Development System Reference Guide 18-17

end process;

end inside;

configuration overall of test_oftest1 is

for inside

 for UUT:test1

 for inside

 for U0:ROC use entity UNISIM.ROC(ROC_V)

 generic map (WIDTH=> 52 ns);

 end for;

 for U1:OSC4 use entity UNISIM.OSC4(OSC4_V)

 generic map (PERIOD_8M=> 25 ns);

 end for;

 end for;

 end for;

end for;

end overall;

This configuration is for pre-NGDBuild simulation. A similar
configuration is used for post-NGDBuild simulation. The ROC, TOC,
and OSC4 are mapped to the WORK library, and corresponding
architecture names may be different. Review the .vhd file created by
NGD2VHDL for the current entity and architecture names for post-
NGDBuild simulation.

Development System Reference Guide

18-18 Xilinx Development System

Bus Order in VHDL Files
When you compile your unit-under-test design from NGD2VHDL
with your testbench, there may be mismatches on bused ports.

This problem occurs when your unit under test has top-level ports
that are defined as LSB-to-MSB, as shown in the following example.

A: in STD_LOGIC_VECTOR (0 to 7);

As a result of the way your input design was converted to a netlist
before it was read into the Xilinx implementation software, the Xilinx
design database does not include information on how bus direction
was defined in the original design. When NGD2VHDL writes out a
structural timing VHDL description, all buses are written as MSB-to-
LSB, as shown in the following example.

A: in STD_LOGIC_VECTOR (7 downto 0);

If your ports were defined as LSB-to-MSB in your original input
design and testbench, there is a port mismatch when the testbench is
compiled for timing simulation. Use one of the following to solve this
problem.

• In the testbench, modify the instantiation of the unit under test so
that all ports are defined as MSB-to-LSB for timing simulation

• Define all ports as MSB-to-LSB in the original design and
testbench, by using the downto clause instead of the to clause to
specify a bus range.

Development System Reference Guide — October 1998 A-1

Appendix A

Xilinx Development System Files

This appendix gives an alphabetic listing of the files used by the
Xilinx Development System.

Name Type Produced By Description

ALF ASCII NGDAnno A report file containing information
about an NGDAnno run.

BIT Data BitGen Download bitstream file for devices
containing all of the configuration
information from the NCD file.

BGN ASCII BitGen A report file containing information
about a BitGen run.

BLD ASCII NGDBuild A report file containing information
about an NGDBuild run.

DC ASCII Synopsys FPGA
Compiler

Synopsys setup file containing
constraints read into the Xilinx
Development System.

DLY ASCII PAR Contains delay information for each
net in a design.

DRC ASCII BitGen A DRC runs and the DRC file is
produced unless you enter a –d
option on the BitGen command line

EDIF
(various file
extensions)

ASCII CAE vendor’s EDIF 2
0 0 netlist writer.

EDIF netlist. The Xilinx Development
System accepts an EDIF 2 0 0 Level 0
netlist file.

EDN ASCII NGD2EDIF Default extension for an EDIF
2 0 0 netlist file.

Development System Reference Guide

A-2 Xilinx Development System

Epic ASCII Xilinx software File used to set default colors and
geometry for EPIC (workstation
only).

epic.ini ASCII Xilinx software Script that determines what EPIC
commands are performed when
EPIC starts up.

epic.men ASCII Xilinx software File used to determine the items in
EPIC’s menu bar and the contents of
each of the menu bar’s pull-down
menus.

epicuser.ini ASCII Xilinx software A supplement to the epic.ini file used
for modifying or adding to the
epic.ini file.

EPL ASCII EPIC EPIC command log file. The EPL file
keeps a record of all EPIC commands
executed and output generated. It is
used to recover an aborted EPIC
session.

EXO Data PROMGen PROM file in Motorola’s EXORMAT
format.

LOG ASCII NGD2VER
NGD2VHDL

A log file containing all the messages
generated during the execution of
NGD2VER (ngd2ver.log) or
NGD2VHDL (ngd2vhdl.log).

LCA ASCII Xilinx Development
System

A mapped file of an earlier release
Xilinx design.

L2N ASCII LCA2NCD A report file containing information
about an LCA2NCD run.

LL ASCII BitGen An optional ASCII logic allocation
file with an .ll extension. The logic
allocation file indicates the bitstream
position of latches, flip-flops, and
IOB inputs and outputs.

MEM ASCII User (with text editor)
LogiBLOX

User-edited memory file that defines
the contents of a ROM.

Name Type Produced By Description

Xilinx Development System Files

Development System Reference Guide A-3

MCS Data PROMGen PROM-formatted file in Intel’s MCS-
86 format.

MDF Binary MAP or LCA2NCD A file describing how logic was
decomposed when the design was
mapped. The MDF file is used for
guided mapping.

MFP ASCII Floorplanner Map Floorplanner File, which is
generated by the Floorplanner, speci-
fied as an input file with the -fp
option. The MFP file is essentially
used as a guide file for mapping.

MRP ASCII MAP MAP report file containing informa-
tion about a technology mapper
command run.

MSK Data BitGen This file is used to compare relevant
bit locations when reading back
configuration data contained in an
operating Xilinx device.

NCD Data Mappers, LCA2NCD,
PAR, EPIC

A flat physical design database corre-
lated to the physical side of the NGD
in order to provide coupling back to
the user’s original design.

NCF ASCII CAE Vendor toolset Vendor-specified logical constraints
files.

NGA Data NGDAnno Back-annotated mapped NCD file.

NGC Binary LogiBLOX A file containing the implementation
of a module in the design.

NGD Data NGDBuild Generic Database file. This file
contains a logical description of the
design expressed both in terms of the
hierarchy used when the design was
first created and in terms of lower-
level Xilinx primitives to which the
hierarchy resolves.

Name Type Produced By Description

Development System Reference Guide

A-4 Xilinx Development System

NGM Data MAP A file containing all of the data in the
input NGD file as well as informa-
tion on the physical design produced
by the mapping. The NGM file is
used for back-annotation.

NGO Data Netlist Readers A file containing a logical description
of the design in terms of its original
components and hierarchy.

NMC Binary EPIC Xilinx physical macro library file.
Contains a physical macro definition
that can be instantiated into a design.

PAD ASCII PAR A file containing a listing of all
I/O components used in the design
and their associated primary pins.

PAR ASCII PAR A PAR report file containing execu-
tion information about the PAR
command run. The file shows the
steps taken as the program converges
on a placement and routing solution.

PCF ASCII MAP, EPIC A file containing physical
constraints specified during design
entry (that is, schematics) and
constraints added by the user.

PRM ASCII PROMGen A file containing a memory map of a
PROM file showing the starting and
ending PROM address for each BIT
file loaded.

RBT ASCII BitGen A "rawbits" file consisting of ASCII
ones and zeros representing the data
in the bitstream file.

RPT ASCII PIN2UCF If PIN2UCF discovers conflicting
constraints, it writes information to a
report file, named pinlock.rpt.

RCV ASCII EPIC EPIC recovery file.

SCR ASCII EPIC EPIC command script file.

TDR ASCII DRC Physical DRC report file.

Name Type Produced By Description

Xilinx Development System Files

Development System Reference Guide A-5

TEK Data PROMGen PROM-formatted file in Tektronix’s
TEKHEX format.

TV ASCII NGD2VER Verilog test fixture file.

TVHD ASCII NGD2VHDL VHDL testbench file.

TWR ASCII TRACE A timing report file produced by
TRACE.

UCF ASCII User (with text editor) User-specified logical constraints
files.

V ASCII NGD2VER Verilog netlist.

VHD ASCII NGD2VHDL VHDL netlist.

XNF ASCII Previous releases of
Xilinx Development
System, CAE vendor
toolsets

Xilinx netlist format file.

XTF ASCII Previous releases of
Xilinx Development
System

Xilinx netlist format file.

Name Type Produced By Description

Development System Reference Guide

A-6 Xilinx Development System

Development System Reference Guide — October 1998 B-1

Appendix B

EDIF2NGD, XNF2NGD, and NGDBuild

This appendix describes the netlist reader programs, EDIF2NGD and
XNF2NGD, and how these programs interact with NGDBuild. The
appendix contains the following sections.

• “EDIF2NGD”

• “XNF2NGD”

• “NGDBuild”

• “Netlister Launcher”

• “File Names and Locations”

EDIF2NGD
This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• Spartan XL

• Virtex

• XC9500

• XC9500XL

Development System Reference Guide

B-2 Xilinx Development System

The EDIF2NGD program allows you to read an EDIF (Electronic
Design Interchange Format) 2 0 0 file into the Xilinx Development
System toolset. EDIF2NGD converts an industry-standard EDIF
netlist to an NGO file—a Xilinx-specific format. The EDIF file
includes the hierarchy of the input schematic. The output NGO file is
a binary database describing the design in terms of the components
and hierarchy specified in the input design file. The following figure
shows the flow through EDIF2NGD.

Figure B-1 EDIF2NGD Design Flow

The NGO file can be converted to an NGD file using the NGDBuild
program. The NGD file can be mapped into an NCD file, which can
then be placed and routed.

Synthesis

Vendor Tools

NCF

Netlist Constraints File

EDIF2NGD

Schematic

Drawing

EDIF 2 0 0

Writer

NGO

EDIF 2 0 0 Netlist

CAE VENDOR

TOOLS

XILINX

DEVELOPMENT

SYSTEM

X6994

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-3

The input file must be a Level 0 EDIF netlist, as defined in the EDIF 2
0 0 specification. The Xilinx Development System toolset can
understand EDIF files developed using components from any of
these libraries.

• Xilinx Unified Libraries (described in the Libraries Guide)

• XSI (Xilinx Synopsys Interface) Libraries

• Any Xilinx physical macros you create

Note: Xilinx tools do not recognize Xilinx Unified Libraries
components defined as macros; they only recognize the primitives
from this library. The third-party EDIF writer must include
definitions for all macros.

You can run EDIF2NGD in the following ways.

• From the Design Manager/Flow Engine during the Translate
process

• Automatically from NGDBuild

• From the UNIX or DOS command line, as described in the
following sections

EDIF2NGD Syntax
The following command reads your EDIF netlist and converts it to an
NGO file.

edif2ngd [options] edif_file ngo_file

Options can be any number of the EDIF2NGD options listed in the
“EDIF2NGD Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

Edif_file is the EDIF 2 0 0 input file to be converted. The file must have
an extension. If the file has an extension other than .edn, you must
enter the extension as part of edif_file. If you enter a file name with no
extension, EDIF2NGD looks for a file with an .edn extension and the
name you specified.

Note: For EDIF2NGD to read a Mentor Graphics EDIF file, you must
have installed the Mentor Graphics software component on your
system. Similarly, to read a Cadence EDIF file, you must have
installed the Cadence software component.

Development System Reference Guide

B-4 Xilinx Development System

Ngo_file is the output file in NGO format. The output file name, its
extension, and its location are determined in this way.

• If you do not specify an output file name, the output file has the
same name as the input file, with an .ngo extension.

• If you specify an output file name with no extension, EDIF2NGD
appends the .ngo extension to the file name.

• If you specify a file name with an extension other than .ngo, you
get an error message and EDIF2NGD does not run.

• If you do not specify a full pathname, the output file is placed in
the directory from which you ran EDIF2NGD.

If the output file exists, it is overwritten with the new file.

EDIF2NGD Files
This section describes the EDIF2NGD input and output files.

Input Files

EDIF2NGD uses the following files as inputs.

• EDIF file—EDIF 2 0 0 netlist file. The file must be a Level 0 EDIF
netlist, as defined in the EDIF 2 0 0 specification.

• NCF file—Netlist Constraints File. Produced by a vendor toolset
or by the DC2NCF program, this file contains constraints speci-
fied within the toolset. EDIF2NGD reads the constraints in this
file and adds the constraints to the output NGO file.

