
Moving Data Across Asynchronous Clock Boundaries Page 1 of 2

 

 

 techXclusives
   

 

Moving Data Across
Asynchronous Clock Boundaries

By Peter Alfke
Director, Applications Engineering

 

   

 

Synchronous single-clock systems are robust and easy to design, 
simulate, and debug. But in some situations, multiple unrelated clocks 
must access common data. Such asynchronous interfaces will operate 
reliably and predictably if the designer invests the necessary care. 

Two or more unrelated (i.e, asynchronous) clocks have a constantly 
changing phase relationship, and the designer must anticipate the worst 
possible condition, because it will inevitably occur sooner or later. 

WARNING: Never cross a clock-domain boundary with more than one 
control interface. If you do, there will inevitably come the moment where the 
two controllers disagree; most systems cannot cope with that condition. 

Here is a safe circuit that controls parallel date transfer from a transmitter 
on the left to the receiver on the right. The transmitter indicates available 
data by clocking (and thus setting) flip-flop A. This raises the Flag line that 
is monitored by both sides. As long as the Flag is High, the transmitter 
must maintain the data on the bus for the receiver to read. Having read the 
data, the receiver acknowledges this by clocking (and thus setting) flip-flop 
B. This, in turn, clears flip-flop A, pulls the Flag Low, and also clears flip-
flop B. This inherently benign and safe race condition can (redundantly) be 
made even safer by adding delay to the inverter that resets flip-flop B.  

DataSource CD-ROM Q4-01: techXclusives



Moving Data Across Asynchronous Clock Boundaries 2 of 2
This design works reliably with any arbitrary relationship or non-
relationship between the transmit and receive clocks and their timing. This 
design is slowed down by the need to monitor and manipulate the Flag 
signal. The transmitter may present new data only when the Flag is High, 
and it must acknowledge this by setting flip-flop B. 

If the receiver clock is always faster than the transmitter clock, the interface 
can be simplified and run open-loop, without any handshake. In the most 
general case, the transmitter puts data on the bus and adds one more bit 
that toggles for every new data word. This extra bit allows the receiver to 
separate a series of identical words. Depending on the system 
requirements, this extra bit may not be necessary. 

The receiver constantly clocks the data into a dual-rank register and 
monitors the output of an identity comparator. Whenever the two registers 
are identical, both contain proper data. And the XOR of the control bit 
indicates that the data has changed. There is no need for a handshake, as 
long as the receive clock period is always shorter than the transmit clock 
period. 

These circuits allow the transfer of parallel data between asynchronous 
clocks. In the most general cases of high-speed or variable-speed read 
and write clocks, an asynchronous FIFO is the best solution. (This will be 
described in my next techXclusive.) 

 

        

DataSource CD-ROM Q4-01: techXclusives


	Product Selection Guides
	Product Data Sheets
	Application Notes
	Application Briefs
	White Papers
	Package Information
	Software Manuals
	More Information
	Xcell Journal 
	Xcell Journal Archives
	Inside Out Columns
	techXclusives
	Glossary of Terms
	Xilinx Sales Offices
	Register DC-ROM
	-START_HERE PAGE