EDIF2NGD reads the constraints in the NCF file if the NCF file
has the same base name as the input EDIF file and an .ncf exten-
sion. The name of the NCF file does not have to be entered on the
EDIF2NGD command line.

Output Files

The output of EDIF2NGD is an NGO file—a binary file containing a
logical description of the design in terms of its original components
and hierarchy.

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-5

EDIF2NGD Options
This section describes the EDIF2NGD command options.

–a (Add PADs to Top-Level Port Signals)

The –a option adds PAD properties to all top level port signals. This
option is necessary if the EDIF2NGD input is an EDIF file in which
PAD symbols were translated into ports. If you do not specify a –a
option for one of these EDIF files, the absence of PAD instances in the
EDIF file causes EDIF2NGD to read the design incorrectly. Subse-
quently, MAP interprets the logic as unused and removes it.

In all Mentor Graphics and Cadence EDIF files PAD symbols are
translated into ports. For EDIF files from either of these vendors, the –
a option is set automatically; you do not have to enter the –a option
on the EDIF2NGD command line.

–f (Execute Commands File)

–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–l (Libraries to Search)

–l libname

The –l option specifies a library to search when determining what
library components were used to build the design. This information
is necessary for NGDBuild, which must determine the source of the
design’s components before it can resolve the components to Xilinx
primitives.

You may specify multiple –l options on the command line. Each must
be preceded with –l; you cannot combine multiple libname specifiers
after one -l. For example, –l xilinxun synopsys is not acceptable,
while –l xilinxun –l synopsys is acceptable.

The allowable entries for libname are the following.

xilinxun (For Xilinx Unified library)

synopsys

Development System Reference Guide

B-6 Xilinx Development System

Note: You do not have to enter xilinxun with a –l option. The Xilinx
Development System tools automatically access these libraries. You
do not have to enter synopsys with a -l option if the EDIF netlist
contains an author construct with the string “Synopsys.” In this case,
EDIF2NGD automatically detects that the design is from Synopsys.

–p (Part Name)

–p part

The –p option specifies the part into which your design is
implemented. The –p option can specify an architecture only, a
complete part specification (device, package, and speed), or a partial
specification (for example, device and package only).

The syntax for the –p option is described in the “Part Numbers in
Commands” section of the “Introduction” chapter. Examples of part
entries are XC3100A, XC4003E-PC84 , and XC4028EX-HQ240-3 .

If you do not specify a part when you run EDIF2NGD, you will have
to specify one when you run NGDBuild.

You can also use the –p option to override a part name in the input
EDIF netlist or a part name in an NCF file.

–r (Ignore LOC Properties)

The –r option filters out all location properties (LOC=) from the
design. This can be used when you are migrating to a different device
or architecture, because locations in one architecture do not match
locations in another.

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-7

XNF2NGD
This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• XC9500

• XC9500XL

Note: XNF primitives are not defined for the Virtex architecture, and
XNF files created for Virtex are rejected by XNF2NGD. However, if
you have XNF netlists that were created for the XC3000, XC4000E, or
XC5200 architectures, you can include these XNF netlists in a design
that you will target to a Virtex device.

XNF2NGD allows you to read a Version 6.1 XNF (Xilinx Netlist
Format) file into the Xilinx Development System toolset. XNF2NGD
converts an XNF file to an NGO file, which is a binary database
describing the netlist in terms of Xilinx components. After you
convert the XNF file to an NGO file, you run NGDBuild to create an
NGD file, which expands the design to include a description reduced
to Xilinx primitives. The following figure shows the flow through
XNF2NGD.

Development System Reference Guide

B-8 Xilinx Development System

Figure B-2 XNF2NGD Design Flow

You can run XNF2NGD in the following ways.

• From the Design Manager/Flow Engine during the Translate
process

• Automatically from NGDBuild

• From the UNIX or DOS command line, as described in the
following sections.

Note: When creating nets or symbols names, do not use reserved
names. Reserved names are the names of symbols for primitives and
macros in the Libraries Guide and netnames GSR,RESET, GR, and
PRELOAD. If you used these names, XNF2NGD issues an error.

Synthesis

Vendor Tools

Schematic

Drawing

NCF

Netlist Constraints File

XNF

Writer

XNF2NGD

NGO

XNF

Xilinx Netlist Format

CAE VENDOR

TOOLS

XILINX

DEVELOPMENT

SYSTEM

X7203

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-9

XNF2NGD Syntax
The following command reads your XNF netlist and converts it to an
NGO file.

xnf2ngd [options] xnf_file ngo_file

Options can be any number of the XNF2NGD options listed in the
“XNF2NGD Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

Xnf_file is the input file (in XNF format) to be converted. The file can
have any extensions (for example, .xnf, .xtf, .xff, .xg, or .sxnf), as long
as the file is in XNF format. If you enter a file name with no extension,
XNF2NGD looks for a file with an .xnf extension and the name you
specified.

Ngo_file is the output file in NGO format. The output file name, its
extension, and its location are determined in this way.

• If you do not specify an output file name, the output file has the
same name as the input file, with an .ngo extension.

• If you specify an output file name with no extension, XNF2NGD
appends the .ngo extension to the file name.

• If you specify a file name with an extension other than .ngo, you
get an error message and XNF2NGD does not run.

• If you do not specify a full pathname, the output file is placed in
the directory from which you ran XNF2NGD.

If the output file already exists, it is overwritten with the new file.

Development System Reference Guide

B-10 Xilinx Development System

XNF2NGD Files
This section describes the XNF2NGD input and output files.

Input Files

XNF2NGD uses the following files as inputs.

• XNF file—Xilinx Netlist Format (XNF) text file. The file can have
any extension as long as the contents are in XNF format.

• NCF file—Netlist Constraints File. Produced by a vendor toolset
or the DC2NCF program, this file contains constraints specified
within the toolset. XNF2NGD reads the constraints in this file
and adds the constraints to the output NGO file.

XNF2NGD reads the constraints in the NCF file if the NCF file
has the same name as the input XNF file and an extension of .ncf.
The name of the NCF file does not have to be entered on the
XNF2NGD command line.

Output Files

The output of XNF2NGD is an NGO file—a binary file containing a
logical description of the design in terms of its original components
and hierarchy.

XNF2NGD Options
This section describes the XNF2NGD command options.

–f (Execute Commands File)

–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-11

–l (Libraries to Search)

–l libname

The –l option indicates the list of libraries to search when
determining what library components were used to build the design.
This information is necessary for NGDBuild, which must determine
the source of the design’s components before it can resolve the
components to Xilinx primitives.

You can specify multiple –l options on the command line. Each must
be preceded with –l; you cannot combine multiple libname specifiers
after one -l. For example, –l xilinxun synopsys is not accept-
able, while –l xilinxun –l synopsys is acceptable.

The allowable entries for libname are the following.

xilinxun (For Xilinx Unified library)

synopsys

XC3000

XC4000

XC9500

Note: You do not have to enter xilinxun with a –l option. The Xilinx
Development System tools automatically access these libraries. In
most cases, you do not have to enter XC3000 or XC4000 with a -l
option. However, if your XNF file contains an input latch (INLAT)
component and no part type is specified in the XNF file, the meaning
of the INLAT component is ambiguous. In this case, XNF2NGD will
stop with an error message. You must run XNF2NGD again using the
-l option to define the INLAT component; -l XC3000 means the
INLAT is transparent High and -l XC4000 means it is transparent
Low.

–p (Part Name)

–p part

The –p option specifies the part into which your design is
implemented. The –p option can specify an architecture only, a
complete part specification (device, package, and speed), or a partial
specification (for example, device and package only).

Development System Reference Guide

B-12 Xilinx Development System

The syntax for the –p option is described in the “Part Numbers in
Commands” section of the “Introduction” chapter. Examples of part
entries are XC3100A, XC4003E-PC84 , and XC4028EX-HQ240-3 .

If you do not specify a part when you run XNF2NGD, you will have
to specify one when you run NGDBuild.

You may also use the –p option to override a part name in the input
XNF netlist or a part name in an NCF file.

–r (Ignore LOC Properties)

The –r option filters out all location properties (LOC=) from the
design. This can be used when you are migrating to a different device
or architecture, because locations in one architecture do not match
locations in another.

–u (Top-Level XNF Netlist)

The –u option specifies that the input XNF file is the top-level design
netlist. When XNF2NGD translates netlists at lower hierarchical
levels, XNF2NGD adds to the lower-level NGO file information that
is unnecessary in the top-level NGO file. The –u option prevents this
information from being added to the top-level NGO file.

NGDBuild
This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan

• SpartanXL

• Virtex

• XC9500

• XC9500XL

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-13

NGDBuild performs all the steps necessary to read a netlist file in
XNF or EDIF format and create an NGD file describing the logical
design. The NGD file resulting from an NGDBuild run contains both
a logical description of the design reduced to NGD primitives and a
description in terms of the original hierarchy expressed in the input
netlist. The output NGD file can be mapped to the desired device
family.

Converting a Netlist to an NGD File
NGDBuild performs the following steps to convert a netlist to an
NGD file. This flow is shown in the “NGDBuild and the Netlist
Readers” figure.

1. Reads the source netlist.

To perform this step, NGDBuild invokes the Netlister Launcher, a
part of the NGDBuild software which determines the type of the
input netlist and starts the appropriate netlist reader program. If
the input netlist is in EDIF or XNF format, the Netlister Launcher
invokes EDIF2NGD or XNF2NGD. If the input netlist is in
another format that the Netlister Launcher recognizes, the
Netlister Launcher invokes the program necessary to convert the
netlist to EDIF or XNF format, then invokes EDIF2NGD or
XNF2NGD. The netlist reader produces an NGO file for the top-
level netlist file.

If any subfiles are referenced in the top-level netlist (for example,
a PAL description file, or another schematic file), the Netlister
Launcher invokes the appropriate netlist reader for each of these
files to convert each referenced file to an NGO file.

The Netlister Launcher is described in the “Netlister Launcher”
section. The netlist reader programs are described in the
“EDIF2NGD” section and the “XNF2NGD” section.

2. Reduces all components in the design to NGD primitives.

To perform this step, NGDBuild merges components that
reference other files by finding the referenced NGO files.
NGDBuild also finds the appropriate system library components,
physical macros (NMC files) and behavioral models.

3. Checks the design by running a Logical DRC (Design Rule
Check) on the converted design.

Development System Reference Guide

B-14 Xilinx Development System

The Logical DRC is a series of tests on the logical design. It is
described in “The Logical Design Rule Check” chapter.

4. Writes an NGD file as output.

Figure B-3 NGDBuild and the Netlist Readers

When NGDBuild reads the source netlist, it detects any files or parts
of the design that have changed since the last run of NGDBuild. It
updates files as follows.

• If you have modified your input design since you last ran
NGDBuild, NGDBuild updates all of the files affected by the
change and use the updated files to produce a new NGD file.

NCF

Netlist Constraints File

NGO

Top-Level

X7221

Netlist

(EDIF or XNF)

Netlist Reader

(EDIF2NGD or XNF2NGD)

NMC

Physical Macros

Referenced in Netlist

NGDBuild

Files

Referenced in Netlist

NGO

For Files

Referenced in Netlist

NGC

LogiBLOX or Core Modules

Referenced in Netlist

NGD

Generic Database

Netlister

Launcher

UCF

User Constraints File

BLD

Build Report

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-15

The Netlister Launcher checks timestamps (date and time
information) for netlist files and intermediate NGDBuild files
(NGOs). If an NGO file has a timestamp earlier than the netlist
file that produced it, the NGO file is updated and a new NGD file
is produced.

• NGDBuild completes the NGD production if all or some of the
intermediate files already exist. These files may exist if you ran a
netlist reader before you ran NGDBuild. NGDBuild uses the
existing files and create the remaining files necessary to produce
the output NGD file.

Note: If the NGO for an netlist file is up to date, NGDBuild looks for
an NCF file with the same base name as the netlist in the netlist
directory and compares the timestamp of the NCF file against that of
the NGO file. If the NCF file is newer, XNF2NGD or EDIF2NGD is
run again. However, if an NCF file existed on a previous run of
NGDBuild and the NCF file was deleted, NGDBuild will not detect
that XNF2NGD or EDIF2NGD must be run again. In this case, you
must use the nt -on option to force a rebuild.

Syntax, files, and options for the NGDBuild command are described
in the “NGDBuild” chapter.

Bus Matching in Virtex
In the Xilinx UnifiedPro library for Virtex, some of the pins on the
block RAM primitives are bused. If your synthesis or schematic
vendor writes out EDIF netlists in which bused pins are left intact (in
what are known as “array constructs”), EDIF2NGD expands the
bused pins correctly for NGDBuild.

However, many synthesis and schematic vendors expand these
bused pins into scalar pins when writing an EDIF or XNF netlist. If
your synthesis or schematic vendor expands bused pins, the naming
convention for the resulting scalar pins must be one of those
recognized by NGDBuild, or the block RAM instance will be reported
as “unexpanded.”

Development System Reference Guide

B-16 Xilinx Development System

NGDBuild supports the conventions shown in the following table.

If your synthesis or schematic allows you to configure the naming
convention it uses when expanding bused pins, adhere to one of
these conventions to avoid “unexpanded” instances.

Netlister Launcher
The Netlister Launcher, which is part of NGDBuild, performs any
netlist translations necessary to execute the NGDBuild command.

When NGDBuild is invoked, the Netlister launcher goes through the
following steps.

1. The Netlister Launcher initializes itself with a set of rules for
determining what netlist reader is to be used with each type of
netlist, and the options with which each reader is invoked.

The rules are contained in the system rules file (described in the
“System Rules File” section) and in the user rules file (described
in the “User Rules File” section).

2. NGDBuild makes the directory of the top-level netlist the first
entry in the Netlister Launcher’s list of search paths.

3. For the top-level design and for each file referenced in the top-
level design, NGDBuild queries the Netlist Launcher for the pres-
ence of the corresponding NGO file.

4. For each NGO file requested, the Netlister Launcher performs
these actions.

• Determine what netlist is the source for the requested NGO
file.

The Netlister Launcher determines the source netlist by
looking in its rules database for the list of legal netlist
extensions.

Naming Convention Example

busname(index) DI(3)

busname<index> DI<3>

busname[index] DI[3]

busnameindex DI3

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-17

Then, it looks in the search path (which includes the current
directory) for a netlist file possessing a legal extension and
the same name as the requested NGO file.

• Find the requested NGO file.

The Netlister Launcher looks first in the directory specified
with the -dd option (or current directory if a directory is not
specified). If the NGO file is not found there and the source
netlist was not found in the search path, the Netlister
Launcher looks for the NGO file in the search path.

• Determine whether the NGO file must be created or updated.

If neither the netlist source file nor the NGO file is found,
NGDBuild exits with an error.

If the netlist source file is found but the corresponding NGO
file is not found, the Netlister Launcher invokes the proper
netlist reader to create the NGO file.

If the netlist source file is not found but the corresponding
NGO file is found, the Netlister Launcher indicates to
NGDBuild that the file exists and NGDBuild uses this NGO
file.

If both the netlist source file and the corresponding NGO file
are found, the netlist file’s time stamp is checked against the
NGO file’s timestamp. If the timestamp of the NGO file is
later than the source netlist, the Netlister Launcher returns a
“found” status to NGDBuild. If the timestamp of the NGO
file is earlier than the netlist source, or the NGO file is not
present in the expected location, then the Launcher creates
the NGO file from the netlist source by invoking the netlist
reader specified by its rules.

Note: The timestamp check can be overridden by options on the
NGDBuild command line. The –nt on option updates all existing
NGO files, regardless of their timestamps. The –nt off option does not
update any existing NGO files, regardless of their timestamps.

5. The Netlister launcher indicates to NGDBuild that the requested
NGO files have been found, and NGDBuild can process all of
these NGO files.

Development System Reference Guide

B-18 Xilinx Development System

Netlister Launcher Rules Files
The behavior of the Netlister Launcher is determined by rules
defined in the system rules file and the user rule file. These rules
determine the following.

• What netlist source files are acceptable

• Which netlist reader reads each of these netlist files

• What the default options are for each netlist reader

The system rules file contains the default rules supplied with the
Xilinx Development System software. The user rules file can add to or
override the system rules.

The following sections describe the user rules file and the system
rules.

User Rules File
The user rules file can add to or override the rules in the system rules
file. You can specify the location of the user rules file with the –ur
option to the NGDBuild command line.

User Rules and System Rules

User rules are treated as described below.

• A user rule can override a system rule if it specifies the same
source and target files as the system rule.

• A user rule can supplement a system rule if its target file is
identical to a system rule’s source file, or if its source file is the
same as a system rule’s target file.

• A user rule that has a source file identical to a system rule’s target
file and a target file that is identical to the same system rule’s
source file is illegal, because it defines a loop.

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-19

User Rules Format

Each rule in the user rules file has the following format.

RuleName = < rulename1>;
<key1> = < value1>;
<key2> = < value2>;
 .
 .
 .
<keyn> = < valuen>;

The following is a description of the keys allowed and the values
expected.

Note: All of the values mentioned in the following paragraphs are
described in the “Value Types in Key Statements” section.

• RuleName—This key is used to identify the beginning of a rule.
It is also used in error messages relating to the rule. It expects a
RULENAME value. A value is required.

• NetlistFile —This key is used to specify a netlist or class of
netlists that the netlist reader takes as input. The extension of
NetlistFile is used together with the TargetExtension to identify
the rule. It expects either a FILENAME or an EXTENSION value.
If a file name is specified, it should be just a file name (that is, no
path). Any leading path is ignored. A value is required.

• TargetExtension —This key is used to specify the class of files
generated by the netlist reader. It is used together with the
extension from NetlistFile to identify the rule. It expects an
EXTENSION value. A value is required.

• Netlister —This key is used to specify the netlist reader to use
when translating a specific netlist or class of netlists to a target
file. The specific netlist or class of netlists is specified by
NetlistFile, and the class of target files is specified by
TargetExtension. It expects an EXECUTABLE value. A value is
required.

• NetlisterTopOptions —This key is used to specify options
for the netlist reader when compiling the top level design. It
expects an OPTIONS value or the keyword NONE. Included in
this string should be the keywords $INFILE and $OUTFILE, in
which the input and output files is substituted. In addition, the
following keywords may appear.

Development System Reference Guide

B-20 Xilinx Development System

• $PART—The part passed to NGDBuild by the –p switch is
substituted. It may include architecture, device, package and
speed information. The syntax for a $PART specification is
the same as described in the “Part Numbers in Commands”
section of the “Introduction” chapter.

• $FAMILY—The family passed to NGDBuild by the –p switch
is substituted. A value is optional.

• $DEVICE—The device passed to NGDBuild by the –p switch
is substituted. A value is optional.

• $PKG—The package passed to NGDBuild by the –p switch is
substituted. A value is optional.

• $SPEED—The speed passed to NGDBuild by the –p switch is
substituted. A value is optional.

• $LIBRARIES—The libraries passed to NGDBUILD. A value
is optional.

• $IGNORE_LOCS—Substitute the –r option to EDIF2NGD or
XNF2NGD if the NGDBUILD command line contained a –r
option.

• $ADD_PADS—Substitute the –a option to EDIF2NGD if the
NGDBUILD command line contained a –a option.

The options in the NetlisterTopOptions line must be
enclosed in quotation marks.

• NetlisterOptions —This key is used to specify options for the
netlist reader when compiling sub-designs. It expects an
OPTIONS value or the keyword NONE. Included in this string
should be the keywords $INFILE and $OUTFILE, in which the
input and output files is substituted. In addition, any of the
keywords that may be entered for the NetlisterTopOptions
key may also be used for the NetlisterOptions key.

The options in the NetlisterOptions line must be enclosed in
quotation marks.

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-21

• NetlisterDirectory —This key is used to specify the direc-
tory in which to run the netlist reader. The launcher changes to
this directory before running the netlist reader. It expects a DIR
value or the keywords $SOURCE, $OUTPUT, or NONE, where
the path to the source netlist is substituted for $SOURCE, the
directory specified with the -dd option is substituted for
$OUTPUT, and the current working directory is substituted for
NONE. A value is optional.

• NetlisterSuccessStatus —This key is used to specify the
return code that the netlist reader returns if it ran successfully. It
expects a NUMBER value or the keyword NONE. The number
may be preceded with one of the following: =, <, >, or !. A value
is optional.

Value Types in Key Statements

The value types used in the preceding key statements are the
following.

• RULENAME—Any series of characters except for a semicolon (;)
and white space (for example, space, tab, newline).

• EXTENSION—A “.” followed by an extension that conforms to
the requirements of the platform.

• FILENAME—A file name that conforms to the requirements of
the platform.

• EXECUTABLE—An executable name that conforms to the
requirements of the platform. It may be a full path to an
executable or just an executable name. If it is just a name, then the
$PATH environment variable is used to locate the executable.

• DIR—A directory name that conforms to the requirements of the
platform.

• OPTIONS—Any valid string of options for the executable.

• NUMBER—Any series of digits.

• STRING—Any series of characters in double quotes.

Development System Reference Guide

B-22 Xilinx Development System

System Rules File
The system rules are shown following. The system rules file is not an
ASCII file, but for the purpose of describing the rules, the rules are
described here using the same syntax as in the user rules file. This
syntax is described in the “User Rules File” section.

Note: If a rule attribute is not specified, it is assumed to have the
value NONE.

###
xnf2ngd rules
###

RuleName = XNF_RULE;
NetlistFile = .xnf;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = XTF_RULE;
NetlistFile = .xtf;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = XFF_RULE;
NetlistFile = .xff;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-23

NetlisterSuccessStatus = 0;

RuleName = XG_RULE;
NetlistFile = .xg;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = SYN_XNF_RULE;
NetlistFile = .sxnf;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] -l synopsys {-l
$LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] -l synopsys {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

###
edif2ngd rules
###

RuleName = EDN_RULE;
NetlistFile = .edn;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = EDF_RULE;
NetlistFile = .edf;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE $OUTFILE";

Development System Reference Guide

B-24 Xilinx Development System

NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = EDIF_RULE;
NetlistFile = .edif;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = SYN_EDIF_RULE;
NetlistFile = .sedif;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = NONE;
NetlisterOptions = "-l synopsys [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

###
other rules
###

RuleName = PLD_RULE;
NetlistFile = .pld;
TargetExtension = .xnf;
Netlister = readpld;
NetlisterTopOptions = "-f $INFILE -t -ox $OUTFILE";
NetlisterOptions = "-f $INFILE -ox $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

Rules File Examples
The following sections provide examples of system and user rules.
The first example explains one of the system rules presented in the
preceding “System Rules File” section. This example is the basis for
understanding the ensuing user rules examples.

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-25

XNF_RULE System Rule

As shown in the “System Rules File” section, the XNF_RULE system
rule is defined as follows.

RuleName = XNF_RULE;
NetlistFile = .xnf;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

The XNF_RULE instructs the Netlister Launcher to use XNF2NGD to
translate an XNF file to an NGO file. If the top-level netlist is being
translated, the options defined in NetlisterTopOptions are used; if a
lower-level netlist is being processed, the options defined by Netlis-
terOptions are used. The –u option is used on the top-level netlist, but
not on lower-level netlists. Because NetlisterDirectory is NONE, the
Netlister Launcher runs XNF2NGD in the current working directory
(the one from which NGDBuild was launched). The launcher expects
XNF2NGD to issue a return code of 0 if it was successful; any other
value is interpreted as failure.

User Rule Example 1

// URF Example 1
RuleName = OTHER_RULE; // end-of-line comments are also allowed
NetlistFile = .oth;
TargetExtension = .xnf;
Netlister = other2xnf;
NetlisterOptions = "$INFILE $OUTFILE";
NetlisterSuccessStatus = 1;

The user rule OTHER_RULE defines a completely new translation,
from a hypothetical OTH file to an XNF file. To do this translation, the
other2xnf program is used. The options defined by NetlisterOptions
are used for translating all OTH files, regardless of whether they are
top-level or lower-level netlists (because no explicit
NetlisterTopOptions is given). The launcher expects other2xnf to
issue a return code of 1 if it was successful; any other value be
interpreted as failure.

Development System Reference Guide

B-26 Xilinx Development System

After the Netlister Launcher has used OTHER_RULE to run
other2xnf and create an XNF file, it uses the XNF_RULE system rule
(shown above) to translate the XNF file to an NGO file.

User Rule Example 2

// URF Example 2
RuleName = XNF_LIB_RULE;
NetlistFile = .xnf;
TargetExtension = .ngo;
NetlisterOptions = "-l xilinxun $INFILE $OUTFILE";

Because both the NetlistFile and TargetExtension of this user rule
match those of the system rule XNF_RULE (shown in the
“XNF_RULE System Rule” section), the XNF_LIB_RULE overrides
the XNF_RULE system rule. Any settings that are not defined by the
XNF_LIB_RULE are inherited from XNF_RULE. So XNF_LIB_RULE
uses the same netlister (XNF2NGD), the same top-level options, the
same directory, and expects the same success status as XNF_RULE.
However, when translating lower-level netlists, the options used are
only “–l xilinxun $INFILE $OUTFILE.” (There is no reason to use “–l
xilinxun” on XNF2NGD; this is for illustrative purposes only.)

User Rule Example 3

// URF Example 3
RuleName = STATE_XNF_RULE;
NetlistFile = state.xnf;
TargetExtension = .ngo;
Netlister = state2ngd;

Although the NetlistFile is a complete file name, this user rule also
matches the system rule XNF_RULE (shown in the “XNF_RULE
System Rule” section), because the extensions of NetlistFile and
TargetExtension match. When the Netlister Launcher tries to make a
file called state.ngo, it uses this rule instead of the system rule
XNF_RULE (assuming that state.xnf exists). As with the previous
example, the unspecified settings are inherited from the matching
system rule. The only change here is that the fictitious program
state2ngd is used in place of XNF2NGD.

EDIF2NGD, XNF2NGD, and NGDBuild

Development System Reference Guide B-27

Note that if XNF_LIB_RULE (from the example in the “User Rule
Example 2” section) and this rule were both in the user rules file,
STATE_XNF_RULE would also include the modifications made by
XNF_LIB_RULE. So a lower-level state.xnf would be translated by
running state2ngd with the “-l xilinxun” option.

File Names and Locations
Following are some notes about file names and notations in
NGDBuild.

• An intermediate file has the same root name as the design that
produced it. An intermediate file is generated when more than
one netlist reader is needed to translate a netlist to a NGO file.

• Netlist root file names in the search path must be unique. For
example, if you have the design state.edn, you cannot have
another design named state.xnf in any of the directories specified
in the search path.

• NGDBuild and the Netlister Launcher support quoted file
names. Quoted file names may have special characters (for
example, a space) that are not normally allowed.

• If the output directory specified in the call to NGDBuild is not
writable, an error is displayed and NGDBuild fails.

Development System Reference Guide

B-28 Xilinx Development System

Development System Reference Guide — October 1998 Index-1

Index

A
-a option

BitGen, 13-5
EDIF2NGD, B-5
NGD2EDIF, 16-5
NGD2VHDL, 18-4
NGDBuild, 2-6
TRCE, 12-4

AddressLines option, 13-12
advanced analysis, 12-4
-aka option

NGD2VER, 17-5
NGD2VHDL, 18-5

ALF files, 15-5, A-1
ALLCLOCKNETS keyword

with MAXDELAY, 4-59
with MAXSKEW, 4-57
with PERIOD, 4-29, 4-30

ALLPATHS keyword, 4-58
architectures supported

for BitGen, 13-1
for EDIF2NGD, B-1
for LCA2NCD, 7-1
for MAP, 6-1
for MAP options, 6-6
for NGD2EDIF, 16-1
for NGD2VER, 17-1
for NGD2VHDL, 18-1
for NGDAnno, 15-1
for NGDBuild, 2-1
for PAR, 10-1

for physical DRC, 9-1
for PIN2UCF, 11-1
for PROMGen, 14-1
for TRACE, 12-1
for XNF2NGD, B-7

area setting, 6-9, 6-13
asterisk, 4-25
AT&T Verilog simulator, 17-9
attributes, definition, 4-2
automount points, 10-42

B
-b option

BitGen, 13-5
MAP, architectures, 6-6
MAP, description, 6-7
NGD2EDIF, 16-5
PROMGen, 14-5

back-annotation
description, 15-2
errors, 6-22
flow diagram, 15-3
global signals

Virtex, 15-9
XC3X00, 15-8
XC4000 and Spartan, 15-9
XC5200, 15-9

balanced setting, 6-9, 6-13
BEL, definition, 1-12
BGN files, 13-4, A-1

Development System Reference Guide

Index-2 Xilinx Development System

bidirectional pads, 5-4
BIT files

description, 13-4, A-1
disabling, 13-36
loading downward, 14-5
loading up or down, 14-6
loading upward, 14-7

bit swapping
description, 14-3, 14-4
disabling, 14-5

BitGen
-a option, 13-5
-b option, 13-5
BGN files, A-1
BIT files, A-1
-d option, 13-5
description, 13-1, 13-2
disabling DRC, 13-5
flow diagram, 13-2
-g option, 13-6-13-36
-h option, 13-36
input files, 13-3
-j option, 13-36
-l option, 13-36
LL files, A-2
-m option, 13-37
MSK files, A-3
-n option, 13-37
options, 13-5
output files, 13-4
RBT files, A-4
supported families, 13-1
syntax, 13-3
-t option, 13-37, 13-38
-u option, 13-39
-w option, 13-39

BLD files, 2-6, A-1
block check

logical DRC, 5-2
physical DRC, 9-4

blocks
allowing unexpanded, 2-9
delay symbols, for path tracing, 4-60
optimized, 6-26
removed, 6-26
STARTUP, Verilog, 17-10
STARTUP, VHDL only, 18-9
STARTUP_VIRTEX, VHDL only, 18-10
trimmed, 6-26

bonded I/Os, 10-15
BSCAN primitive, 5-3
BSCAN_Config option, 13-12
BSCAN_Status option, 13-12
BSReadback option, 13-21
BSReconfig option, 13-21
BUF primitive, 5-3
buffers, using to model delays, 16-5
BUFGP, 6-7
bus

definition, 1-11
matching in Virtex, B-15
order in Verilog files, 17-30
order in VHDL files, 18-18

C
-c option

MAP, architectures, 6-6
MAP, description, 6-7
NGD2EDIF, 16-5
PAR, 10-7

Cadence
Synergy synthesis tool, 17-5
Verilog-XL, 17-12

case-sensitivity
command line options, 1-2
keywords, 4-4, 4-24, 4-45

Cclk_Nosync, 13-10
Cclk_Sync, 13-10
CclkPin option, 13-30
-cd option, 17-5

Index

Development System Reference Guide Index-3

cell
ROC, 18-10
ROCBUF, 18-12
STARTBUF, 18-9
STARTBUF_VIRTEX, 18-10
TOC, 18-12
TOCBUF, 18-13

chip check, physical DRC, 9-4
circuit loops, 10-10, 10-11, 12-5, 12-6
CKBUF, 5-3, 6-7
CLBs, 6-7
cleanup

passes, delay-based, 10-8
passes, delay-based router, 10-8
routers, strategies for using, 10-7
routing, 10-18

clock
buffer check, 5-4
buffers, 6-7
period see PERIOD constraint
sense, defining, 4-24
skew, 12-12
skew, example, 12-13

clocks
at different chip inputs, 12-14
derived, specifying, 4-31
periods, defining, 4-28, 4-29
skew, for TRCE, 12-8
through multiple buffers, 12-13

clockskew, 12-12
-cm option

architectures, 6-6
description, 6-8

CMOS, 13-7, 13-22
colons, as separators, 4-4
combinatorial loops, 4-45, 10-11, 12-6
command files, 1-6
command line see commands
commands

file, executing, 7-4, 14-5
options, entering, 1-2
part numbers in, 1-4

COMP “iob_name“, 4-35
component, definition, 1-9
ConfigRate option

Virtex, 13-29
XC4000 and Spartan, 13-13
XC5200, 13-22

configuration clock, 13-29
configuration clock rate, 13-13, 13-22
configuration, -g option, 13-6-13-36
constraints

DROP_SPEC, 4-62
files, timing specifications, 4-5
in PCF files, 8-3
in UCF files, 3-1
interaction between, 8-3
location see location constraints
logical, sources of, 8-1
net delay, 12-11
net skew, 12-11
path delay, 12-11
pin locking, 11-2
priorities, 4-63
prorating, 4-56
temperature, 4-56
timing see timing constraints
VOLTAGE, 4-56

constructive
placement, 10-17
routing, 10-18

CONTROL-BREAK
halting MAP, 6-32
halting TRACE, 12-30

CONTROL-C
halting MAP, 6-32
halting TRACE, 12-30
halting turns engine, 10-46

cost tables, placer, 10-15
cost-based

PAR, description, 10-2
router cleanup passes, 10-7

cover mode, 6-8

Development System Reference Guide

Index-4 Xilinx Development System

CRC option
XC4000 and Spartan, 13-13
XC5200, 13-22

critical nets, 13-39

D
-d option

BitGen, 13-5
MAP, architectures, 6-6
MAP, description, 6-9
PAR, 10-8
PROMGen, 14-5

DC files, A-1
-dd option, 2-7
debugging, turns engine, 10-43, 10-44
delay file

description, 10-30, 10-31
tilde, 10-31

delay-based
cleanup passes, 10-8
router cleanup passes, 10-8

delays
for uncovered paths, 12-8
modeling with buffers, 16-5
nets, 4-58

derived clocks, specifying, 4-31
design entry

boolean expressions, iii
schematics, iii
state expressions, iii

design flow, ii
design implementation

bitstream creation, iii
mapping, iii
placement, iii
routing, iii

design verification
simulation, iii
static timing analysis, iii

designs, scoring routed ones, 10-37
device speed, annotating to NGA file, 15-8
device, definition, 1-9

DFS method
description, 10-10, 12-5
differences with kpaths, 10-11, 12-6

-dfs option
PAR, 10-8
TRCE, 12-4

Direct Input Pin, 6-9
DISABLE keyword, 4-59
division, for time delays, 4-52
DLY files, A-1
DONE/PROGRAM pin, 13-6, 13-7
Done_cycle option, 13-34
DoneActive option

XC4000 and Spartan, 13-13, 13-14
XC5200, 13-22, 13-23

DonePin option
Virtex, 13-30
XC3X000, 13-6
XC4000 and Spartan, 13-14
XC5200, 13-23

DonePipe option, 13-35
DoneTime option, XC3X000, 13-7
double quotes, 4-5
DRC

disabling for BitGen, 13-5
file, BitGen, 13-4
TDR files, A-4

DRC see also logical DRC
DRC command, physical

compatible families, 9-1
description, 9-2
-e option, 9-3
errors, 9-5
incomplete programming, 9-4
input files, 9-3
-o option, 9-3
output files, 9-3
report files, 9-3
-s option, 9-3
syntax, 9-2
-v option, 9-3
warnings, 9-5

Index

Development System Reference Guide Index-5

-z option, 9-4
DRC, logical

block check, 5-2
clock buffer check, 5-4
description, 5-1
name check, 5-4
net check, 5-3
netlist writers, 5-2
pad check, 5-3
primitive pin check, 5-5
running automatically, 5-2
types of tests, 5-2

DriveDone option, 13-35
DROP_SPEC constraint, 4-62

E
-e option

DRC command, 9-3
PAR, 10-8
TRCE, 12-5

EDIF files
with EDIF2NGD, B-4
writing all properties to, 16-5

EDIF2NGD
-a option, B-5
description, B-2
flow diagram, B-2
input files, B-4
-l option, B-5
options, B-5
output files, B-4
-p option, B-6
-r option, B-6
supported families, B-1
syntax, B-3

EDN files, 16-4, A-1
effort level

-l PAR option, 10-12
-ol PAR option, 10-13
placer, -pl PAR option, 10-14
router, -rl PAR option, 10-14

ENABLE keyword, 4-59
entity

naming top-level, 18-7
suppressing, 18-4

environment
problems, turns engine, 10-45
variables, for turns engines, 10-42

ENWRITE, 4-3, 4-4, 4-21
EPIC

block checks, 9-4
command log files, A-2
net checks, 9-4
NMC files, A-4
PCF files, A-4
RCV files, A-4
SCR script files, A-4

Epic files, A-2
epic.ini script, A-2
epic.men files, A-2
epicuser.ini files, A-2
EPL files, A-2
error reports

-dfs vs -kpaths, 12-17
generating with TRCE, 12-5
TRACE, 12-21, 12-22

errors
DRC command, 9-5
MRP files, 6-25
net delay, 12-10
net skew, 12-10
offset, 12-10
path delays, 12-10

EXACT mode, 6-10, 6-21
exact option for PAR, 10-20
EXCEPT keyword, 4-23, 4-65
exclusion, creating groups, 4-23
existing groups, new groups, 4-20
EXO files, A-2
ExpressMode option, 13-15

Development System Reference Guide

Index-6 Xilinx Development System

F
-f option

architectures supported for MAP, 6-6
description, 1-6

FALLING keyword, 4-24, 4-65
false paths, 10-11, 12-6
families supported

for BitGen, 13-1
for EDIF2NGD, B-1
for LCA2NCD, 7-1
for MAP, 6-1
for NGD2EDIF, 16-1
for NGD2VER, 17-1
for NGD2VHDL, 18-1
for NGDAnno, 15-1
for NGDBuild, 2-1
for PAR, 10-1
for physical DRC, 9-1
for PIN2UCF, 11-1
for PROMGen, 14-1
for timing constraints, 4-1
for TRACE, 12-1
for XNF2NGD, B-7

files
 see also input or output files
in commands, 1-2
netlist, naming, 2-11
overwriting, 10-15
redirecting messages, 1-3

five-input functions, 6-11
five-V_Tolerant_IO, 13-13
flip-flops

defining subgroups, 4-24
grouping with TNM, 4-17
grouping with TNMs, 4-16, 4-18
register ordering, 6-18, 6-19

Floorplanner
-fp option, 6-9
MFP files, 6-4, A-3

forward tracing, 4-10, 4-12, 4-18, 4-29
-fp option, 6-4, 6-6, 6-9

FROM-THRU
examples, 4-67
with TPSYNC, 4-50

FROM-THRU-TO, examples, 4-67
FROM-TO

examples, 4-7, 4-46, 4-67
rules for using, 4-45
syntax, 4-45, 4-68
with TPSYNC, 4-50
with TPTHRU, 4-50

G
-g BitGen option

description, 13-6
Virtex

CclkPin, 13-30
ConfigRate, 13-29
Done_cycle, 13-34
DonePin, 13-30
DonePipe, 13-35
DriveDone, 13-35
GSR_cycle, 13-33
GTS_cycle, 13-33
GWE_cycle, 13-33
LCK_cycle, 13-34
M0Pin, 13-30
M1Pin, 13-30
M2Pin, 13-31
Persist, 13-34, 13-35
ProgPin, 13-31
ReadBack, 13-28
Security, 13-36
StartupClk, 13-29
TckPin, 13-31
TdiPin, 13-32
TdoPin, 13-32
TmsPin, 13-32
UserID, 13-36

Index

Development System Reference Guide Index-7

XC3X00
DonePin, 13-6
DoneTime, 13-7
Input, 13-7
LC_Alignment, 13-8
Oscillator, 13-8
Readback, 13-8
ResetTime, 13-9

XC4000 and Spartan
AddressLines, 13-12
BSCAN_Config, 13-12
BSCAN_Status, 13-12
Cclk_Nosync, 13-10
Cclk_Sync, 13-10
ConfigRate, 13-13
CRC, 13-13
description, 13-9
DoneActive, 13-13, 13-14
DonePin, 13-14
ExpressMode, 13-15
f5V_Tolerant_IO, 13-13
GSRInactive, 13-15, 13-16
Input, 13-16
LC_Alignment, 13-16
M0Pin, 13-17
M1Pin, 13-17
M2Pin, 13-17
Output, 13-17
OutputsActive, 13-18
PowerDown, 13-19
ReadAbort, 13-19
ReadCapture, 13-19
ReadClk, 13-20
startup sequences, 13-10
StartupClk, 13-20
SyncToDone, 13-20

TdoPin, 13-21
Uclk_Nosync, 13-11
Uclk_Sync, 13-11

XC5200
BSReadback, 13-21
BSReconfig, 13-21
ConfigRate, 13-22
CRC, 13-22
DoneActive, 13-22, 13-23
DonePin, 13-23
GSRInactive, 13-23, 13-24
Input, 13-22, 13-25
LC_Alignment, 13-25
OscClk, 13-25
OutputsActive, 13-25, 13-26, 13-28
ProgPin, 13-27
ReadAbort, 13-27
ReadCapture, 13-27
ReadClk, 13-27
StartupClk, 13-28

gate sense, defining latch subgroups, 4-25
-gf option

MAP, architectures, 6-6
MAP, description, 6-10
PAR, 10-9

global
OFFSET constraint, 4-33
reset, as port, 17-6, 18-5
reset, back-annotation

XC3X00, 15-8
XC5200, 15-9

set/reset, back-annotation
Virtex, 15-9
XC4000 and Spartan, 15-9

set/reset, in test fixture file, 17-12
set/reset, specifying in Verilog

UNISIM simulation, 17-11
tristate, 17-23

Development System Reference Guide

Index-8 Xilinx Development System

tristate signal, as port, 17-9, 18-7
-gm option

MAP, architectures, 6-6
MAP, description, 6-10
PAR, 10-9, 10-21

-gp option
NGD2VER, 17-6
NGD2VHDL, 18-5

groups
by clock sense, with TIMEGRP, 4-24
by exclusion, with TIMEGRP, 4-23
by pattern matching, 4-25
specifying, 4-6
TIMEGRP, 4-20

GSR_cycle option, 13-33
GSRInactive option

XC4000 and Spartan, 13-15, 13-16
XC5200, 13-23, 13-24

GTS
description, 17-23
specifying, 17-24

GTS_cycle option, Virtex, 13-33
guide

designs, using, 10-19, 10-20
files, NCD files, 6-4
mode, 10-9, 10-21
mode option, 6-10
NCD file, 10-9
NCD file, for MAP, 6-10

guided
mapping, description, 6-20
mapping, -gm option, 6-10
mapping, HDL designs, 6-22
mapping, illustration, 6-21
mapping, MDF files, 6-4
mapping, MFP file, 6-9
mapping, MFP files, 6-4
PAR, description, 10-19
PAR, with HDL designs, 10-21

GWE_cycle option, 13-33
GYD files, 11-4

H
-h BitGen option, 13-36
hardware description languages, iii
HDL designs

guided mapping, 6-22
guided PAR, 10-21
TNM_NET, 4-19

-help option, 1-3
-help PROMGen option, 14-5
hierarchy, retaining in design

NGD2VER, 17-7
NGD2VHDL, 18-6

I
-i option

NGD2EDIF, 16-6
PAR, 10-9

I/O startup sequence, 13-20
I/Os

bonded, 10-15
packing registers, 6-15
releasing from 3-state condition, 13-18,
13-25

identifiers
user-defined names as comments in
Verilog netlist, 17-5
user-defined names as comments in
VHDL netlist, 18-5

implementation tools, invoking, 1-1
impman license, 10-43
imppar license, 10-43
in-circuit verification, iii
input files

BitGen, 13-3
DRC command, 9-3
EDIF2NGD, B-4
LCA2NCD, 7-3
MAP, 6-4
NGD2EDIF, 16-4
NGD2VER, 17-4
NGD2VHDL, 18-3

Index

Development System Reference Guide Index-9

NGDAnno, 15-5
NGDBuild, 2-4
PAR, 10-5, 10-6
PIN2UCF, 11-4
PROMGen, 14-3
TRCE, 12-3, 12-9
turns engine, 10-39
XNF2NGD, B-10

Input option
XC3X000, 13-7
XC4000 and Spartan, 13-16
XC5200, 13-22, 13-25

input pads
connecting to primitives, 5-3
TNMs, 4-10

INST name, 4-5
instance name

specifying in SDF and TVHD file, 18-7
specifying in TV file, 17-8

interconnects, unused, 13-37, 13-38
intermediate files see NGO files
invalid characters, replacing in Verilog file,
17-6
inverted signal names, 4-5
io_t_pad, 4-61
IOBs

configuration for Virtex, 4-60
input threshold levels, 13-25
properties, 6-28
setting output levels, 13-17

-ir option
architectures, 6-6
description, 6-10

iterations
multiple, for PAR, 10-22
-n PAR option, 10-12
router, 10-9

J
-j option, 13-36

K
-k option

MAP, architectures, 6-6
MAP, description, 6-11
PAR, 10-10

keywords
ALLCLOCKNETS, 4-29
as identifiers, 4-10
case-sensitivity, 4-4, 4-24, 4-45
DISABLE, 4-59
ENABLE, 4-59
EXCEPT, 4-23, 4-65
FALLING, 4-24, 4-65
in quotation marks, 4-10
PRIORITY, 4-54
RISING, 4-24, 4-65
TRANSHI, 4-25, 4-65
TRANSLO, 4-25, 4-65

-kpaths
analysis, differences with DFS, 10-11,
10-12
differences from -dfs, 12-6, 12-7
PAR option, 10-10
TRCE option, 12-5

L
-l option

BitGen, 13-36
EDIF2NGD, B-5
MAP, architectures, 6-6
MAP, description, 6-11
NGD2EDIF, 16-6
NGDBuild, 2-7
PAR, 10-12
XNF2NGD, B-11

L2N files, 7-3, A-2
latches

grouping with TNMs, 4-16
subgroups, defining with TIMEGRP,
4-25

Development System Reference Guide

Index-10 Xilinx Development System

LC_Alignment option
XC3X000, 13-8
XC4000 and Spartan, 13-16
XC5200, 13-25

LCA files
description, 7-1, A-2
translating unnamed components, 7-4
unnamed components, 7-4

LCA2NCD
compatible families, 7-1
description, 7-1
-f option, 7-4
flow diagram, 7-2
input files, 7-3
L2N files, A-2
MDF files, A-3
NCD file output name, 7-2
options, 7-3
output files, 7-3
-p option, 7-3
placement, 7-3
syntax, 7-2
-w option, 7-4

LCK_cycle option, 13-34
length count, 13-8, 13-16, 13-25
LEVERAGE mode, 6-10, 6-21, 6-22
leverage option for PAR, 10-20
libraries

searching, 2-7, B-5, B-11
SIMPRIM, use in Verilog simulation,
17-11
UNISIM, use in Verilog simulation,
 17-11

LL files, 13-4, 13-36, A-2
LOC see location constraints
local scope, for dedicated signals, 16-6
location constraints, eliminating, 2-9
location properties, filtering, B-6, B-12
LOG files, 17-4, 17-6, 18-4, 18-5, A-2
-log option

NGD2VER, 17-6
NGD2VHDL, 18-5

LogiBLOX
MEM files, A-2
NGC files, A-3

logic
added by MAP, 6-27
allocation file, 13-36
optimization, disadvantages, 6-14
optimization, effort, 6-13
optimization, style, 6-13
removed from NGD files, 6-26
replication, 6-11
unused, 6-16

logic, expanded by MAP, 6-27
logical constraints, in UCF files, 3-1
logical DRC

 see also DRC, logical
block check, 5-2
clock buffer check, 5-4
description, 5-1
name check, 5-4
net checks, 5-3
netlist writers, 5-2
pad check, 5-3
primitive pin check, 5-5
running automatically, 5-2
types of tests, 5-2

logicdelay, 12-12
longlines

pullups, 10-19
TBUF outputs, 12-16

loops, circuit, 10-10, 10-11, 12-5, 12-6
LUTs, reducing, 6-9

M
-m option

BitGen, 13-37
PAR, 10-12

M0Pin option
Virtex, 13-30
XC4000 and Spartan, 13-17

Index

Development System Reference Guide Index-11

M1Pin option
Virtex, 13-30
XC4000 and Spartan, 13-17

M2Pin option
Virtex, 13-31
XC4000 and Spartan, 13-17

macros
pins, attaching TPSYNC, 4-48
TMNs, 4-12

MAP
added logic, 6-27
-b option, 6-7
-c option, 6-7
-cm option, 6-8
compatible families, 6-1
-d option, 6-9
description, 6-2
EXACT mode, 6-21
expanded logic, 6-27
flow diagram, 6-2
-fp option, 6-9
-gf option, 6-10
-gm option, 6-10
halting, 6-32
input files, 6-4
invoking, 6-2
-ir option, 6-10
-k option, 6-11
-l option, 6-11
LEVERAGE mode, 6-21, 6-22
MDF files, A-3
MRP files, 6-24
MRP files, description, A-3
NGM files, A-4
-o option, 6-12
-oe option, 6-13
options and architectures, 6-6
-os option, 6-13
output files, 6-5
-p option, 6-14
PCF files, 6-3, A-4
-pr option, 6-15

process, 6-16, 6-17
-r option, 6-15
register ordering, 6-18
simulating results, 6-22
syntax, 6-3
to 5-input functions, 6-11
-u option, 6-16
Virtex, guide files, 6-3

MAP Directive Files see MDF files
Map Floorplanner File see MFP files
MAP Report Files see MRP files
Mask file, 13-37
MAXDELAY

description, 4-58
syntax, 4-72

MAXSKEW
description, 4-57
syntax, 4-71

MCS files, A-3
MDF files, 6-4, 6-6, 7-3, A-3
MEM files, 2-5, A-2
Mentor Graphics ENRead, 16-5
Mentor, netlist writer, 4-3, 4-4, 4-21
messages

on screen displays, 1-3
redirecting to files, 1-3
symbols used, 1-2
verbose mode, 17-9, 18-8

MFP files, 6-4, 6-9, A-3
Model Technology Modelsim, 17-13
module name, changing, 17-8
module, as black box in Verilog file, 17-5
mount points, 10-42
MRP files, A-3

description, 6-5, 6-24
errors, 6-25
example, 6-28
sections, 6-25
warnings, 6-25

MSK files, 13-4, A-3

Development System Reference Guide

Index-12 Xilinx Development System

multiple
buffers, 12-13
groups, creating with TIMEGRP, 4-22
iterations for PAR, 10-22, 10-23
pads, 5-4
PROM files, 14-8
systems, running PAR, 10-38

multiplication for time delays, 4-52
multi-tasking

mode, -m PAR option, 10-12
option, for PAR, 10-38, 10-40

N
-n option

BitGen, 13-37
NGD2EDIF, 16-6
PAR, 10-12
PROMGen, 14-6

name check, logical DRC, 5-4
name legalization, in VHDL files, 18-5
name qualifiers

predefined groups, 4-7
wildcards, 4-7

NCD files
as guide file, 6-4, 10-9
description, 6-2, 6-5, A-3
input to NGDAnno, 15-5
output file name, 6-12
output from turns engine, 10-40
reading with NCDRead, 1-7
specifying for LCA2NCD, 7-2

NCDRead, 1-7
NCF files

description, 2-5, A-3
input to EDIF2NGD, B-4
input to XNF2NGD, B-10
wildcard characters, 4-5

-ne option, 17-6
negative slack, 12-13
net check

logical DRC, 5-3
physical DRC, 9-4

net delay
constraints, 12-11
errors, 12-10

NET name, 4-5
net skew

constraints, 12-11
errors, 12-10

netlist
flattening, 15-10, 16-6
translation, 2-3, B-13
writers, logical DRC, 5-2

Netlister Launcher
description, B-16
system rules file, B-22
treatment of timestamps, 2-8
user rules file, B-18

nets
critical, 13-39
definition, 1-9
delay, 4-58
example, 1-10
names, specifying with wildcards, 4-25
skew, 4-57
TNMs, 4-11, 4-12
TPSYNC, 4-47

net-specific, OFFSET constraint, 4-35
network automount points, 10-42
networks, for turns engines, 10-40
new groups, from existing groups, 4-20
NGA files

annotating device speed, 15-8
description, A-3
input to NGD2VHDL, 18-4
output from NGD2EDIF, 16-4
output from NGD2VER, 17-4
output from NGDAnno, 15-5
specifying, 15-7

NGC files, 2-5, A-3
NGD files

allowing unexpanded blocks, 2-9
description, A-3
input to MAP, 6-4

Index

Development System Reference Guide Index-13

input to NGD2EDIF, 16-4
input to NGD2VER, 17-4
input to NGD2VHDL, 18-4
logical constraints, 8-1
output from NGDBuild, 2-6
removed logic, 6-26

NGD2EDIF
-a option, 16-5
-b option, 16-5
-c option, 16-5
description, 16-2
EDN files, A-1
flow diagram, 16-3
-i option, 16-6
input design stages, 16-2
input files, 16-4
-l option, 16-6
-n option, 16-6
options, 16-5
output files, 16-4
supported families, 16-1
syntax, 16-3
-v option, 16-6
-vpt option, 16-7
-w option, 16-7
XMM files, 16-7

NGD2VER
-aka option, 17-5
-cd option, 17-5
description, 17-2
flow diagram, 17-3
global set/reset

in test fixture file, 17-12
toggling, 17-10

global tristate, 17-23
-gp option, 17-6
input design stages, 17-2
input files, 17-4
LOG files, A-2
-log option, 17-6
-ne option, 17-6

-op option, 17-7
options, 17-5
oscillator functions, 17-29
output files, 17-4
-pf option, 17-7
-pms option, 17-7
-r option, 17-7
-sdf option, 17-8
setting global PRLD, 17-29
-shm option, 17-8
supported families, 17-1
syntax, 17-3
-tf option, 17-8
-ti option, 17-8
-tm option, 17-8
-tp option, 17-9
TV files, A-5
-u option, 17-9
-ul option, 17-9
V files, A-5
-verbose option, 17-9
-w option, 17-10

NGD2VHDL
-a option, 18-4
-aka option, 18-5
description, 18-2
flow diagram, 18-3
global set/reset and tri-state port, 18-8
-gp option, 18-5
input design stages, 18-2
input files, 18-3
LOG files, A-2
-log option, 18-5
-op option, 18-6
options, 18-4
output files, 18-4
-pf option, 18-6
-pms option, 18-6
-r option, 18-6
-rpw option, 18-6
supported families, 18-1
syntax, 18-3

Development System Reference Guide

Index-14 Xilinx Development System

-tb option, 18-7
-te option, 18-7
-ti option, 18-7
-tp option, 18-7
-tpw option, 18-8
TVHD files, A-5
-verbose option, 18-8
VHD files, A-5
-w option, 18-8

NGDAnno
ALF files, A-1
description, 15-3
global reset signals, 15-8
input files, 15-3, 15-5
netlist flattening, 15-10
NGA files, A-3
-o option, 15-7
options, 15-7
output files, 15-4, 15-5
-p option, 15-7
-s option, 15-8
supported families, 15-1
syntax, 15-4
without mapped.ngm file, 6-24

NGDBuild
-a option, 2-6
BLD files, A-1
bus matching, Virtex, B-15
converting netlists, 2-3
converting netlists (detailed), B-13
-dd option, 2-7
description, 2-2
file naming conventions, B-27
flow diagram, 2-2
input files, 2-4
intermediate files, 2-6
-l option, 2-7
logical DRC, 5-2
Netlister Launcher, B-16
NGD file, 2-2
NGD files, A-3
-nt option, 2-8

options, 2-6
output files, 2-6
-p option, 2-8
-r option, 2-9
-sd option, 2-9
supported families, 2-1
syntax, 2-3
system rules file, B-22
-u option, 2-9
-uc option, 2-10
-ur option, 2-10
user rules file, B-18

NGM files, 6-5, 6-17, 15-5, A-4
NGO files

description, 2-6, A-4
naming, 2-11
output from EDIF2NGD, B-4
output from XNF2NGD, B-10
overriding information, 2-8
specifying a destination directory, 2-7

NMC files, 2-5, 6-4, A-4
nodelist files, 10-39
-nt option, 2-8

O
-o option

DRC command, 9-3
MAP, architectures, 6-6
MAP, description, 6-12
NGDAnno, 15-7
PIN2UCF, 11-5
PROMGen, 14-6
TRCE, 12-7

-oe MAP option
architecures, 6-7
description, 6-13

OFFSET constraint
advantages of, 4-32
description, 4-32
examples, 4-35
global, 4-33
net-specific, 4-35, 4-66

Index

Development System Reference Guide Index-15

syntax, 4-33, 4-35, 4-42, 4-43
types, 4-32
with Timegroups, 4-40
with TIMEGRP, 4-42, 4-69

offset errors, 12-10
OFFSET IN AFTER, 4-37
OFFSET IN BEFORE, 4-36
OFFSET OUT AFTER, 4-38
OFFSET OUT BEFORE, 4-39
-ol option, 10-13
-op option

NGD2VER, 17-7
NGD2VHDL, 18-6

optimization, logic
effort, 6-13
style, 6-13

optimizing placement, 10-18
options

command line, entering, 1-2
using spaces, 1-2

-os option
architecures, 6-7
description, 6-13

OscClk option, XC5200, 13-25
Oscillator option, XC3X000, 13-8
oscillators

functions, NGD2VER, 17-29
NGD2VER, 17-7
NGD2VHDL, 18-6
VHDL only, 18-13

output directory, write error, 2-11
output file name

NCD files, 6-12
PROMGen, 14-6

output files
BitGen, 13-4
DRC command, 9-3
EDIF2NGD, B-4
LCA2NCD, 7-3
MAP, 6-5
multiple iterations of PAR, 10-23
NGD2EDIF, 16-4

NGD2VER, 17-4
NGD2VHDL, 18-4
NGDAnno, 15-5
NGDBuild, 2-6
overwriting, 13-39, 16-7, 17-10, 18-8
PAR, 10-6, 10-21
PIN2UCF, 11-4, 11-5
PROMGen, 14-3
TRCE, 12-3, 12-10
turns engine, 10-40
XNF2NGD, B-10

Output option, 13-17
output pads, connecting to primitives, 5-3
output signal names, register ordering,
6-19
OutputsActive option

XC4000 and Spartan, 13-18
XC5200, 13-25, 13-26, 13-28

P
-p option

EDIF2NGD, B-6
for part numbers, 1-5
LCA2NCD, 7-3
MAP, architectures, 6-7
MAP, description, 6-14
NGDAnno, 15-7
NGDBuild, 2-8
PAR, 10-13
PROMGen, 14-7
XNF2NGD, B-11

pack
CLBs, 6-7
registers in I/O, 6-15

pad check, logical DRC, 5-3
PAD files, 10-32, 10-33, 10-34, A-4
pads

adding to top-level port signals, 2-6,
 B-5
connecting to top-level symbols, 5-4
input, connecting to primitives, 5-3
output, connecting to primitives, 5-3

Development System Reference Guide

Index-16 Xilinx Development System

unbonded, connecting to primitives,
5-4

PAR
-c option, 10-7
command examples, 10-49, 10-50
cost-based, 10-2
-d option, 10-8
delay file, 10-30, 10-31
description, 10-2
-dfs option, 10-8
displaying options, 10-6
DLY files, A-1
-e option, 10-8
files, overwriting, 10-15
flow diagram, 10-3
-gf option, 10-9
-gm option, 10-9, 10-21
guided, 10-19
halting, 10-51, 10-52
-i option, 10-9
ignoring timing constraints, 10-16
input files, 10-5, 10-6
-k option, 10-10
-kpaths option, 10-10
-l option, 10-12
-m option, 10-12
multiple iterations, 10-22
multi-tasking option, 10-38, 10-40
-n option, 10-12
-ol option, 10-13
operation, placement, 10-17
options, 10-6
options summary, 10-16
output files, 10-6, 10-21
outputs for multiple iterations, 10-23
-p option, 10-13
PAD file, 10-32, 10-33, 10-34
PAD files, A-4
PCF files, 10-5
-pl option, 10-14
-r option, 10-14
register placement, 6-18

report file, 10-24, 10-25, 10-28, A-4
reports, Select IO, 10-29
-rl option, 10-14
running on multiple systems, 10-38
-s option, 10-14
saving results, 10-14
strategies for guided designs, 10-20
summary report file, 10-23, 10-24
supported families, 10-1
syntax, 10-4
-t option, 10-15
tilde in reports, 10-28
timing driven, 10-2, 10-3
-ub option, 10-15
Virtex, Select I/Os, 10-35
-w option, 10-15
-x option, 10-16

PAR_AUTOMNTPT, 10-42
PAR_AUTOMNTTMPPT, 10-42
PAR_M_DEBUG, 10-43
part number option, 2-8, 6-14, B-6, B-11
part numbers

commands, 1-4
specifying, 1-5

path delay constraints, 12-11
PATH physical constraint, 4-58
paths

definition, 1-10
disabling tracing, 4-59
enabling tracing, 4-59
example, 1-11
false, 10-11, 12-6
loops, detecting with TRACE, 12-16
reporting uncovered, 12-8
tracing, block delay symbols, 4-60
tracing, controlling, 4-59
tracing, examples, 4-61
tristate buffer, 10-11, 10-12, 12-7

pattern matching, 4-25, 4-26, 4-27, 4-66
PCF files

ALLCLOCKNETS keyword, 4-29,
4-30, 4-57, 4-59

Index

Development System Reference Guide Index-17

ALLPATHS keyword, 4-58
BitGen, 13-3
constraints entry, 8-3
description, 6-5, 8-1, 8-2, A-4
flow diagram, 8-2
in MAP, 6-3
output from NGDAnno, 15-5
PAR, 10-5
schematic constraints, 8-3
specifying, 15-7
summary reports, 12-18
TNM_NET, 4-20
TRACE, 12-3
with summary report, 12-20

PERIOD constraint
description, 4-28
example, 4-30
example, derived clocks, 4-31
forward tracing, 4-29
paths, 4-28, 4-29
syntax, 4-28, 4-68, 4-70

Persist option, Virtex, 13-34, 13-35
-pf option

NGD2VER, 17-7
NGD2VHDL, 18-6

Physical Constraints File see PCF files
physical DRC see DRC
physical macro, definition, 1-12
pin check, primitive, 5-5
PIN files, 17-4, 17-7, 18-4, 18-6
pin locking constraints

PIN2UCF, 11-2
user-specified, 11-3

PIN2UCF
description, 11-2
flow diagram, 11-2
input files, 11-4
-o option, 11-5
options, 11-5
output files, 11-4
pinlock.rpt file, 11-3
pinlock.rpt files, A-4

-r option, 11-5
scenarios, 11-6, 11-7
supported families, 11-1
syntax, 11-4

pinlock.rpt files, 11-3, A-4
pins, Direct Input, 6-9
-pl PAR option, 10-14
Place and Route see PAR
placement

bypassing, -p PAR option, 10-13
constructive, 10-17
LCA2NCD, 7-3
optimizing, 10-18

placer
cost tables, 10-15
effort level, 10-14

-pms option
NGD2VER, 17-7
NGD2VHDL, 18-6

port
global reset signal as, 17-6, 18-5
global tristate signal as, 17-9, 18-7

PowerDown option, 13-19
-pr MAP option

architectures, 6-7
description, 6-15

predefined groups
keywords, 4-6
name qualifiers, 4-7
TNMs, 4-10

primitive pin check, 5-5
primitive pins

attaching TPSYNC, 4-48
TNMs, 4-12

primitive symbols
attaching TPSYNC, 4-48
TNMs, 4-13

primitives
connecting to bidirectional pads, 5-4
connecting to input pads, 5-3
connecting to output pads, 5-3
connecting to unbonded pads, 5-4

Development System Reference Guide

Index-18 Xilinx Development System

priorities, of timing constraints, 4-63
PRIORITY keyword, 4-54
PRLD, setting global, 17-29
PRM files, 14-3, A-4
ProgPin option

Virtex, 13-31
XC5200, 13-27

PROM files
bit swapping, 14-3, 14-4
description, 14-3
loading, 14-7
multiple, 14-8

PROM formats, 14-7
PROM sizes, 14-7
PROMGen

-b option, 14-5
-d option, 14-5
description, 14-1, 14-2
examples, 14-8
EXO files, A-2
flow diagram, 14-2
-help option, 14-5
input files, 14-3
MCS files, A-3
-n option, 14-6
-o option, 14-6
options, 14-5
output file name, 14-6
output files, 14-3
-p option, 14-7
PRM files, A-4
-r option, 14-7
-s option, 14-7
supported families, 14-1
syntax, 14-2
TEK files, A-5
-u option, 14-7
-x option, 14-8

property, 4-2
prorating constraints, 4-56
PULLDOWN primitive, 5-3

pulldowns
adding to M0, 13-17
adding to M1, 13-17
adding to M2, 13-17
adding to TdoPin, 13-21
adding to Virtex M0 pin, 13-30
adding to Virtex M1 pin, 13-30
adding to Virtex M2 pin, 13-31
adding to Virtex TCK pin, 13-31
adding to Virtex TDI pin, 13-32
adding to Virtex TDO pin, 13-32
adding to Virtex TMS pin, 13-32

PULLUP primitive, 5-3
pullups

adding to Cclk pin, 13-30
adding to M0, 13-17
adding to M1, 13-17
adding to M2, 13-17
adding to TdoPin, 13-21
adding to Virtex M0 pin, 13-30
adding to Virtex M1 pin, 13-30
adding to Virtex M2 pin, 13-31
adding to Virtex ProgPin, 13-31
adding to Virtex TCK pin, 13-31
adding to Virtex TDI pin, 13-32
adding to Virtex TDO pin, 13-32
adding to Virtex TMS pin, 13-32
longline, 10-19
on PROGRAM pin, 13-27

pulse width
for ROC, 18-6
for TOC, 18-8

Q
qualifiers, with TNMs, 4-18
question marks, pattern matching, 4-25
quotation marks

in file names, 2-11
keywords, 4-10
special characters, 4-5

Index

Development System Reference Guide Index-19

R
-r option

EDIF2NGD, B-6
MAP, architecures, 6-7
MAP, description, 6-15
NGD2VER, 17-7
NGD2VHDL, 18-6
NGDBuild, 2-9
PAR, 10-14
PIN2UCF, 11-5
PROMGen, 14-7
XNF2NGD, B-12

rawbits file, 13-5
RBT files, 13-4, 13-5, A-4
RCV files, A-4
ReadAbort option

XC4000 and Spartan, 13-19
XC5200, 13-27

ReadBack option
Virtex, 13-28
XC3X000, 13-8

ReadCapture option
XC4000 and Spartan, 13-19
XC5200, 13-27

ReadClk option
XC4000 and Spartan, 13-20
XC5200, 13-27

re-entrant routing, -k Par option, 10-10
register ordering

description, 6-18
disabling, 6-15
flip-flop characteristics, 6-18, 6-19
output signal names, 6-19

register placement, 6-18
registers

packing, 6-15
with Timegroups, 4-40

register-to-register paths, 12-12
Relationally Placed Macros (RPMs), 6-10
report files

DRC command, 9-3
PAR, 10-23, 10-24, 10-25, 10-28

PAR delay file, 10-30, 10-31
PAR PAD file, 10-32, 10-33, 10-34
PIN2UCF, 11-5
pinlock.rpt, 11-3
summary TRACE report, 12-18, 12-19,
12-20
TRACE, 12-14, 12-15
verbose, 12-9

requirements, timing, 4-2
reserved words, 4-9
Reset-On-Configuration see ROC
ResetTime option, XC3X000, 13-9
RISING keyword, 4-24, 4-65
-rl PAR option, 10-14
RLOC constraints, 6-10
ROC

specifying pulse width, 18-6
VHDL only, 18-10

ROCBUF, 18-12
routed designs, scoring, 10-37
routedelay, 12-12
router

effort level,-rl PAR option, 10-14
iterations, 10-9

route-throughs, 1-9
routing

cleanup, 10-18
constructive, 10-18
-r PAR option, 10-14
re-entrant, 10-10

-rpw option, 18-6
rules files see user rules file, system rules
file

S
-s option

DRC command, 9-3
NGDAnno, 15-8
PAR, 10-14
PROMGen, 14-7
TRCE, 12-7

Development System Reference Guide

Index-20 Xilinx Development System

schematics
constraints, placement in PCF files, 8-3
design entry, iii
entering timing specifications, 4-3

SCR script files, A-4
screen messages, 1-3
script files, epic.ini, A-2
-sd option, 2-9
SDF files

output from NGD2VER, 17-4
output from NGD2VHDL, 18-4
outputting to specified path, 17-8

-sdf option, 17-8
search paths, specifying, 2-9
Security option, Virtex, 13-36
security, turns engine, 10-43
SelectIO standard, 10-29
SelectIOs, Virtex, 10-35
separators, colons, 4-4
serial modes, 13-35
setup checking, 12-12
setuptime, 12-12
-shm option, 17-8
shm statements, in Verilog file, 17-8
signal names, inverted, 4-5
signal names, matching parent and child

in Verilog file, 17-7
in VHDL file, 18-6

signals
connecting to pads, 5-4, B-5
making local to a device, 16-6
merged, 6-26
removed, 6-26

SIMPRIM libraries
pointing to, 17-9
use in Verilog simulation, 17-11

simulation, MAP results, 6-22
site, definition, 1-9
sizes, of PROMs, 14-7
-skew option, 12-12
-skew TRCE option, 12-8
skew, definition, 4-57

slack, 12-12
slices, 6-18
spaces, for options, 1-2
special characters, in quotes, 4-5
speed

overriding with -s option, 12-7
setting, 6-9, 6-13

SRF file see system rules file
STARTBUF cell

description, 18-9
Virtex, 18-10

startup
Cclk_Nosync, 13-10
Cclk_Sync, 13-10
-g BitGen option, 13-10
STARTBUF, 18-9
STARTBUF_VIRTEX, 18-10
STARTUP block, Verilog, 17-10
STARTUP block, VHDL only, 18-9
STARTUP_VIRTEX block, VHDL
only, 18-10
Uclk_Nosync, 13-11
Uclk_Sync, 13-11

STARTUP block
Verilog, description, 17-10
VHDL only, description, 18-9
VHDL only, Virtex, 18-10

StartupClk option
Virtex, 13-29
XC4000 and Spartan, 13-20
XC5200, 13-28

static timing analysis, iii
summary reports

TRACE, 12-18, 12-19, 12-20
with PCF file, 12-20
without PCF file, 12-18

Super8 mode, 13-35
symbols, in messages, 1-2
synchronous points, 4-47
SyncToDone option, 13-20
system requirements, turns engines, 10-41

Index

Development System Reference Guide Index-21

system rules file
description, B-22
example, B-25
versus user rules, B-18

T
-t option

BitGen, 13-37, 13-38
PAR, 10-15

-tb option, 18-7
TBUF outputs, 12-16
TckPin option, Virtex, 13-31
TdiPin option, Virtex, 13-32
TdoPin option

Virtex, 13-32
XC4000 and Spartan, 13-21

TDR files, A-4
-te option, 18-7
TEK files, A-5
TEMPERATURE constraint, 4-56
temporary mount points, 10-42
testbench file, 18-7
-tf option, 17-8
through-points, using TPTHRU, 4-49
THRU, with TPTHRU, 4-51
-ti option

NGD2VER, 17-8
NGD2VHDL, 18-7

tied design file, 13-37
tiedown, 13-5
TIG

description, 4-43
example, 4-44
syntax, 4-44, 4-67, 4-70

tilde
in delay file, 10-31
in PAR report files, 10-28
in TRACE report, 12-15

time delays
division, 4-52
in TIMESPECs, 4-51

multiplication, 4-52
Timegroups

with inverters, 4-42
with OFFSET, 4-40
with registers, 4-40

TIMEGRP
attributes, placement, 4-22
combining multiple groups, 4-22
creating groups by exclusion, 4-23
creating new groups, 4-20
creating various groups, 4-22
defining latch subgroups, 4-25
grouping by exclusion, 4-23
groups by clock sense, 4-24
groups by pattern matching, 4-25
primitive, 4-21, 4-22
relation to TIMESPEC, 4-21
reserved words, 4-9
sample schematic, 4-54, 4-55
syntax, 4-20, 4-21, 4-65
with MAXDELAY, 4-59
with MAXSKEW, 4-57
with OFFSET, 4-42, 4-69
with PERIOD, 4-29, 4-30

TIMESPEC
pattern matching, 4-27
primitive, 4-3
primitive, keywords, 4-4
PRIORITY keyword, 4-54
relation to TIMEGRP, 4-21
sample schematic, 4-54, 4-55
syntax, 4-67
time delays, 4-51

timestamp option, 2-8
timing analysis

advanced, 12-4
-dfs option, 10-8, 12-4
-kpaths option, 10-10, 12-5

timing constraints
compatible families, 4-1
DROP_SPEC, 4-62
entering in files, 4-5

Development System Reference Guide

Index-22 Xilinx Development System

entering on schematics, 4-3
FROM-TO, 4-45
ignoring in PAR, 10-16
MAXDELAY, 4-58
MAXSKEW, 4-57
OFFSET, 4-32
PERIOD, 4-28
predefined groups, 4-6
priorities, 4-63
reserved words, 4-9
specifying, 4-2, 10-3, 10-4
TIG, 4-43
TIMEGRP, 4-20
TIMESPEC use, 4-7
TNM_NET, 4-19
TNMs, 4-8
TPSYNC, 4-46
TPTHRU, 4-46
TS attributes, 4-51
user-defined groups, 4-8

timing errors
net delay, 12-10
net skew, 12-10
offset, 12-10
path delay, 12-10

timing points, specifying, 4-46
timing properties, annotating to instances,
16-6
timing reports, description, 12-15
timing requirements, iv, 4-2
timing scores, 10-28
timing specifications

 see also timing constraint
entering on schematics, 4-3
in constraint files, 4-5

timing verification, TRCE, 12-11
timing-driven PAR, 10-2, 10-3
-tm option, 17-8
TmsPin option, Virtex, 13-32
TNM constraint

description, 4-8
forward tracing, 4-10, 4-12, 4-18

grouping flip–flops, 4-16
grouping flip-flops and latches, 4-16
input pads, 4-10
on clock pin grouping flip-flops, 4-18
on macro pins, 4-13
on macro symbols, 4-14
on macros, 4-12
on nets, 4-12, 4-16
on nets to group flip-flops, 4-17
on pins, 4-16
on primitive symbols, 4-13
path tracing, 4-10
placed on nets, 4-11
predefined groups, 4-10
primitive pins, 4-12
qualifiers, 4-18
storage elements, 4-19
syntax, 4-9, 4-64
user-defined groups, 4-8

TNM_NET constraint
description, 4-19
example, 4-20
PCF files, 4-20
UCF syntax, 4-19
user-defined groups, 4-19
with nets, 4-20

TOC
specifying pulse width, 18-8
VHDL only, 18-12

TOCBUF, 18-13
-tp option

NGD2VER, 17-9
NGD2VHDL, 18-7

TPSYNC
attached to net, 4-47
attached to output macro pin, 4-47
attached to primitive pins, 4-48
attached to primitive symbols, 4-48
defining synchronous points, 4-47
description, 4-46
restrictions, 4-49
syntax, 4-47, 4-69

Index

Development System Reference Guide Index-23

with FROM-THRU, 4-50
with FROM-TO, 4-50

TPTHRU
defining through points, 4-49
description, 4-46
example, 4-51
syntax, 4-69
with FROM-TO, 4-50
with THRU, 4-51

-tpw option, 18-8
TRACE

description, 12-2
error report, 12-21, 12-22
falling signals, 12-16
flow diagram, 12-2
halting, 12-30
PCF files, 12-3
reports, 12-14, 12-15
rising signals, 12-16
summary report, 12-18, 12-19, 12-20
supported families, 12-1
timing verification, 12-11
TWR files, A-5
verbose report, 12-24, 12-25, 12-26,
12-28, 12-29

tracing, forward, 4-10, 4-12, 4-18
TRANSHI keyword, 4-25, 4-65
translation, of netlist, 2-3
TRANSLO keyword, 4-25, 4-65
TRCE

-a option, 12-4
-dfs option, 12-4
-e option, 12-5
example commands, 12-9
input files, 12-3, 12-9
-kpaths option, 12-5
-o option, 12-7
options, 12-4
output files, 12-3, 12-10
-s option, 12-7
-skew option, 12-8
syntax, 12-2

-u option, 12-8
-v option, 12-9

tristate
buffer outputs, 12-16
buffer paths, 10-12, 12-7
enable signals, 10-11, 12-6

tristate buffer paths, 10-11, 12-7
Tri-State-On-Configuration cell see TOC
TS attributes

delay time units, 4-51
description, 4-3
examples, 4-52, 4-53
placement, 4-46
syntax, 4-4, 4-68
time delays, 4-51

TSidentifier constraint
in PCF

with ALLCLOCKNETS, 4-29, 4-30
with MAXDELAY, 4-58

TTL, 13-7, 13-22
turns engine

debug mode, 10-43
debugging, 10-44
description, 10-38
environment problem, 10-45
environment variables, 10-42
halting with CONTROL-C, 10-46
input files, 10-39
limitations, 10-41
NCD output file, 10-40
nodelist file, 10-39
output files, 10-40
running on networks, 10-40
screen output, 10-45
security, 10-43
starting from command line, 10-44
system requirements, 10-41

TV files, 17-4, 17-8, A-5
TVHD files, 18-4, 18-7, A-5
TWR files, A-5

Development System Reference Guide

Index-24 Xilinx Development System

U
-u option

BitGen, 13-39
MAP, architectures, 6-7
MAP, description, 6-16
NGD2VER, 17-9
NGDBuild, 2-9
PROMGen, 14-7
TRCE, 12-8
XNF2NGD, B-12

-ub option, 10-15
-uc option, 2-10
UCF files

as NGDBuild input, 2-4
description, 3-1
logical constraints, 3-1
specifying, 2-10
wildcard characters, 4-5

UCF syntax, TNM_NET, 4-19
Uclk_Nosync, 13-11
Uclk_Sync, 13-11
-ul option, 17-9
unbonded pads, connecting to primitives,
5-4
uncovered paths, 12-8
underbars, 6-19, 6-20
UNISIM libraries

lack of global nets, 17-11
use in Verilog simulation, 17-11

unnamed components, in LCA files, 7-4
unused interconnects, 13-37, 13-38
unused logic, keeping, 6-16
-ur option, 2-10
URF file see user rules file
user constraints file see UCF files
user rules file, B-18

examples, B-25
format, B-19
key values, B-21
keys, B-19
specifying, 2-10
versus system rules, B-18

user-defined groups
TNM_NET, 4-19
TNMs, 4-8

UserID option, Virtex, 13-36

V
V files, 17-4, A-5
-v option

DRC command, 9-3
NGD2EDIF, 16-6
TRCE, 12-9

vendor toolset, specifying, 16-6
-verbose option

NGD2VER, 17-9
NGD2VHDL, 18-8

verbose reports
TRACE, 12-9, 12-24, 12-25, 12-26,
12-28, 12-29

verification, timing with TRCE, 12-11
Verilog simulator, terminating, 17-29
VHD files, 18-4, A-5
Virtex

bus matching, B-15
-c PAR option, 10-7
-d PAR option, 10-8
-g BitGen option, 13-28
IOB configuration, 4-60
MAP guide files, 6-3
SelectIO standard, 10-29
SelectIOs, 10-35
slices, 6-18

VOLTAGE constraint, 4-56
-vpt option, 16-7

W
-w option

BitGen, 13-39
LCA2NCD, 7-4
NGD2EDIF, 16-7
NGD2VER, 17-10
NGD2VHDL, 18-8

Index

Development System Reference Guide Index-25

PAR, 10-15
warnings

DRC command, 9-5
MRP files, 6-25

wildcards
asterisk, 4-25
in UCF or NCF files, 4-5
name qualifiers, 4-7
question mark, 4-25
specifying net names, 4-25

X
-x option

PAR, 10-16
PROMGen, 14-8

X8 mode, 13-35
XMM files

description, 16-7
generic file format, 16-8
generic simulator, 16-7
Mentor Graphics simulator, 16-7
output from NGD2EDIF, 16-4
-v option, 16-7
Viewlogic simulator, 16-7

XNF files
description, A-5
input to XNF2NGD, B-10
specifying as top-level netlist, B-12

XNF2NGD
description, B-7
flow diagram, B-8
input files, B-10
-l option, B-11
output files, B-10
-p option, B-11
-r option, B-12
supported families, B-7
syntax, B-9
-u option, B-12

XTF files, A-5

Z
-z option, 9-4

Development System Reference Guide

Index-26 Xilinx Development System

	Development System Reference Guide
	Preface
	Conventions
	Contents
	Introduction
	NGDBuild
	The User Constraints (UCF) File
	Using Timing Constraints
	The Logical Design Rule Check
	MAP-The Technology Mapper
	LCA2NCD
	The Physical Constraints (PCF) File
	DRC-Physical DesignRule Check
	PAR-Place and Route
	PIN2UCF
	TRACE
	BitGen
	PROMGen
	NGDAnno
	NGD2EDIF
	NGD2VER
	NGD2VHDL
	Xilinx Development System Files
	EDIF2NGD, XNF2NGD, and NGDBuild

